RINGS WITH INDECOMPOSABLE RIGHT MODULES LOCAL

Surjeet Singh

Abstract. Every indecomposable module over a generalized uniserial ring is uniserial, hence local. This motivates one to study rings \(R \) satisfying the condition (*): \(R \) is a right artinian ring such that every finitely generated, indecomposable right \(R \)-module is local. The rings \(R \) satisfying (*) have been recently studied by Singh and Al-Bleahed (2004), they have proved some results giving the structure of local right \(R \)-modules. In this paper some more structure theorems for local right \(R \)-modules are proved. Examples given in this paper show that a rich class of rings satisfying condition (*) can be constructed. Using these results, it is proved that any ring \(R \) satisfying (*) is such that \(\text{mod-} R \) is of finite representation type. It follows from a theorem by Ringel and Tachikawa that any right \(R \)-module is a direct sum of local modules. If \(M \) is a right module over a right artinian ring such that any finitely generated submodule of any homomorphic image of \(M \) is a direct sum of local modules, it is proved that it is a direct sum of local modules. This provides an alternative proof for that any right module over a right artinian ring \(R \) satisfying (*) is a direct sum of local modules.

0. INTRODUCTION

It is well known that an artinian ring \(R \) is generalized uniserial if and only if every finitely generated indecomposable right \(R \)-module is uniserial. Every uniserial module is local. This motivated Tachikawa [10] to study a ring \(R \) satisfying the condition (*): \(R \) is a right artinian ring such that every finitely generated indecomposable right \(R \)-module is local. Consider the dual condition (**): \(R \) is left artinian such that every finitely generated indecomposable left \(R \)-module is uniform. If a ring \(R \) satisfies (*), it is proved by Tachikawa that \(R \) admits a finitely generated...
injective cogenerator Q_R, then $B = \text{End}(Q_R)$ satisfies (**). Tachikawa had studied a ring R satisfying (*) through the corresponding ring B, but he did not give structure of local right R-modules. Singh and Al-Bleahed [8] have studied rings R satisfying (*) without using the duality, and they have proved some structure theorems on local right R-modules. In section 2, structure of a local right R-modules is further investigated. By using these results it is proved in Theorem 2.14 that R is of finite representation type. In section 3, general right R-modules are investigated. It is well known that exceptional rings as defined by Dlab and Ringel (see [2] or [3]) are balanced ring, and any right module over an exceptional $(1,2)$-ring is a direct sum of local modules. It follows from [2, Proposition 3] and also from [8, Theorem 2.13] that any exceptional $(1,2)$-ring also satisfies (*). It follows from [9, Corollary 4.4], that any right R-module is a direct sum of local modules. A direct proof of this result is given, by proving the following: If M is a right module over a right artinian ring, such that any finitely generated submodule of any homomorphic image of M is a direct sum of local modules, then M is a direct sum of local modules (Theorem 3.4). As there is no known duality that can tell that a ring R satisfies (*) if and only if it satisfies (**), it would be interesting to examine condition (***) by itself. In section 4, some examples illustrating various results are given.

1. Preliminaries

All rings considered here are with identity $1 \neq 0$ and all modules are unital right modules unless otherwise stated. Let R be a ring and M be an R-module. $J(M)$, $E(M)$ and $\text{socle}(M)$ denote radical, injective hull and socle of M respectively, however $J(R)$ will be denoted by J. If R is right artinian, then $J(M) = MJ$. Further, $N \leq M$ denotes that N is a submodule of M. A ring R is called a local ring, if R/J is a division ring. Given two positive integers n, m, a ring R is called an (n,m)-ring if it is a local ring, $J^2 = 0$ and for $D = R/J$, $\dim_D J = n$ and $\dim J_D = m$. Any $(1,2)$ (or $(2,1)$) ring R is called an exceptional ring if $E(R)$ (respectively $E(RR)$) is of composition length 3 [4, p 446]. A module in which the lattice of submodules is linearly ordered under inclusion, is called a uniserial module, and module that is a direct sum of uniserial modules is called a serial module [5, Chapter V]. If for a ring R, $RR (RR)$ is serial, then R is called a left (right) serial ring. A ring that is local, both serial and artinian, is called a chain ring. A ring R is said to be of finite right representation type, if it admits only finitely many non-isomorphic indecomposable right R-modules [5, p 109]. If a module M has finite composition length, then $d(M)$ denotes the composition length of M. For definitions of M-injective and M-projective modules one may refer to [1, p 184].
2. LOCAL MODULES

Consider the following condition on a ring R: (*) R is a right artinian ring such that any finitely generated indecomposable right R-module is local.

The following is proved in [8, Proposition 2.2]

Proposition 2.1. Let R be a right artinian ring. Then R satisfies (*) if and only if for any two non-simple local right R-modules A, B, simple submodules S, T of A, B respectively, and any R-isomorphism $\sigma: S \to T$, either σ or σ^{-1} extends to an R-homomorphism from A to B or from B to A respectively.

Proposition 2.2. ([8]). Let R be a ring satisfying (*).

(i) Any uniform right R-module is uniserial.

(ii) R is left serial.

(iii) Let A, B be two uniserial right R-modules each of composition length at least three. Then $M = A \oplus B$ does not contain any local, non-uniserial submodule of composition length 3.

(iv) Let C_1, C_2 be two uniserial R-modules such that for some $k \geq 2$, $C_1/C_1J^k \cong C_2/C_2J^k$, and C_1J^k, C_2J^k are non-zero, then $C_1/C_1J^{k+1} \cong C_2/C_2J^{k+1}$.

(v) Let A_R, B_R be two local modules such that $d(A) = d(B)$, $AJ^2 = 0 = BJ^2$. For any simple submodule S of A, any R-monomorphism $\sigma: S \to B$ extends to an R-isomorphism from A onto B.

For any local module A_R, AJ is a direct sum of uniserial modules [8, Lemma 2.7].

Theorem 2.3. ([8, Theorem 2.10]). Let R be a ring satisfying (*) and A_R be a local module such that $AJ = C_1 \oplus C_2 \oplus \cdots \oplus C_t$ for some uniserial modules C_i. Then the following hold.

(i) Either all C_i/C_iJ are isomorphic or $t \leq 2$.

