TAIWANESE JOURNAL OF MATHEMATICS
Vol. 14, No. 3B, pp. 1023-1046, June 2010
This paper is available online at http://www.tjm.nsysu.edu.tw/

NONEXPANSIVE RETRACTIONS ONTO CLOSED CONVEX CONES
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Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. Let E be a smooth, strictly convex and reflexive Banach space,
let C* be a closed convex subset of the dual space E* of E and let I« be
the generalized projection of E* onto C*. Then the mapping R¢- defined by
Rc- = J g~ J is a sunny generalized nonexpansive retraction of £ onto
J~*C*, where J is the normalized duality mapping on E. In this paper, we
first prove that if K is a closed convex cone in £ and P is the nonexpansive
retaction of ' onto K, then P a sunny generalized nonexpansive retraction of
E onto K. Using this result, we obtain an equivalent condition for a closed
half-space of F to be a nonexpansive retract of E.

1. INTRODUCTION

Let £ be a smooth, Banach space and let £* be the dual space of £. The
function ¢ : E x E — R is defined by

S, y) = llzl* = 2z, Jy) + [ly]|?

for each x,y € E, where J is the normalized duality mapping from E into E*. Let
C' be a nonempty closed convex subset of £ and let 7' be a mapping from C' into
itself. Then, T is called generalized nonexpansive if the set F(T') of fixed points
of T is nonempty and

(T, y) < ¢z, y)

forall x € C and y € F(T); see Ibaraki and Takahashi [22]. Such nonlinear oper-
ators are connected with the resolvents of maximal monotone operators in Banach
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spaces. When E is a smooth, strictly convex and reflexive Banach space and C
is a nonempty closed convex subset of E, Alber [1] also defined a nonlinear pro-
jection TI- of FE onto C called the generalized projection. Motivated by Alber [1]
and Ibaraki and Takahashi [22], Kohsaka and Takahashi [29] proved the following
result: Let ' be a smooth, strictly convex and reflexive Banach space, let C* be a
nonempty closed convex subset of E* and let IIo+ be the generalized projection of
E* onto C*. Then the mapping R defined by R = J~'II¢c-+J is a sunny generalized
nonexpansive retraction of E onto J~1C*.

When FE is a Hilbert space and C' is a closed convex subset of E, the met-
ric projection (the nearest point projection) of E onto C, a sunny nonexpansive
retraction of E onto C, the generalized projection of E onto C' and a sunny gener-
alized nonexpansive retraction of E onto C are all same; see [36]. However, it is
known [32] that if the metric projections are nonexpansive whenever they exist for
closed convex subsets C' of a Banach space E with dim(E) > 3, then E must be
a Hilbert space. Moreover, it is also known [34] that if every closed convex subset
of a Banach space E with dim(E) > 3 is a nonexpansive retract of F, then E is
necessarily a Hilbert space; see also [30].

Motivated by Ibaraki and Takahashi [22], Honda and Takahashi [18, 19] ob-
tained the relation between nonexpansive retractions and sunny generalized nonex-
pansive retractions in a Banach space when their retracts of E are closed linear
subspaces.

In this paper, we study the relation between nonexpansive retractions and sunny
generalized nonexpansive retractions in a Banach space when their retarcts of £ are
closed convex cones. Furthermore, we obtain an equivalent condition for a closed
half space of a Banach space E to be a nonexpansive retract of F.

2. PRELIMINARIES

Throughout this paper, E is a real Banach space with the dual E*. For any
subset A of E, A denotes the closure of A with respect to the norm topology,
IntA denotes the set of interior points of A with respect to the norm topology and
0A denotes the set of boundary points of A with respect to the norm topology. We
denote by N and R the sets of all positive integers and all real numbers, respectively.
We also denote by (x, z*) the dual pair of z € E and z* € E*. A Banach space
E is said to be strictly convex if ||z +y|| <2 for z,y € E with |lz|| <1, [ly]| <1
and = # y. A Banach space E is said to be smooth provided

Lzt~ |
t—0 t

exists for each z,y € FE with ||z|| = |ly|| = 1. Let E be a Banach space. With
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each z € E, we associate the set
J(x) ={a* € B*: (w,2*) = [|lz|* = [|l=*|*}.

The multivalued operator J : E — E* is called the normalized duality mapping of
E. From the Hahn-Banach theorem, Jx # () for each z € E. We know that E is
smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-
one, i.e, z #y = J(xz)NJ(y) = 0. If E is reflexive, then .J is a mapping of E
onto E*. So, if E is reflexive, strictly convex and smooth, then J is single-valued,
one-to-one and onto. In this case, the normalized duality mapping J, from E* into
E is the inverse of J, that is, J, = J~!; see [36] for more details. Let F be a
smooth Banach space and let J be the normalized duality mapping of E. We define
the function ¢ : £ x E — R by

S, y) = l|z[|* — 2(z, Jy) + |yl
for all z,y € E. We also define the function ¢, : E* x E* — R by
Gu(a*,y") = |2*|? = 2(a*, T y") + [ly*|I?

for all z*,y* € E*. It is easy to see that (||z|| — ||ly||)? < é(z, ) < (|z] + ||¥])?
for all x,y € E. Thus, in particular, ¢(x,y) > 0 for all z,y € E. We also know
the following:

(2.1) P(,y) = ¢(x, 2) + ¢(2,y) + 2w — 2, Jz — Jy)

for all z,y, z € E. Further, we have

(2.2) 2w —y,Jz = Jw) = ¢z, w) + ¢(y, 2) — ¢(x, 2) — ¢y, w)
for all z,y, z,w € E. It is easy to see that

(2.3) o(z,y) = ¢ (Jy, Jx)

for all z,y € E. If E is additionally assumed to be strictly convex, then
(2.4) o(z,y) =0 z=uy.

The following lemma is well-known.

Lemma 2.1. ([28]). Let E be a smooth and uniformly convex Banach space
and let {x,,} and {y, } be sequences in E such that either {z,,} or {y,,} is bounded.
If limy,— 00 &(n, yn) = 0, then lim,, . ||zn — ynl| = 0.
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Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point z of E, the set

{z € C: (2, x) = min ¢y, z)}

is always nonempty and a singleton. Let us define the mapping I1~ of E onto C
by z =TIz forevery x € F, i.e.,
1I = mi
¢(low, z) = min ¢(y, z)
for every x € E. SuchIlg is called the generalized projection of E onto C; see

Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi
[28].

Lemma 2.2. ([1, 28]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (z,z) € E x C. Then, the
following hold:

(a) z=Tlgz ifand only if (y — z, Jx — Jz) <0 for all y € C,
(0) o(z,Icx) + ¢(ow, 2) < ¢(2, x).

Let D be a nonempty closed convex subset of a smooth Banach space F, let
T be a mapping from D into itself and let F'(T") be the set of fixed points of
T. Then, T is said to be generalized nonexpansive [22] if F/(T) is nonempty and
¢(Tz,u) < ¢(x,u) for all z € D and uw € F(T). Let C be a nonempty subset of
E and let R be a mapping from E onto C. Then R is said to be a retraction, or
a projection if Rx = x for all x € C. It is known that if a mapping P of E into
E satisfies P? = P, then P is a projection of E onto {Pxz : x € E}. A mapping
T : E — E with F(T) #  is a retraction if and only if F(T') = r(T), where r(T)
is the range of 7. When a mapping 7' is a retraction, the subset (7") is said to be
a retract. The mapping R is also said to be sunny if R(Rx + t(x — Rx)) = Rz
whenever x € E and t > 0. A nonempty subset C' of a smooth Banach space F is
said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive
retract) of F if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) R from E onto C. The following lemmas
were proved by Ibaraki and Takahashi [22].

Lemma 2.3. ([22]). Let C' be a nonempty closed subset of a smooth, strictly
convex and reflexisve Banach space E and let R be a retraction from E onto C.
Then, the following are equivalent:

(a) R issunny and generalized nonexpansive;
(b) (x — Rz, Jy — JRx) <0 forall (z,y) € ExC.
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Lemma 2.4. ([22]). Let C be a nonempty closed sunny and generalized nonex-
pansive retract of a smooth and strictly convex Banach space E. Then, the sunny
generalized nonexpansive retraction from £ onto C' is uniquely determined.

Lemma 2.5. ([22]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C' and let (z, z) € E x C. Then, the following hold:

(a) z= Rz ifandonly if (z — z,Jy — Jz) <0forally € C;

(b) ¢(Rz,z) + ¢(x, Rx) < ¢(z, 2).

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point z of E, the set

{z€C: ]z — | = min|ly — =}
yeC

is always nonempty and a singleton. Let us define the mapping Pc of E onto C
by z = Pox for every z € E, i.e.,

Pox — z|| = min ||y —
| Pew = afl = minly - o]

for every x € E. Such P is called the metric projection of E onto C; see [36].
The following lemma is in [36].

Lemma 2.6. ([36]). Let C' be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (z,2z) € E x C. Then,
z = Pexifand only if (y — z, J(x — z)) <0 forall y € C.

An operator A : E — 25" with domain D(A) = {z € E : Az # 0} and
range r(A) = U{Az : x € D(A)} is said to be monotone if (z — y, 2" —y*) >0
for any (z,z*), (y,y*) € A. The operator A is said to be strictly monotone if
(x —y,z* —y*) > 0 forany z,y € E, * € Az, y* € Ay. A monotone operator
A is said to be maximal if its graph G(A) = {(x,z*) : * € Ax} is not properly
contained in the graph of any other monotone operator. If A is maximal monotone,
then the set A=10 = {u € E : 0 € Au} is closed and convex (see [37] for more
details). Let J be the normalized duality mapping from E into E*. Then, J is
monotone. If E is strictly convex, then J is one to one and strictly monotone. The
following theorem is well-known; for instance, see [36].

Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space
and let A: E — 2% be a monotone operator. Then A is maximal if and only if
r(J+rA) = E* forall r > 0. Further, if r(J 4+ A) = E*, then r(J 4+ rA) = E*
for all » > 0.
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3. NonexpPaNnsIVE RETRACTIONS ONTO CLOSED CoNvEX CONES

In this section, we discuss some relations between a nonexpansive retraction
onto a closed convex cone and sunny generalized nonexpansive retraction. We start
with two theorems proved by Kohsaka and Takahashi [29].