(ii) Any local submodule of AJ is uniserial.

(iii) If $d(C_1) \geq 2$, then either $t \leq 2$ or any C_i is simple for $i \geq 2$.

Proposition 2.4. Let R be a ring satisfying (*).

(i) Let A_1 and A_2 be any two uniserial right R-modules. Then $A_1J \oplus A_2J$ does not contain a submodule that is local but not uniserial.

(ii) If a non-zero homomorphic image of a uniserial right R-module L is injective, then L is injective.

(iii) Let A_R be a local module, and $AJ = C_1 \oplus D$, where C_1 is uniserial. Let σ be an R-endomorphism of A such that $\ker \sigma \cap C_1 = 0$, and σ is not an automorphism. Then $\sigma(A)$ is a uniserial module of composition length more than $d(C_1)$. A/D embeds in $\sigma(A)$ and no homomorphic image of A/D is injective. If a module B_R embeds in C_1, then no non-zero homomorphic image of B is injective.
Let \(A_R \) be a local module, and \(AJ = C_1 \oplus C_2 \oplus \ldots \oplus C_t \) for some uniserial submodules \(C_i \). Let \(s = \max\{d(C_i) : 1 \leq i \leq t\} \). Then for any simple submodule \(S \) of \(A \), and any uniserial submodule \(B \) of \(A \) of composition length \(s \), any \(R \)-homomorphism \(\sigma : S \to B \) extends to an \(R \)-endomorphism of \(A \); if in addition \(S \) is contained in a uniserial submodule of composition length \(s \), then \(\sigma \) is an automorphism.

Proof.

(i) On the contrary suppose that \(A_1J \oplus A_2J \) contains a non-uniserial local submodule \(uR \). Then \(u = u_1 + u_2 \), \(0 \neq u_i \in A_iJ \), and \(uJ \) is a direct sum of two non-zero uniserial submodules. As \(A_i \) are uniserial, without loss of generality we take \(u_iR = A_iJ \). Then \(uJ^2 = A_1J^3 \oplus A_2J^3 \). This gives that \((A_1 \oplus A_2)/uJ^2 = B_1 \oplus B_2 \) for some uniserial modules with \(d(B_i) \geq 3 \). But \(uR/uJ^2 \) is local, non-uniserial of composition length 3, and it embeds in \(B_1 \oplus B_2 \). This contradicts (2.2)(iii). Hence \(A_1J \oplus A_2J \) does not contain a non-uniserial, local submodule.

(ii) It is immediate from the fact that any uniform right \(R \)-module is uniserial.

(iii) By (2.3)(ii), \(\sigma(A) \) is uniserial. As \(B = ker\sigma \) embeds in \(D \), it is immediate that \(d(\sigma(A)) \geq d(A/D) = d(C_1) + 1 \). As \(B \cap C_1 = 0 \), \(C_1 \) embeds in \(\sigma(A) \). Also, \(C_1 \) embeds in \(A/D \), it also follows that \(A/D \) embeds in \(\sigma(A) \). As \(\sigma(A) \) is not injective, by (ii) no homomorphic image of \(A/D \) is injective. The last part also follows from (ii).

(iv) Let \(C = socle(B) \) and \(\sigma : S \to B \) be an \(R \)-homomorphism. Suppose the contrary. As every uniserial \(R \)-module is quasi-injective, \(t \geq 2 \), \(d(A) \geq s + 2 \) and \(AJ \) contains no uniserial submodule of composition length more than \(s \). By (2.1), \(\sigma^{-1} : C \to S \) extends to an \(R \)-endomorphism \(\lambda \) of \(A \). Then \(\lambda \) is not an automorphism, and \(\lambda(A) \subseteq AJ \). As \(\lambda \) is one-to-one on \(B \), we get \(d(\lambda(A)) \geq s + 1 \). But by (2.3)(ii), \(\lambda(A) \) is uniserial, so we have a contradiction. The last part again follows from (2.3)(ii).

(2.1) gives the following.

Proposition 2.5. Let a ring \(R \) satisfy (*). Let \(A_R, B_R \) be two local, modules such that \(A \) is \(B \)-projective and \(B \) is \(A \)-projective. Let \(A_1 < A_2 < A \), \(B_1 < B_2 < B \) be such that \(A_2/A_1 \) is simple and there exists an \(R \)-isomorphism \(\sigma : A_2/A_1 \to B_2/B_1 \). Then either there exists an \(R \)-homomorphism \(\lambda \) of \(A \) to \(B \) inducing \(\sigma \) or there exists an \(R \)-homomorphism \(\lambda : B \to A \) inducing \(\sigma^{-1} \).

Henceforth, throughout this section \(R \) is a ring satisfying (*).

Lemma 2.6. Let \(A_R \) be a local module.
(i) If \(AJ = C_1 \oplus C_2 \), where \(C_i \) are minimal submodules, then either \(A/C_1 \) or \(A/C_2 \) is injective.

(ii) If \(AJ = C_1 \oplus C_2 \), where \(C_i \) are uniserial, then either \(A/C_1 \) or \(A/C_2 \) is such that its every non-simple homomorphic image is injective.

(iii) Suppose \(AJ = C_1 \oplus C_2 \oplus \ldots \oplus C_t \) such that each \(C_i \) is uniserial and \(t \geq 3 \).

For each \(1 \leq i \leq t \), let \(L_i \) be the direct sum of all \(C_j \) with \(j \neq i \). Then every non-simple homomorphic image of any \(A/L_i \) is injective.

(iv) Let \(AJ = C_1 \oplus C_2 \oplus D \) with \(C_1 \) and \(C_2 \) both uniserial. Suppose for some \(k, l, C_1 J^k/C_1 J^{k+1} \) and \(C_2 J^l/C_2 J^{l+1} \) are isomorphic, and for some \(u \geq 1 \), \(C_1 J^{k+u} \neq 0 \neq C_2 J^{l+u} \), then \(C_1 J^{k+u}/C_1 J^{k+u+1} \) and \(C_2 J^{l+u}/C_2 J^{l+u+1} \) are isomorphic.

Proof.

(i) If none of \(A/C_i \) is injective, then \(A \) embeds in \(E(A/C_1)J \oplus E(A/C_2)J \), which contradicts (2.4)(i). This proves (i).