Theorem 3.1. ([29]). Let E be a smooth, strictly convex and reflexive Banach
space, let C* be a nonempty closed convex subset of £* and let I+ be the
generalized projection of E* onto C*. Then the mapping R defined by R =
J e+ J is a sunny generalized nonexpansive retraction of £ onto J ~1C*,

Theorem 3.2. ([29]). Let E be a smooth, reflexive and strictly convex Banach
space and let D be a nonempty subset of E. Then, the following conditions are
equivalent.

(1) D is a sunny generalized nonexpansive retract of E;

(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.
In this case, D is closed.

From these theorems, we can represent sunny generalized nonexpansive retrac-
tion by using generalized projections. Let E be a reflexive, strictly convex and
smooth Banach space and let J be the normalized duality mapping from E onto
E*. Let C* be a closed convex subset of the dual space E* of E. Then, the sunny
generalized nonexpansive retraction Ro- with respect to C* is defined as follows:

Rew := J Mo J,

where TIc+ is the generalized projection from E* onto C*.

Let Y be a nonempty subset of a Banach space F and let Y* be a nonempty
subset of the dual space E*. Then, we define the annihilator Y[ of Y* and the
annihilator Y+ of Y as follows:

Yi={zeE:f(x)y=0forall feY"}

and
Yt={feE*: f(z)=0forall zcY}.

In a reflexive Banach space, both concepts coincide with each other.
Let £ be a Banach space and let C' be a nonempty closed convex subset of
E. Then, a mapping T of C' into itself is nonexpansive if | T2 — Ty|| < ||z — y||
for all z,y € C. A mapping T' of C into itself with F(T) # () is said to be
quasi-nonexpansive if ||Tz — m|| < |z —m|| for all m € F(T) and z € C. Itis
clear that any nonexpansive mapping with fixed points is quasi-nonexpansive.
Motivated by previous theorems, the authors obtained following theorems.
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Theorem 3.3. ([3, 18]). Let E be a reflexive, strictly convex and smooth Banach
space and let I be the identity operator of E into itself. Let Y * be a closed linear
subspace of the dual space E* and let Ry~ be the sunny generalized nonexpansive
retraction with respect to Y *. Then, the mapping I — Ry~ is the metric projection
of £ onto Y*. Conversely, let Y be a closed linear subspace of E and let Py be
the metric projection of £ onto Y. Then, the mapping I — Py is the generalized
conditional expectation Ry . with respectto Y-, i.e., I — Py = Ry..

Theorem 3.4. ([19]). Let FE be a strictly convex, reflexive and smooth Banach
space and let Y* be a closed linear subspace of the dual space E* of E. If the
sunny generalized nonexpansive retraction Ry~ is a quasi-nonexpansive projection
of £ onto J~1Y™*, then it is a norm one linear projection and J ~'Y* is a closed
linear subspace in E. Conversely, any norm one linear projection is a quasi-
nonexpansive sunny generalized nonexpansive retraction with respect some closed
linear subspace in E*.

We shall generalize these theorems and obtain a nonlinear retraction which is
both “nonexpansive” and “sunny generalized nonexpansive”.

A subset K of a Banach space is called a cone if it satisfies that Az € K when
x € K and A > 0. Any cone contains the origin. When a cone contains a hon-zero
element, we call it nontrivial.

Theorem 3.5. Let E be a reflexive and smooth Banach space and let K be a
closed convex cone in E If T : K — K is a quasi-nonexpansive mapping such that
F(T) is a cone, then T" is generalized nonexpansive.

Proof. We first show that for any =z € K and m € F(T),
(3.1) (x =Tz, Jm) <0,

where J is the normalized duality mapping of E.
For the case of m = 0, it is obvious that (x — Tz, Jm) = 0.
Fixx € K\ F(T) and m € F(T) such that m # 0. We have that for all & € R
with o > 0,
xe F(T)< ax e F(T).

So, we have that £ —m # 0 for any £ > 0. We have from the Hahn-Banach theorem
that there exists £, € E* such that <% — m,fk> = H% — mH and €|l = 1. Then,

we have that
Tx Tx
<7 - m7€k> < ‘

1
e — 1T —
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So, we have (£ — TZ &) > 0 and hence
<II,' - T{I,‘,fk> > 0.

Take a positive sequence {k,} with k, — oco. Put z, = ;= —m and &, = &,.
Then, we have k£ —m — —m. Since E is a reflexive Banach space and {¢,} is

bounded, there exists a subsequence {¢&,,, } of {&,} converging to some £ € E* in
weak topology.

We may show that £ satisfies (m, —¢) = ||m|| and ||¢|| = 1. Since the norm of
E* is lower semicontinuous in the weak topology, we have

1€]] < Tim inf ||, || = 1.
1—00

On the other hand, we have that

[(=m, &) = [[zn, Il = [(=m, &) = (Zn;, &n)
< |(=m, & = &n + [(=m = 2, &)

Since (—m, & —&,,) — 0 and (—m — x,,, &,,) — 0, we have
[2n,]] = —=(m, &) = (m, =&).
Since ||y, || — ||m]|, we have (m,—&) = ||m||. So we have
Iml| = (m, =&) < [m][<]

and hence [|£]| > 1. Therefore, we have ||£|| = 1 and (m,—&) = |m]|. Then,
without loss of generality, there exists a positive sequence {k,} such that

ky, — o0,
x
E -m— —m
and
Ekn — €
in weak topology, where ¢ is an element of E* such that (m,—¢&) = ||m| and
€11 = 1.

Putting &y = —¢, we have (m, &) = ||m]|,||&] = 1 and
(x — Tz, &) <0.
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Since E* is smooth and

Hmliéo|* = llmlf = llmll(m. &) = (m, llml|<o),

we know that ||m]||&y = Jm, where J is the normalized duality mapping on E.
Then for any z € K\ F(T) and m € F(T) \ {0}, we have |m|{z — Tz, &) <0
and hence

(x = Tx,Jm) <0.

We also have for z € F(T) and m € F(T) with m # 0, (x — Tz, Jm) = 0.
So, the inequality (3.1) holds for any = € K and m € F(T'). This implies that
for any x € K and m € F(T),

(x, Jm) < (Tz,Jm).

Since T is quasi-nonexpansive and 0 € F(T'), we have || Tz|| < ||z||. Then for any
r € Eandm € K, we have ||Tz|>—~2(Tz, Jm)+|m|? < ||z||?—2(z, Jm)+|m|?
and hence

o(Tx,m) < ¢(z,m).

This means that 7" is a generalized nonexpansive mapping. |

From this theorem, we obtain following corollaries.

Corollary 3.1. Let E be a smooth and reflexive Banach space and let 7" : £ —
E be a norm one linear operator. Then, T is generalized nonexpansive.

Corollary 3.2. Let E be a strictly convex, smooth and reflexive Banach space
and let K be a cone in E. If K is a nonexpansive retract of F, then K is a closed
convex cone in E, K is a sunny generalized nonexpansive retract and JK is a
closed convex cone in E*.

Proof.  Since K is a nonexpansive retract of E, there exists a nonexpansive
retraction 7" with T'(E) = F(T) = K. So, from [24], F(T) = K must be closed
and convex. From Theorem 3.5, we also know that 7" is a generalized nonexpansive
retraction of £ onto K. From Theorem 3.2, K is a sunny generalized nonexpansive
retract and JK is a closed convex subset in E*. Since for any z € E and a € R
we have J(ax) = aJz from [36], JK is a cone. ]

We shall extend Theorem 3.3; see also Alber [2], Hudzik, Wang and Sha [21].
First we shall introduce two new nonlinear operators. We call a mapping7 : £ — E
a firmly generalized nonexpansive type [23], if it satisfies

¢(Tx, Ty) + ¢(Ty, T'z) + ¢(x, Tx) + ¢y, Ty) < ¢p(z, Ty) + ¢y, Tx)
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for all z,y € E. We call a mapping S : E — FE a firmly metric operator [38], if
it satisfies

P(x — S,y — Sy) + ¢(y — Sy, v — Sx)
< ¢(x,y — Sy) + ¢y, x — Sz) — ¢(x,x — Sx) — d(y,y — SYy)

forall z,y € E.

Let C' be a nonempty subset of a Banach space E and let C* be a nonempty
subset of the dual space E*. Then, we define the dual cone (or the polar cone) C
of C* and the dual cone (or the polar cone) C° of C as follows:

C:={xeFE: f(x)<0forall feC*}

and
C°={feE": f(x)<Oforall x € C}.

Both of them are closed convex cones. In a reflexive Banach space, both concepts
coincide with each other.

Lemma 3.1. Let E be a strictly convex, smooth and reflexive Banach space,
let C' be a nonempty closed convex subset of £ and let P be the metric projection
of £ onto C. Then the mapping 7' = I — P¢ is a firmly generalized nonexpansive
type of E into E. In particular, if 0 € C, then F(T) = P;'0 = J~'C° and
JFE(T) is a closed convex cone in E*.

Proof. From Lemma 2.6, we have that for any =,y € F,
(J(z — Pox), Pox — Poy) > 0

and
(J(y — Poy), Poy — Pox) > 0.

Then we have
(J(x — Pox) — J(y — Poy), Pox — Poy) > 0.
Since Tx = x — Pox and Ty = y — Poy, We obtain
(JTx — JTy,x — Tz — (y —Ty)) > 0.
From (2.2), we have

0 <2(JTzx—JTy,x —Tzx— (y—Ty))
(3.2) =2(JTx — JTy,x —y) — 2(JTx — JTy, Tz — Ty)
= ¢(z, Ty)+6(y, Tx) = d(z, Tx) = ¢y, Ty) = o(Tx,Ty) —=$(Ty, Tx).
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So, T is a firmly generalized nonexpansive type on E. If 0 € C, we have that

ch:()
Sy — Poxr=x
STy = .