(ii) By applying (i) to \(A/AJ^2 \) and by using Proposition (2.4)(ii), it follows.

(iii) For \(t \geq 3 \), as all \(C_i/C_iJ \) are isomorphic by (2.3), the result follows from (i).

(iv) It is enough to prove the result for \(u = 1 \). Suppose that \(C_1 J^{k+1}/C_1 J^{k+2} \) and \(C_2 J^{l+1}/C_2 J^{l+2} \) are not isomorphic. For some indecomposable idempotent \(e \in R \), \(C_1 J^k/C_1 J^{k+2} \) and \(C_2 J^l/C_1 J^{l+2} \) both are homomorphic images of \(eR \). This gives a local, non-uniserial module \(B_R \) of composition length 3 with \(BJ = L_1 \oplus L_2 \) such that \(B/L_1 \cong C_1 J^k/C_1 J^{k+2} \) and \(B/L_2 \cong C_2 J^l/C_1 J^{l+2} \). Let \(A = A/(C_1 J^{k+2} \oplus C_2 J^{l+2}) \). Then \(B \) embeds in the radical of the direct sum of \(A/C_1 \oplus D \) and \(A/C_2 \oplus D \), which is a contradiction to (2.4)(i). This proves the result.

Lemma 2.7. Let \(A_R \) be a local module and \(B_R \) any module. For some \(C \subseteq B \), let \(\sigma : A \to B/C \) be an \(R \)-homomorphism.

(i) There exists a local submodule \(D \) of \(A \times B \) such that \(D = (a, b)R \) with \(aR = A \) and \(\sigma(a) = b + C \). If \(D \) is uniserial and \(d(B) \leq d(A) \) then \(\sigma \) can be lifted to some \(R \)-homomorphism \(\eta : A \to B \).

(ii) If \(A \times B \) does not contain a local submodule \(D_1 \) with \(d(D_1) > d(A) \), then \(A \) is \(B \)-projective.

(iii) If \(A \times B \) has no non-uniserial local submodule and \(d(B) \leq d(A) \), then \(A \) is \(B \)-projective.

Proof. (i) Let \(N = \{(x, y) \in A \times B : \sigma(x) = y + C\} \). Let \(\pi : A \times B \to A \) be the natural projection. Then \(\pi(N) = A \). There exists a local submodule \(D \) of \(N \) such that \(\pi(D) = A \). Clearly \(D = (a, b)R \) with \(A = aR \) and \(\sigma(a) = b + C \). Now
\[d(D) \geq d(A). \] Suppose \(d(D) = d(A) \). Then \(D \cong A \) and \(\eta : A \to B \) given by \(\eta(ar) = br \) lifts \(\sigma \). In case \(D \) is uniserial and \(d(B) \leq d(A) \), then \(D \cong A \), so once again \(\sigma \) can be lifted. After this (ii) is immediate. Under the hypothesis in (iii), the hypothesis in (ii) holds, so \(A \) is \(B \)-projective.

Lemma 2.8. Let \(A_R \) and \(B_R \) be two uniserial modules and \(\sigma : A \to B/C \) be an \(R \)-epimorphism for some \(C < B \).

(i) If \(A \) is not injective and \(d(B) \leq d(A) \), then either \(B \) is injective or \(\sigma \) can be lifted to some \(R \)-homomorphism \(\eta : A \to B \).

(ii) If \(d(B) \leq d(A) \) and neither \(A \) nor \(B \) is injective, then \(A \) is \(B \)-projective.

(iii) Any uniserial right \(R \)-module is either injective or quasi-projective.

(iv) Let \(C = \socle(A) \), and \(C < D < A \) with \(D/C \) a simple module. If \(C \cong D/C \), then all the composition factors of \(A \) are isomorphic.

Proof. By Lemma 2.7, there exists a local submodule \(D = (a,b)R \subseteq A \times B \) such that \(A = aR \) and \(\sigma(a) = b + C \). Suppose \(d(B) \leq d(A) \). If \(D \) is uniserial, it follows from (2.7)(i) that \(\sigma \) lifts to an \(R \)-homomorphism \(\eta : A \to B \). Suppose \(D \) is not uniserial. Then \(DJ = C_1 \oplus C_2 \) for some non-zero uniserial submodules \(C_i \). Let \(\pi_A \) and \(\pi_B \) be the natural projections of \(A \times B \) onto \(A \) and \(B \) respectively. Then for one of the \(C_i \) say \(C_1 \), \(\pi_A(C_1) = AJ \). But \(\pi_B(C_1) \subseteq BJ \) and \(d(B) \leq d(A) \), it follows that \(C_1 \) is isomorphic to \(AJ \) under \(\pi_A \). Therefore \(AJ \times BJ = C_1 \oplus (0 \times BJ) \), \(DJ = C_1 \oplus (DJ \cap (0 \times BJ)) \) and \(C_2 \cong DJ \cap (0 \times BJ) \). Suppose that neither \(A \) nor \(B \) is injective, then \(D \subseteq E(A)J \oplus E(B)J \), therefore by (2.4), \(D \) is uniserial. Then, by using (2.7)(i), we get \(A \) is \(B \)-projective. From this (i), (ii) and (iii) follow. (iv) is immediate from the fact that the injective hull of \(A \) is uniserial.

Lemma 2.9. Let \(A_R \) be a local module such that \(AJ = A_1 \oplus A_2 \) for some uniserial submodules \(A_i \) and there exists an \(R \)-isomorphism \(\sigma : \socle(A_1) \to \socle(A_2) \). Let there exists an \(R \)-endomorphism \(\mu \) of \(A \) that extends \(\sigma \). Let \(M_i \) be the maximal submodule of \(A_i \). Then:

(i) \(d(A_1) \leq d(A_2) \), \(A/A_1 \) is injective and \(A/M_2 \oplus A_1 \) is injective.

(ii) If \(d(A_1) < d(A_2) \), then \(A/A_2 \) is quasi-projective, \(A/(M_1 \oplus A_2) \) is not injective and \(A/(M_2 \oplus A_1) \) is injective.