Then F(T) = P5'0. From Lemma 2.6, we have

z € F(T) &z € P;'0
< (J(x—0),0—y)>0forany y € C
< (J(x),y)y <0forany y € C
& Jr e C°.
Then we obtain
JF(T) = C° = Nyec{z™ € £ : (2¥,y) < 0}.

This is the intersection of closed convex cones of E*. So, JF(T) is a closed convex
cone in E*, m

Lemma 3.2. Let E be a strictly convex, smooth and reflexive Banach space
and let T : E — E be a firmly generalized nonexpansive type such that JF'(T) is
a nonempty closed convex subset in E* and T'(E) = F(T'). Then, T is a sunny
generalized nonexpansive retraction of E onto F(T).

Proof. From (3.2), we know that a mapping 7' : £ — E satisfies that
(JTx — JTy,x —Tx — (y — Ty)) > 0.
From assumptions of 7', F(T') # (). For any = € E and m € F(T'), we have
(JTx — Jm,x —Tz) > 0.

Since Tx € F(T) and JF(T) is closed and convex in E*, we have, from Lemma
2.3, that T' is a sunny generalized nonexpansive retraction of £ onto F(T). ]

Lemma 3.3. Let E be a strictly convex, smooth and reflexive Banach space
and let T : E — FE be a firmly metric operator such that F(T') is a nonempty
closed convex subset in £ and T'(E) = F(T'). Then T is the metric projection of
E onto F(T).

Proof. From (3.2), for any z,y € F, we have

(J(x = Tz) — J(y —Ty), Tz —Ty) > 0.
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Then for any z € E and m € F(T), we have
(J(x —Tx), Tx —m) > 0.

Since F(T) is closed and convex and Tx € F(T), the mapping 7' is the metric
projection of E onto F(T). [ |

Theorem 3.6. Let E be a strictly convex, smooth and reflexive Banach space.
Let K be a closed convex cone of E and let Px be the metric projection of E onto
K. Then the mapping 7' = I — Py is a sunny generalized nonexpansive retraction
of E onto J~'K°, where K° is the dual cone of K.

Proof. From Lemma 2.6, we have
(J(x — Pxx), Pkx —m) >0

forany z € E and m € K. From 0 € K, we have

(J(z — Pxx), Pkx) > 0.
From 2Pxx € K, we also have

(J(x — Pgx), Prx) <0.
From these inequalities, we have

(J(x — Pgx), Prx) = 0.

So, we have, forany z € F and m € K,

(J(x — Pxx), Pkx —m) >0
=(J(x — Pgx), Pxz) — (J(x — Pgx),m) >0
=(J(x — Pgz),m) <0
=(JTz,m) <0.

Then for any = € E, we have JTx € K°. We have T(E) C J~'K° and hence
F(T)CT(E)c J'K°.

From Lemma 3.1, we have that T is a firmly generalized nonexpansive type, JF(T)
is a closed convex cone in E* and F(T) = J-!K°. Since T(E) = F(T) =
J1K°, from Lemma 3.2, T is a sunny generalized nonexpansive retraction of £
onto F(T) = J'K°. ]
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Theorem 3.7. Let E be a strictly convex, smooth and reflexive Banach space.
Let K* be a closed convex cone of E* and let Rx~ = J 'IIg+J be the sunny
generalized nonexpansive retraction of £ onto .J ~!K*, where Il is the gener-
alized projection of E* onto K*. Then, the mapping T' = I — R~ is the metric
projection of E onto the dual cone K * of K*.

Proof. Since 0 € J~1K*, from Lemma 2.3, we have
T € Rl_(i() < Rigwx =0

& (x—0,J0—JJ 'm*) >0 for any m* € K*
< (z,m*) <0 forany m* € K*

s xe K.
Then we have that
RA0=K?.
From assumptions, we have
RK*x =0
Sr— Rg=x=x
STy = .
Then we have that
F(T) = RZ.0
So, we obtain that
F(T) = K*.

Since a sunny generalized nonexpansive retraction is a firmly generalized nonex-
pansive type, T is a firmly metric operator such that F(T') = K. To obtain the
desired result, from Lemma 3.3, it is sufficient to show that T'(F) C F(T) = K.
From 0, 2Rg+x € J 'K* and Lemma 2.3, we have

(x — Rg=x, JRg=x) = 0.

So, we have for any = € E and m* € K*, (x — Rg+x, JRg+x — JJ'm*) > 0
and hence
(x — Rg=x,m™) <0.

Then we have that for any x € E and m* € K*,
(Tz,m*) <O0.

Then we obtain that Tx € K* forany x € E. Thisimplies T(E) C K. Therefore,
T = Pgx. This completes the proof. ]
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Remark 3.1. In a Hilbert space, Theorem 3.3 is called the Riesz decomposition
and Theorems 3.6 and 3.7 are called the Moreau decomposition; see Hudzik, Wang
and Sha [21].

From Corollary 3.2and Theorem 3.7, we have the following corollary.

Corollary 3.3. Let E be a strictly convex, reflexive and smooth Banach space
and let K be a closed convex cone of E. If there exists a sunny nonexpansive
retraction R of E onto K, then I — R is the metric projection of E onto {JK} ,
where I is the identity mapping on E.