(iii) If \(d(A_1) = d(A_2) \), then \(A/M_2 \oplus A_1 \cong A/M_1 \oplus A_2 \) and both are injective.

(iv) If \(A_1/A_1J \cong A_2/A_2J \), then \(A_1 \cong A_2 \).

Proof. Suppose \(f : eR \to A \) is the projective cover of \(A \). We take \(A = eR/B \) and \(A_i = C_i/B \) for some right ideals \(B < C_i < eR \). Suppose there exists
an R-endomorphism μ of A that extends σ. We can find an R-endomorphism λ of eR that lifts μ. Then $\lambda(B) \subseteq B$, $\lambda(\text{soc}(C_1)) + B = \text{soc}(C_2) + B \not\subseteq C_1 + B$. Hence C_1 is not invariant under the endomorphisms of eR, eR/C_1 is not quasi-projective, therefore A/A_1 being isomorphic to eR/C_1 is not quasi-projective. By (2.8)(iii), A/A_1 is injective. As $\mu(A_1) \cong A_1$ and $\mu(A_1) \cap A_1 = 0$, it follows that $d(A_1) \leq d(A_2)$ and A_1 embeds in A_2. Let $M_i \leq A_i$. Suppose $d(A_1) < d(A_2)$, it follows that A/A_1 is isomorphic to a submodule A_2, and hence $A/(A_2 + M_1)$ is not injective. Therefore by (2.6)(i), $A/(A_1 + M_2)$ is injective. As A/A_2 is not injective, by (2.8)(iii), it is quasi-projective. If $d(A_1) = d(A_2)$, then the isomorphism σ gives that $A/A_1 + M_2$ and $A/A_2 + M_1$ are isomorphic, so once again, by (2.6)(ii), both are injective. The hypothesis in (iv) gives that $A/(M_2 + A_1) \cong A/(M_1 + A_2)$, so they are injective by (i). By (ii), $d(A_1) = d(A_2)$. Hence $A_1 \cong A_2$.

Theorem 2.10. Let R be a local ring satisfying (*). If $J^2 \neq 0$, then R is a chain ring.

Proof. By (2.2), R is a left serial ring. If R is not right serial, we get a local, right R-module A such that $A AJ = C_1 \oplus C_2$ with each C_i uniserial, $d(C_1) = 2$, $d(C_2) = 1$. As every composition factor of A is isomorphic to R/J, it contradicts (2.9)(iv). Hence R is a chain ring.

Lemma 2.11. Let A_R be a local module such that $A AJ = A_1 \oplus A_2 \oplus L$ for some uniserial modules A_i, with $d(A_1) > 1$, and $L \neq 0$. Then no two composition factors of A_1 are isomorphic.

Proof. By (2.3), $A J/AJ$ is homogeneous. Suppose, A_1 has two isomorphic composition factors. Then for some $s \geq 1$, $A_1/A_1 J \cong A_1 J^s/A_1 J^{s+1}$. Let $B = A/(A_1 J^{s+1} + L)$. Then B contradicts (2.9)(ii).

Theorem 2.12. Let A_R be a local module over a ring R satisfying (*) such that $AJ = C_1 \oplus C_2 \oplus \ldots \oplus C_t$ for some uniserial modules C_i such that $t \geq 2$, and $d(C_1) \geq 2$. Let $C_i/C_i J \cong C_t/C_t J$ for some $i > 1$, then $t = 2$. If A is projective, then $C_1 \cong C_2$.

Proof. To start with, we take $A = eR$ for some indecomposable idempotent e. Suppose $C_1/C_1 J \cong C_2/C_2 J$. So there exists an indecomposable idempotent $f \in R$, such that for some $u, v \in eJf, C_1 = uR, C_2 = vR$. Then $u, v \in eJf \setminus J^2$. As R is left serial, $Rf = Ru = Rv$. We get $v = bu$ for some unit b in $eRe, C_2 = bC_1, d(C_1) = d(C_2)$. This contradicts (2.3)(iii) unless $t = 2$. By (2.6)(iv), $\text{soc}(C_1) \cong \text{soc}(C_2)$, hence $C_1 \cong C_2$. In general, as A is a homomorphic image of an eR, where $e = e^2$ is indecomposable, the result follows.
Theorem 2.13. Let A_R be a local module such that $AJ = C_1 \oplus C_2$, where C_i are uniserial, and $C_1J^k/C_1J^{k+1} \cong C_2J^l/C_2J^{l+1} \neq 0$, for some $k < l$.

(i) A/C_1 has all its non-simple homomorphic images injective.
(ii) No two composition factors of C_2 are isomorphic.
(iii) No composition factor of C_2 is isomorphic to a composition factor of C_1.
(iv) $A, A/C_1$ and A/C_2 are all quasi-projective.

Proof. Let $\lambda : eR \to A$ give the projective cover of A. Then $eJ = D_1 \oplus D_2 \oplus L$, where D_1, D_2 are uniserial and $C_1 = \lambda(D_1)$. If $L \neq 0$, by (2.11), D_1 has no two composition factors isomorphic, which is a contradiction. Hence $L = 0$, and $eJ = D_1 \oplus D_2$. For some $s \geq 1$, $D_1/D_1J \cong D_1J^s/D_1J^{s+1}$. Thus $eR/(D_2 \oplus D_1J)$ embeds in D_1/D_1J^{s+1}, therefore it is not injective. Consequently, by (2.6)(i), $eR/(D_1 \oplus D_2J)$ is injective. Then, by (2.4)(ii), every non-simple homomorphic image of eR/D_1 is injective. If D_2 has two isomorphic composition factors, the interchange of the roles of D_1, D_2 will give that every non-simple homomorphic image of eR/D_2 is injective, in particular, $eR/(D_2 \oplus D_1J)$ is injective, which is a contradiction. Hence D_2 has no two composition factors isomorphic.

Suppose eR/D_2 is not quasi-projective. Then D_2 is not invariant under the R-endomorphisms of eR, consequently, there exists a non-zero homomorphism of D_2 into D_1. Therefore $D_2/D_2J \cong D_1J^v/D_1J^{v+1}$ for some $v \geq 0$. If $v > 0$, we get $eR/D_1 \oplus D_2J$ is not injective, which is a contradiction to (i) for eR. Hence $v = 0$. Then $eR/D_2 \oplus D_1J$ is isomorphic to $eR/D_1 \oplus D_2J$, so once again it is injective, which is a contradiction. Hence eR/D_2 is quasi-projective.

Suppose there exists an R-isomorphism $\sigma : D_1J^i/D_1J^{i+1} \to D_2J^j/D_2J^{j+1}$ for some i and j, with $D_1J^i \neq 0$. If $j \leq i$, then $D_2/D_2J \cong D_1J^v/D_1J^{v+1}$ for some v, and as in the above paragraph, we get a contradiction. Hence $i < j$. Then $D_1J^u/D_1J^{u+1} \cong D_2/D_2J \cong D_2J^v/D_2J^{v+1}$ for some $u \geq 1$. Then $eR/eJ \cong D_2J^v/D_2J^{v+1}$ is isomorphic to the top and bottom composition factors of $eR/D_2 \oplus D_1J^u$, and to the top and bottom composition factors of $eR/D_2 \oplus D_2J^v$. At the same time D_2/D_2J is isomorphic to a composition factor of $eR/D_2 \oplus D_2J^u$. The periodicity of the composition factors gives that D_2/D_2J is also isomorphic to a composition factor of $eR/D_2 \oplus D_1J^u$. Thus D_2/D_2J is either isomorphic to a composition factor of D_1/D_1J^u or it is isomorphic to eR/eJ. In the former case, we get a contradiction to $i < j$, and in the later case, every composition factor of $eR/D_2 \oplus D_2J^u$ and of $eR/D_2 \oplus D_1J^u$ is isomorphic to eR/eJ, and therefore $D_1/D_1J \cong D_2/D_2J$, which is a contradiction. Hence D_1 has no composition factor isomorphic to a composition factor of D_2. Hence $C_2 = \lambda(D_2)$. It follows that any submodule of $D_1 \oplus D_2$ is invariant under any R-endomorphism of eR. Consequently, $A, A/C_1$ and A/C_2 are all quasi-projective.
Theorem 2.14. If a ring R satisfies (*), then there exist only finitely many non-isomorphic, local right R-modules.

Proof. All indecomposable finitely generated right R-modules are local. As R is right artinian, there exists a bound on the composition lengths of the local modules and on the number of possible semi-simple modules that occur as socles of the local right R-modules. To prove the result it is enough to prove that given a triple (S_R, n, T_R), where S_R is simple, T_R is semi-simple and n is a positive integer, there do not exist more than two local modules A_R such that $S \cong A/AJ$, $d(A) = n$ and socle$(A) \cong T$.

Fix a local module A_R. Let B_R be another local module such that $A/AJ \cong B/BJ$, $d(A) = d(B)$ and socle$(A) \cong$ socle(B). If A is uniserial, then so is B, and obviously $A_R \cong B_R$. So we shall suppose that A is not uniserial. Now A, B admit same projective cover, say eR.

Suppose AJ is semi-simple. Then BJ is also semi-simple. By (2.2)(v), A and B are isomorphic.

Henceforth we shall suppose that AJ is not semi-simple. Then $AJ = D_1 \oplus D_2 \oplus \ldots \oplus D_u$, $BJ = H_1 \oplus H_2 \oplus \ldots \oplus H_u$ and $eJ = C_1 \oplus C_2 \oplus \ldots \oplus C_l$ for some uniserial modules D_i, H_j, C_k, with $u \leq t$. We take $d(D_1) \geq 2$, $d(H_1) \geq 2$ and D_1 a homomorphic image of C_1.

Suppose $t \geq 3$. Then all other C_j for $j \geq 2$ are simple. As D_1 and H_1 have same composition length, and by (2.11), no two composition factors of C_i are isomorphic, we get an isomorphic $\sigma :$ socle$(D_1) \rightarrow$ socle(H_1). Because of (2.1), we can take σ such that it extends to an R-homomorphism $\lambda : A \rightarrow B$. As in (2.4)(iv), λ is an isomorphism. Hence $A_R \cong B_R$.

Henceforth, we take $t = 2$. Then $u = 2$. It follows that $A/(D_1 \oplus D_2J)$ is either isomorphic to $eR/C_1 \oplus C_2J$ or to $eR/C_1 \oplus C_1J$. As socle$(A) \cong$ socle(B), we take socle$(D_1) \cong$ socle(H_1) for $i = 1, 2$. Suppose $d(D_1) = d(H_1)$. By using (2.1), we can suppose that there exists an R-homomorphism $\lambda : A \rightarrow B$ such that $\lambda(\text{socle}(D_1)) = \text{socle}(H_1)$. If λ is not an isomorphism, then $\lambda(A)$ is a uniserial module contained in BJ such that $\lambda(A) \cap H_2 = 0$, and $d(\lambda(A)) > d(H_1)$. Therefore $d(\lambda(A) + H_2) > d(BJ)$, which is a contradiction. Hence $A_R \cong B_R$.

Suppose $d(D_1) \neq d(H_1)$. Because of (2.6)(ii), we take D_1 such that every non-simple homomorphic image of A/D_1 is injective. If $d(D_2) < d(H_2)$, then as socle$(D_2) \cong$ socle(H_2), A/D_1 embeds in H_2, so A/D_1 is not injective, which is a contradiction. Hence $d(H_2) < d(D_2)$. Then B/H_1 embeds in D_2, therefore B/H_1 has no non-zero homomorphic image injective. Hence every non-simple homomorphic image of B/H_2 is injective. Therefore, $A/D_1 \oplus D_2J$ and $B/H_2 \oplus H_1J$ are isomorphic, that gives $D_2/D_2J \cong H_1/H_1J$ and $D_1/D_1J \cong H_2/H_2J$. Now $d(D_1) < d(H_1)$, so D_1 embeds in H_1. Therefore D_1/D_1J is isomorphic to a composition factor of H_1. Thus D_1/D_1J is isomorphic to a composition factor of H_1. Therefore
as well as of H_2. Then by (2.13), no two composition factors of H_1 are isomorphic and no two composition factors of H_2 are isomorphic. So there exists unique positive integer t such that $D_1/D_1J \cong H_1J^t/H_1J^{t+1}$. That gives $D_1 \cong H_1J^t$. Thus $d(D_1) = d(H_1) - t$ and $d(D_2) = d(H_2) + t$. Hence by the cases discussed above, the result follows.