4., NONEXPANSIVE RETRACTIONS ONTO CLOSED HALF-SPACES

Let £ be a strictly convex, reflexive and smooth Banach space. Calvert [10]
showed that a closed linear subspace Y in E is a 1-complemented subspace (i.e. the
range of a norm one linear projection) if and only if JY is a closed linear subspace
in E*; see also [18]. Using our theorems in the preivious section, we can extend
this result.

Let £ be a Banach space. A subset V' C E is called a linear manifold if it is of
the form V' = {z9 + g : g € G}, where z; is some element of £ and G is a linear
subspace of E. We call a closed linear manifold M a closed hyperplane if there
exists no closed linear manifold M; C F such that M C My and M # M; # E.
We know that M is a closed hyperplane if and only if there exist a nonzero bounded
linear functional f € E* and o € R such that M = {z € E : f(z) = a}; see
Singer [35]. A subset H C F is called a closed half-space if it is of the form
H={z e FE: f(x) <a}, where f is a nonzero bounded linear functional f € E*
and o € R. In particular, in this paper, a closed half-space means only the case
a = 0.

Theorem 4.1. Let F be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z* € E*\ {0}

H={x€E:(x,2") <0}

Then, H is a nonexpansive retract of F if and only if JH is a closed half-space
in E*.

To prove this theorem, we need some definitions and lemmas. Let E be a real
Banach space. The definition of orthogonality that we use is that of Birkhoff [7]
and James [25, 26, 27]; for =,y € E, x is said to be orthogonal to y, denoted by
x Ly, if

(4.1) [l + Ayl = |||
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for all A € R. =z is said to be acute to y if (4.1) holds for all A > 0. When E'is
smooth, we know that

x is orthogonal to y < (Jz,y) =0

and _
x is acute to y < (Jzx,y) > 0;

see [36]. Let F' be a closed subset of E. A retraction R of E onto F' is orthogonal;
see Bruck [9], if for each x € EF and m € F, Rz — m is acute to x — Rx;

(1 = N Rz + Az —m|| > [| Rz — m]|

for all A > 0.
Using this orthogonal retraction, we show a following lemma.

Lemma 4.1. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z* € E*\ {0}

H={xeE:(x,z") <0}.

Then, H is a nonexpansive retract of E if and only if JH is a closed convex cone
in E*.

Proof. A closed half-space H is a closed convex cone. If H is a nonexpansive
retract of E/, from Corollary 3.2, JH is a closed convex cone in E*.

Conversely, if JH is a closed convex cone in E*, from Theorem 3.2, there
exists the sunny generalized nonexpansive retraction Ryy = J'II;5J of E onto
H, where Iy is the generalized projection of £* onto JH. We shall show that
Ry is nonexpansive. Since Ry is sunny, we have for any z € F,

RJH (RJHx—i—)\(x — RJHx)) = RJHx,

for A > 0. Whenz € E\H = {x € F: (z,2*) > 0}, we have that Rjyz €
{r € E: (z,z) = 0}. Infact, if Rygz € {z € E : (z,z*) < 0}, then
z—Rygz € {x € E: (x,z*) > 0}. For a sufficiently small A > 0, we have

Rigz+ A(z—Ryuz) e {xr € E: (z,2") <0} C H.
Then we have that
RJHZ:RJH(RJHZ+)\(Z—RJHZ)):RJHZ+)\(Z—RJHZ)

and hence A (z — Rygz) = 0. From XA > 0, we have z — Ryyz = 0 and hence
z€ H={x € E: (z,2") <0}. This contradicts to z € {z € E : (z, z*) > 0}.
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So, forany m € H and z ¢ H, we have
m—Rypze{re E:(x,2") <0} =H.

Then J(m — Ryyz) € JH. From Theorem 3.7, the mapping P = I — Ry is the
metric projection of E onto (JH),. Then we have, forany m € H and z ¢ H,

(J(m — Rjpz),Pz) <0
=><J(m—RJHZ),Z—RJHZ> <0
=><J(RJHZ—m),Z—RJHZ> > 0.

From this, we obtain that Rygz — m is acute to 2 — Rygz. When 2z € H,
z— Rjygz=0and Rygz — m is acute to z — Rjyz obviously. This means that
Ry is an orthogonal retraction of E onto H. Since Ry is an orthogonal retraction
of £ onto H, for any z,y € F, we have

(J(Rjgx — Rypy),x — Rypx) >0
and
(J(Rygy — Rymx),y — Ryry) > 0.

Then for any =,y € E, we have

(J(Ryjar — Rypy), v — Rygx) — (J(Rjuxr — Ryny),y — Rigy) > 0
=(J(Rjux — Rygy),xr —y — (Ryjgx — Rygy)) >0
=(J(Ryuz — Rymy),x —y) > |Ryux — Ryl
=||Rsax — Ryl - llz =yl > |Ryuz — Rymyll?
=l -yl = [[Rsnz — Rynyl-

Then R ;g is nonexpansive. So, H is a nonexpansive retract of E. [ ]

Using an idea of Beauzamy [5] and Davis and Enflo [12], we obtain the fol-
lowing lemma.