\section{3. Decomposition Theorem}

\textbf{Lemma 3.1.} Let M be any right module over a ring R.

(i) Let L be a finitely generated submodule of M such that L is a summand of any finitely generated submodule of M containing L. Let $S < M$ be such that S is finitely generated and in $\overline{M} = M/L$, \overline{S} is a summand of every finitely generated submodule of \overline{M}. Then $L + S$ is a summand of any finitely generated submodule of M containing $L + S$.

(ii) Let $N \leq M$ such that N is finitely generated and is summand of any finitely generated submodule of M containing N. Then $NJ = MJ \cap N$.

(iii) If L is a finitely generated submodule of M such that it is a summand of every finitely generated submodule of M containing L, then any summand K of L is also a summand of any finitely generated submodule of M containing K.

\textbf{Proof.}

(i) Let $L + S \leq T$, where T is a finitely generated submodule of M. Then $T = L \oplus C$, $L + S = L \oplus W$ for some $C \leq M, W \leq M$. Therefore $\overline{S} = \overline{W}$ and $\overline{S} \leq \overline{C}$ in $\overline{M} = M/L$. By the hypothesis, $\overline{C} = \overline{S} \oplus \overline{K}$ for some $K \leq M$ containing L. Thus $T = S + K = W + K$ and $W \cap K \subseteq L$. As K is finitely generated, $K = L \oplus V$ for some $V \leq K$, $T = (W + L) + V$. Suppose for some $w \in W, x \in L$, and $v \in V, w + x = v$. Then $w \in W \cap K \subseteq L, v \in L \cap V = 0$. Hence $(W + L) \oplus V = T = (S + L) \oplus V$.

(ii) Let $x \in MJ \cap N$. Then $x = \sum_{j} x_j a_j$ for some finitely many $x_j \in M, a_j \in J$.

Set $K = \sum_{j} x_j R + N$. Then K is finitely generated, $x \in KJ$, $K = N \oplus P$ for some $P \leq K$, and $KJ = NJ \oplus PJ$. Hence $x \in NJ$.

(iii) Now $L = K \oplus S$ for some $S \leq L$. Suppose $K \leq T$, a finitely generated submodule of M. Then $T + S = L \oplus V = K \oplus (S \oplus V)$. This gives $T = K \oplus W$, where $W = T \cap (S \oplus V)$.

\textbf{Definition 3.2.} A module M is said to satisfy (\diamond) if any finitely generated submodule of any homomorphic image of M is a direct sum of local modules having finite composition lengths.
Lemma 3.3. Let M_R be a module satisfying (◇) and R be right artinian. Let $A = \bigoplus_{\alpha \in \Lambda} A_{\alpha} \subseteq M$ such that, each A_{α} is finitely generated and for any finite subset X of Λ, $A_X = \sum_{\alpha \in X} A_{\alpha}$ is a summand of any finitely generated submodule of M containing it. Let S be a local submodule of M such that S in M/A is non-zero and is a summand of any finitely generated submodule of M containing S.

(a) Let Γ be any finite subset of Λ such that $S \cap A = S \cap C$, where $C = A_{\Gamma}$. Then S in M/C is also a summand of any finitely generated submodule of M/C containing S.

(b) There exists a local submodule S_1 of M such that $A \cap S_1 = 0$, $S_1 = S$ in M/A, and for any finite subset Γ of Λ, $A_{\Gamma} + S_1$ is a summand of any finitely generated submodule of M containing S.

Proof.

(a) It follows from (3.1)(ii) that $AJ = MJ \cap A$. Now $S \cap A = SJ \cap A = SJ \cap (MJ \cap A) = S \cap AJ$. As S is finitely generated, we get a finite subset Γ of Λ such that $S \cap A = S \cap C \cap J$, where $C = A_{\Gamma}$. In $M = M/C$, let S be contained in a finitely generated submodule T, with $C \subseteq T$. Then T is finitely generated. Now $A = C \oplus D$ for some $D \subseteq A$. Consider $T_1 = T + D$. In $M/A, T_1 = T$ and $S \subseteq T_1$. Therefore $T_1 = S \oplus L$ for some $A \subseteq L, S \cap L = S \cap A = S \cap C \cap J$. We get $T = S + (T \cap L)$ with $S \cap (L \cap T) \subseteq C \cap J$. This gives $(S + C) \cap ((L \cap T) + C) = C + [(S + C) \cap (L \cap T)] = C$, as $C \subseteq L \cap T$. Hence, S in M/C is a summand of T.

(b) Let Γ be a finite subset of Λ such that $S \cap A = S \cap C \cap J$, where $C = A_{\Gamma}$. We choose S to be of smallest composition length among those local submodules S' for which $S = S'$. By the hypothesis, $S + C = C \oplus S_1$ for some local submodule S_1 of M. Then in M/A, $S = S_1$ and $d(S_1) \leq d(S)$. That gives $d(S) = d(S_1)$ and $C + S = C \oplus S$. Hence $A \cap S = 0$. Let X be any finite subset of Λ. Now $A \cap S = A_X \cap S = 0$. Let T be any finitely generated submodule of M containing A_X such that in M/A_X, $S \subseteq T$, then by (a), S is a summand of T. Now $T = A_X \oplus P$ for some $P \subseteq T$. In M/A_X, $S \subseteq P$, $P = S \oplus Q$ for some $Q \subseteq M$ containing A_X. Therefore, $T = S \oplus Q$, as $S \cap Q \subseteq A_X \cap S = 0$. But A_X is also a summand of Q. Hence $A_X \oplus S$ is a summand of T. This proves the result. ■

Theorem 3.4. If a module M_R satisfies satisfies (◇), where R is right artinian, then M is a direct sum of local modules. Any module over a ring R satisfying (◇) is a direct sum of local modules.
Proof. Let xR be a local submodule of M of smallest composition length such that $xR \not\subseteq MJ$. Let T be a finitely generated submodule of M containing xR. Now $T = \bigoplus_{i=1}^{n} A_i$ for some local submodules A_i. Let $\pi_i : T \to A_i$ be the projections giving this decomposition of T. If for every i, either $\pi_i(xR) \subsetneq A_iJ$ or $A_i \subseteq MJ$, then $xR \subseteq MJ$, which is a contradiction. Thus for some i, $\pi_i(xR) \not\subseteq A_iJ$ and $A_i \not\subseteq MJ$. Then $\pi_i(xR) = A_i$, $d(xR) = A_i$. Therefore π_i maps xR isomorphically onto A_i. Hence xR is a summand of T. Let F be the family of all those local submodules of M that are summand of any finitely generated submodule that contains them. Thus F is non-empty. A subfamily F' of F is said to satisfy condition (S), if the sum of the members of F' is direct and the sum of any finite subfamily of F' is a summand of any finitely generated submodule of M containing that sum. The set of all such subfamilies is non-empty. Union of any chain of subfamilies of F satisfying (S) satisfies (S). So, there exists a maximal subfamily $\{A_\alpha\}_{\alpha \in \Lambda}$ of F satisfying (S). Thus $\{A_\alpha\}_{\alpha \in \Lambda}$ satisfies the hypothesis in (3.3). Now $N = \sum_{\alpha \in \Lambda} A_\alpha = \bigoplus_{\alpha \in \Lambda} A_\alpha$. Suppose $M \neq N$. Then as for M, M/N has a local submodule \overline{B} that is a summand of any finitely generated submodule of M/N containing \overline{B}. As seen in the proof of (3.3)(b), we can choose B such that it is local, $N \cap B = 0$ and the family $\{A_\alpha\}_{\alpha \in \Lambda} \cup \{B\}$ satisfies (S), which is a contradiction to the maximality of $\{A_\alpha\}_{\alpha \in \Lambda}$. Hence $M = N$, a direct sum of local submodules. As any module over a ring satisfying (*), satisfies (ϕ), the second part follows.

Theorem 3.5. Let R be a ring satisfying (*), and M be any right R-module. Then any local submodule of MJ is uniserial and MJ is a direct sum of uniserial submodules. $R/r.ann(J)$ is a generalized uniserial ring.

Proof. Let T be a finitely generated submodule of MJ. Suppose T is not a direct sum of uniserial submodules. So there exists a local submodule uR of T that is not uniserial. There exists a finitely generated submodule K of M such that $T \subseteq KJ$. Now $K = \bigoplus_{i=1}^{n} A_i$ for some local submodules A_i. Let $\pi_i : K \to A_i$ be the corresponding projections and $L_i = ker(\pi_i \mid uR)$. As uR/L_i embeds in A_iJ, by (2.2), each uR/L_i is uniserial. Therefore $L_i \neq 0$ for any i. However, $\bigcap_{i} L_i = 0$, so we get, say L_1, L_2 such that $L_1 \not\subseteq L_2$ and $L_2 \not\subseteq L_1$. Let $v = \pi_1(u) + \pi_2(u)$. Then $vR \cong uR/(L_1 \cap L_2)$, it is local but not uniserial. As $\pi_i(u)R \subseteq A_iJ$, by [8, Lemma 2.7], $\pi_i(u)R$ is uniserial. For any local module A_R, as AJ is a direct sum of uniserial modules, any uniserial submodule wR of AJ embeds in a uniserial submodule of AJ. From this it follows that there exist two uniserial R-modules B_1 such that vR embeds in $B_1J \oplus B_2J$, which contradicts (2.4)(i). Hence any submodule of MJ is a direct sum of uniserial modules.
Now $R' = R/r.ann(J)$ embeds in a finite direct sum K of copies of J_R. As any local submodule of K is uniserial, R' is right serial. As R' is also left serial, is a generalized uniserial ring.

4. Some Examples

Lemma 4.1. Let A be a uniserial module over a generalized uniserial ring R, such that no two composition factors of A are isomorphic. Then the module $M = A \oplus A$ has the following properties.

(i) If L is any submodule of M, then $L = L_1 \oplus L_2$ and $M = M_1 \oplus M_2$ for some uniserial modules L_i, M_i such that $L_1 \subseteq M_i$.

(ii) If $K \leq L \leq M$ such that K is maximal in L, then $L = L_1 \oplus L_2$, $K = K_1 \oplus L_2$ for some uniserial modules L_i, $K_1 < L_1$.

(iii) Let $L = L_1 \oplus L_2$ be a submodule of M such that L_1 are uniserial and $d(L_1) = d(L_2)$. Then $K = L_1 \oplus L'_1$ is fully invariant in M.