Lemma 4.2. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z* € E*\ {0}

H={zeFE: (x2z2*) <0}.

Let M = {z € E : (x,z*) = 0}. Then, H is a nonexpansive retract of E if and
only if JM is a closed linear subspace of E *.
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Proof.  Assume that H is a nonexpansive retract of £. Then, from Corollary
3.2, JH is a closed convex cone in E*. As in the proof of Lemma 4.1, we may
assume that there exists a sunny nonexpasnsive retraction R of £ onto H. In this
case, we have R(E) = F(R) = H. Define a mapping R : E — E by R(z) =
—R(—x) for all z € E. For any z € E, we have R(—z) € H and Rz € —H.
When 2 € —H, we have —z € F(R) and Rz = —R(—z) = —(—z) = 2. Then
we have that R(F) = F(R) = —H. Forany =,y € E,

IRz — Ry|| = || — R(~2) + R(~y)|
< [lz —yll.

Then R is a nonexpansive retraction of £ onto —H. As in the proof of Lemma 4.1,
R (resp. R) maps any point z ¢ H (resp. = & —H) to the boundary (-H)NH =
M. Then Ro R is a nonexpansive retraction onto (—H) N H = M. Indeed, Ro R
is a nonexpansive mapping. So we shall show that it is a retraction of E onto M.
If 2 € M, then RoRx =z € M. If 2 € H\ M, then Rz = 2 € H\ M and
RoRx e M. If z € (—H)\ M, then Rz € M and Ro Rz € M. Then, we have
that F(Ro R) = Ro R(E) = M.

From Theorem 3.5, JM is a closed convex cone in E*. Since M is a closed
linear subspace of F, for any z* € J and « € R, we have az* € JM. Then JM
is a closed linear subspace in E*.

When JM is a closed linear subspace of E*, there exists a norm one linear
projection P of FE onto M; see [10, 18]. We define the new operator Q : £ — F
such that

4.2
(4.2 T if z ¢ H.

Qw:{Px if v & H,

@ is a nonlinear retraction of £ onto H. We shall show that () is nonexpansive.
When 2,y € H or z,y € E\ H, we have ||Qz — Qyl| < ||z —y]|, obviously. When
x € Handy € E\ H, let z be an element of the segument [z, y] such that z € M.
We have that

1Qz — Qyll = [l — Pyll < ||z — 2l + [lz = Pyl
=z =2+ [Pz = Pyl < ||z — 2l + [lz — vl
=z —yll.

Then, @ is a nonexpansive retraction of £ onto H. So, H is a nonexpansive retract
of E. |

To prove Theorem 4.1, we need more lemmas;
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Lemma 4.3. Let E be a Banach space and let K be a closed convex cone in
E such that for some z* € E*\ {0}

KOM:={zeE: (x,2") =0}

Then K is one of the following four;

(1) the closed hyperplane M;

(2) the closed half-space H = {z € E : (z,2*) > 0};
(3) the closed half-sapce H_ = {z € E : (z,2*) < 0};
(4) the whole space E.

Proof.  Suppose that K contains an element ¢ € E such that (£, z*) = a > 0.
For any y € E such that 0 < (y, 2*) < a, we define y, as follows:

ya:()é(y—f)—f—f, QZO

When a = 0, we have (y,,z*) = a > 0. As o — o0, (ya, z*) decreases strictly
and continuously. Furthermore, it tends to —oc. Then there exists ap > 0 such that
(Yay, 2*) = 0. This means that there exist z € M and « > 0 such that

r=ay—§)+¢

y:lx+<1—l>f.
o o

We can show 1 < «. In fact, if a = 1, then (y,z*) = (
is a contradiction. If 0 < o < 1, then (y,2z*) = L(z,2*) + (1 -

(1- %) a < 0. This is a contradiction. So, we have 1 < a.
Then y is an element of the convex hull of M U {¢}. So, we have

So, we have

x,z*) = 0.

.
) (€, 2%)

his

Q=

K>{xeF:0< (z,2%) <a}.

Since K is a closed convex cone, we have K D H,.
Similarly, when K contains an element ¢ such that (¢, z*) < 0, we have K D
H_. Then if K # M, then K D H, or K D H_. The proof is completed. ]

Lemma 4.4. Let E be a Banach space and let M be a hyperplane in E such
that for some z* € E*\ {0},

M={zeE: (z,2") =0}

Then M+ = span{z*}, where span{z*} = {2* € E* : 2* = az*,a € R}.
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Proof. It is clear that M+ > span{z*}. It is sufficient to show that there
exists a unique non-zero element in E* up to a scalar multiple, such that it vanishes
in M.

Since M is a hyperplane, for xy € E'\ M, we have

E = span{M U {zy}},

where SpanA is a closed linear span generated by A. For any = € span{M U{x}},
we can say x = axg + m, where o and m are some real value and some element
of M, respectively. Then, we have taht for any x € span{M U {x9}}, (x, z*) =
oz, 2*) and (xg, z*) # 0. If w* € M=, then for any = € span{M U {z¢}},
(x,w*) = axg, w*). This means that (x, w*) = M<ac,z*>. Since w* and z*

- <m072*>
are continuous, we have (z,w*) = %;%Z)) (x,z*) for any © € E. So, we have
w* = %z* and hence w* € {z* € E*: z* = az*,a € R}. [

Let £ be a Banach space and let Y7,Ys C FE be closed linear subspaces. If
Y1 NY, = {0} and for any = € E there exists a unique pair y; € Y7, y2 € Ys such
that
T =Y+ Y2,

then, we represent the space F as
E=Y19Ys.

Lemma 4.5. Let E be a strictly convex, reflexive and smooth Banach space
and let Y* be a closed linear subspace of the dual space E * of E such that for
any yi,y2 € J7LY*, y1 +yo € JLY*. Then, J-1Y* is a closed linear subspace
of E and the sunny generalized nonexpansive retraction Ry = J 'IIy«J of E
onto J~1Y*, where ITy- is the generalized projection of E* onto Y*, is a norm
one linear projection of £ onto J ~1Y*. Further, the following holds:

E=J'Y*"aVY].

Proof. By the assumption, for any v, v, € J~1Y*, we have y; +y € J~1Y*,
Further, for y € J~'Y* and a € R, we have from J(ay) = aJy € Y* that
ay € J7'Y*. So, J7'Y* is a linear subspace of E. Since J is norm to weak
continuous and Y* is weakly closed subset in E*, J~'Y* is closed. Therefore,
J~1Y* is a closed linear subspace of E. For any z,y € E, from Theorem 3.1,
we have Ry-x, Ry-y € J~'Y*. Since J~'Y™* is a linear subspace of E, we have
Ry«x+ Ry~y € J'Y*. Since Y* is a closed linear subspace of E*, from Lemma
2.3, for any = € E, an element y € J~1Y* satisfies y = Ry-x if and only if

(4.3) (x —y,m*) =0, Vm*eY".
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For z € F and a € R, let y = Ry~xz. We have that
(ax —ay,m*) =0, Ym*eY".
Since ay € J~LY'*, we have that
ay = Ry~ (ax).
For z1,z9 € E, let y; = Ry«x1 and y» = Ry~xo. Then, we have that
(x1+ 22— (y1 +y2),m") = (x1 —y1,m") + (xg —ya,m*) =0, VYm* Y™
Since y; + y» € J~1Y™*, we obtain that
Ry« (21 + x2) = y1 + y2 = Ry+=x1 + Ry=«12.

So, the retraction Ry~ is linear. Since ¢(Ry-x,m) < ¢(x, m) for any x € E and
m € J~1Y*, putting m = 0 € J~1Y*, we have that

| Ry~

| < [l]l-

Then, Ry~ is a norm one linear projection of E onto J~1Y™.
From this, we have that

—1vy % —1
E=J"'Y* @ Rylo,

where Ry10 = {z € E : Ry-z = 0}. It is sufficient to show that R,10 = Y.
From (4.3), we have that

z € Ryt0 & (z,m*) =0, VYm*ecY™
This means that

R0 =Y7. -

Proof of Theorem 4.1. Let H be a closed half-space of E such that for some
z* € E*\ {0},
H={x€E:(z,2") <0}

When JH is a closed half-space in E*, JH is a closed convex cone in E*. So,
from Lemma 4.1, H is a nonexpansive retract of E. It is sufficient to show that if
H is a nonexpansive retract of F, then JH is a closed half-space in E*.

Assume H is a nonexpansive retract of £. From Lemma 4.1, JH is closed
convex cone in E*. From Lemma 4.2, JM is a closed linear subspace in E*,
where M = {x € E: (z,2*) = 0}. Since M C E=FE* and J;'!M = JM is a
closed linear subspace in E*, from Lemma 4.5, we have that

EX=J Mo M*,
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where M+ = {z* € E* : (z*,m) =0 Vm € M}. Then, from Lemma 4.4, we
have that
E* = JM & span{z*}.

This means that the co-dimension of the closed linear subspace JM in E* is one.
Then, JM is a closed hyperplane in E*.

Since the closed conve cone JH contains the hyperplane JM, the duality map-
ping J is bijective and both sets H \ M and E'\ H are nonempty, from Lemma 4.3,
we obtain that JH is a closed half-space in E*. This completes the proof. |

From this theorem, we obtain the following corollary.

Corollary 4.1. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z * € E*

H={xeE:(x,z") <0}.

Then, JH is a closed convex cone in E* if and only if JH is a closed half-space
in E*.

Remark 4.1. In a Hilbert space, the normalized duality mapping J is the identity
mapping. The image of a closed convex cone by J is always a closed convex cone
and the image of a closed half-space by J is always a closed half-space. In this
case, any closed convex cone is a nonexpansive retract; see [36].

Remark 4.2. Let F be a strictly convex, smooth and reflexive Banach space,
let z € E and let M* = {span{z}}*. When Pgny.; is linear, Ry is a norm one
linear projection onto J—1M*; see [10, 18]. Then M * is a closed hyperplane such
that J~1M* = J,M* is a closed linear subspace of E.

In [13, 14], Deutsch showed an equivalent condition for the metric projection
Pegany ) to be linear in L spaces; see also [6, 16].
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