Example A. Let F be a field admitting an endomorphism σ such that $[F : \sigma(F)] = 2$. Consider matrix units $\{e_{ij}, 1 \leq i \leq j \leq n\}$ such that for $i > 1$, $ae_{ij} = e_{ij}a$, $ae_{11} = e_{11}a$, $e_{1k}a = \sigma(a)e_{1k}$ for any $k > 1$ and any $a \in F$. Let R be the set of all upper triangular matrices over F. We write its members as $\sum_{i \leq j} a_{ij}e_{ij}$. Two member of R are added componentwise, and multiplication is defined by using the above specified laws for the matrix units. We also look at R as $T_n(F)$ the ring of $n \times n$ upper triangular matrices over F. Using the fact that $T_n(F)$ is generalized uniserial, we get that R is left serial. We see that for any $1 < k < n$, $a \in F$, $ae_{1k} = e_{11}(ae_{1k})$. Hence the right ideal $e_{11}R$ is the set of all matrices in R, whose last $n - 1$ rows are zero rows. Now $F = \sigma(F) + u\sigma(F)$, where $u \in F \setminus \sigma(F)$. $e_{11}J = A \oplus B$, where A, B are right ideals such that any member of A is of the form $\sum_{k>1} \sigma(a_{1k})e_{1k}$, and any member of B is of the form $\sum_{j>1} a_{1j}e_{1j}$. By comparing with the right ideal $\sum_{j>1} a_{1j}F$ in $T_n(F)$, we see that A and B are isomorphic uniserial right ideals of R, such that they are quasi-injective and quasi-projective. They can be regarded as modules over $T_n(F)$. No two composition factors of A are isomorphic. For some submodules K, K' of $e_{11}J$, consider $M = e_{11}R/K$ and $N = e_{11}R/K'$. Let L/K, L'/K' be simple submodules of M, N respectively and $\mu : L/K \rightarrow L'/K'$ be an R-isomorphism. By (4.1), $L = L_1 \oplus L_2$, $K = K_1 \oplus L_2$, $L' = L'_1 \oplus L'_2$, $K' = K'_1 \oplus L'_2$ for some uniserial modules L_i, L'_i, $K_1 \leq L_1$ and $K'_1 \leq L'_1$. Let
Let $\eta : L_1/K_1 \rightarrow L'_1/K'_1$ be the R-isomorphism induced by μ. Write $e_{11}R = M_1 \oplus M_2 = M'_1 \oplus M'_2$ where each M_i, M'_i is uniserial, $L_i \subseteq M_i$, and $L'_i \subseteq M'_i$. Then there exists unique R-isomorphism $\lambda : M_1 \rightarrow M'_1$ which induces η. Now $soc(L_1) = x_1e_{11}F$, $soc(L'_1) = x_1'e_{11}F$, for some $x_1, x_1' \in F$ such that $\lambda(x_1e_{11}) = x_1'e_{11}$. Further $d(L_1) = d(L_2)$. Let $soc(L_2) = x_2e_{11}F$, $soc(L'_2) = x_2'e_{11}F$, $x_2, x_2' \in F$. We can find $w \in F$ such that $wx_2 = x_2$. Let λ_w be the R-automorphism of $e_{11}R$ given by left multiplication by w. If λ_w extend λ, then λ_w lifts η. Otherwise, let $\lambda_w(x_1e_{11}) = x_1'e_{11}a + x_2'e_{11}b$ for some $a, b \in F$. If $a = 0$, then $\lambda_w(soc(e_{11}R)) = x_2'e_{11}F$ which is a contradiction. Hence $a \neq 0$. Then ϕ the R-automorphism of $e_{11}R$ given by left multiplication by $w\sigma(a)^{-1}$ is such that $\phi(x_1e_{11}) = x_1'e_{11} + x_2'e_{11}c$ for some $c \in F$. Then ϕ lifts σ.

We verify the condition in (2.1) to prove that R satisfies (*). Let M, N be any two local R-modules, and S be a simple submodule of M. Let $\phi : S \rightarrow N$ be an R-monomorphism. We can take $M = e_{rr}R/K$, and $N = e_{ss}R/L$ for some $1 \leq r, s \leq n$, $K < e_{rr}R$, and $L < e_{ss}R$. Now the case for $r = s = 1$, has been discussed above. Notice that the last $n - 1$ rows of R constitute the ring R' of $n - 1 \times n - 1$ upper triangular matrices over F, $e_{11}J$ being a direct sum of two copies of the first row of R', is injective as a right R'-module. Using this it can be verified that R satisfies the condition given in (2.1). Hence R satisfies (*) on the right.

Example B. Let F be a field, $R = \begin{bmatrix} F & F + Fx \\ 0 & F + Fx \end{bmatrix}$, where $x^2 = 0$. As a left ideal, $J e_{22} = Fxe_{22} + Fe_{12} + Fxe_{12} = C_1 \oplus C_2$, where $C_1 = Fe_{12}$, $C_2 = Fxe_{22} + Fxe_{12} = Rxe_{22}$, $J^2 e_{22} = \begin{bmatrix} 0 & F + Fx \\ 0 & Fx \end{bmatrix}$, $J^3 e_{22} = \begin{bmatrix} 0 & Fx \\ 0 & Fx \end{bmatrix}$, $J^4 e_{22} = \begin{bmatrix} 0 & Fx \\ 0 & 0 \end{bmatrix}$, $\cong Re_{11} \cong C_1$. Observe that $soc(e(Re_{22})) = Fe_{12} \oplus Fxe_{12}$. As C_2 is invariant under all endomorphisms of Re_{22}, Re_{22}/C_2 is quasi-projective. Also Re_{22}/Fxe_{22} is quasi-projective. Let $M = Re_{22}/C_1 = Fxe_{12} + Fe_{22} + Fxe_{22}$. It is uniserial and its proper submodules are $C_2 > B = Fxe_{12}$. Let σ be an endomorphism of B. Suppose $\sigma(Re_{22}) = x e_{22} z$, $z \in F$. Then the R-endomorphism of M given by multiplication by z extends σ. Similarly for C_2, as any endomorphism of C_2 is given by multiplication by an element of F. This gives M is quasi-injective. As M contains a copy of Re_{11}, M is Re_{11}-injective. Let L be a left ideal properly contained in Re_{22}. If $L = Fxe_{22} + Fxe_{12}$, then $\sigma(xe_{22}) = \alpha e_{22}$ for some $\alpha \in F$ and σ is given by right multiplication by $\alpha^{xe_{22}}$ in M. If $L = C_1 \oplus C_2$, then $\sigma(xe_{22}) = \alpha x e_{22}$, $\sigma(e_{12}) = \beta e_{12}$ for some $\alpha, \beta \in F$, and σ is given by right multiplication by $(\alpha + \beta x)e_{22}$. If L is any of Fxe_{12}, Fe_{12}, then $L \cong Re_{11}$, as M is Re_{11}-injective, σ is given by right multiplication by a member of M. If $L = Fxe_{12} + Fe_{12}$, then $\sigma(e_{12}) = \alpha e_{12}$ for some $\alpha \in F$, and σ is given by right multiplication by αxe_{22}. Hence M is Re_{22}-injective. This proves that M is injective. Similarly, one
can prove that any non-simple, uniserial, homomorphic image of Re_{22} is injective. After this one can easily verify that R satisfies (*) on the left. Then the ring R' anti-isomorphic to R satisfies (*) on the right. Observe that in $Je_{22} = C_1 \oplus C_2$, $C_1 \cong JC_2$, but $C_1 \not\cong C_2/JC_2$.

We are yet not aware of an example of a local module over a ring R satisfying (*), for which $t \geq 3$ as in (2.6).

REFERENCES

Surjeet Singh
House No. 424, Sector No. 35 A,
Chandigarh-160036,
India
E-mail: ossinghpal@yahoo.co.in