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SHRINKING PROJECTION METHOD OF PROXIMAL-TYPE

FOR A GENERALIZED EQUILIBRIUM PROBLEM,

A MAXIMAL MONOTONE OPERATOR AND A PAIR

OF RELATIVELY NONEXPANSIVE MAPPINGS

Yeong-Cheng Liou

Abstract. The purpose of this paper is to introduce and consider a shrinking

projection method of proximal-type for finding a common element of the set

EP of solutions of a generalized equilibrium problem, the set F (S) ∩ F (S̃)
of common fixed points of a pair of relatively nonexpansive mappings S, S̃
and the set T−10 of zeros of a maximal monotone operator T in a uniformly

smooth and uniformly convex Banach space. It is proven that under appropri-

ate conditions, the sequence generated by the shrinking projection method of

proximal-type, converges strongly to some point in EP∩F (S)∩F (S̃)∩T−10.
This new result represents the improvement, generalization and development

of the previously known ones in the literature.

1. INTRODUCTION

Let E be a real Banach space with the dual E∗ and C be a nonempty closed

convex subset of E. We denote by J the normalized duality mapping from E to

2E∗
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. Recall that ifE is smooth then J

is single-valued and norm-to-weak∗ continuous, and that if E is uniformly smooth,
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then J is uniformly norm-to-norm continuous on bounded subsets of E. We shall

still denote by J the single-valued duality mapping. Let A : C → E∗ be a nonlinear
mapping and f : C × C → R be a bifunction, where R denotes the sets of real

numbers. In this paper we consider the following generalized equilibrium problem

of finding u ∈ C such that

(1.1) f(u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C.

The set of solutions of (1.1) is denoted by EP , i.e.,

EP = {u ∈ C : f(u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C}.

Whenever E = H a Hilbert space, problem (1.1) was introduced and studied by

Takahashi and Takahashi [14]. We remark that problem (1.1) and related problems

have been extensively studied recently. See, e.g., [31-50].

In the case of A ≡ 0, problem (1.1) is equivalent to finding u ∈ C such that

f(u, y) ≥ 0, ∀y ∈ C,

which is called the equilibrium problem. The set of its solutions is denoted by

EP (f).
In the case of f ≡ 0, problem (1.1) is equivalent to finding u ∈ C such that

〈Au, y − u〉 ≥ 0, ∀y ∈ C,

which is called the variational inequality of Browder type. The set of its solutions

is denoted by V I(C, A).
The problem (1.1) is very general in the sense that it includes, as spacial cases,

optimization problems, variational inequalities, minimax problems, the Nash equi-

librium problem in noncooperative games and others; see, e.g., [18,29]. A mapping

S : C → E is called nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C.

Denote by F (S) the set of fixed points of S, that is, F (S) = {x ∈ C : Sx = x}.
A mapping A : C → E∗ is called α-inverse-strongly monotone, if there exists an

α > 0 such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.

It is easy to see that if A : C → E∗ is an α-inverse-strongly monotone mapping,
then it is 1/α-Lipschitzian.

Very recently, motivated by Takahashi and Zembayashi [11], Chang [28] proved

the following strong convergence theorem for finding a common element of the set

of solutions to the generalized equilibrium problem (1.1) and the set of common

fixed points of a pair of relatively nonexpansive mappings in a Banach space.
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Theorem 1.1. (see [28, Theorem 3.1]). Let E be a uniformly smooth and

uniformly convex Banach space, and C be a nonempty closed convex subset of E.
Let A : C → E∗ be an α-inverse-strongly monotone mapping and f : C ×C → R
be a bifunction satisfying the following conditions (A1)-(A4):

(A1) f(x, x) = 0 for all x ∈ C,

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C,

(A3) for all x, y, z ∈ C, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y),
(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

Let S, S̃ : C → C be two relatively nonexpansive mappings such that F (S) ∩
F (S̃) ∩ EP 6= ∅. Let {xn} be the sequence generated by

(1.2)





x0 ∈ C, C0 = C;
zn = J−1(αnJxn + (1 − αn)JSxn),

yn = J−1(βnJxn + (1 − βn)JS̃zn),
un ∈ C such that

f(un, y) + 〈Aun, y − un〉 + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {v ∈ Cn : φ(v, un) ≤ βnφ(v, xn)
+(1 − βn)φ(v, zn) ≤ φ(v, xn)};

xn+1 = ΠCn+1x0, ∀n ≥ 0,

where φ(x, y) = ‖x‖2−2〈x, Jy〉+‖y‖2, ∀x, y ∈ E, ΠC : E → C is the generalized
projection operator, J : E → E∗ is the single-valued normalized duality mapping,

{αn} and {βn} are sequences in [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If the
following conditions are satisfied:

(i) lim infn→∞ αn(1 − αn) > 0,
(ii) lim infn→∞ βn(1− βn) > 0,

then {xn} converges strongly to Π
F (S)∩F (S̃)∩EP

x0, where Π
F (S)∩F (S̃)∩EP

is the generalized projection of E onto F (S) ∩ F (S̃) ∩ EP .

Let E be a real Banach space with the dual E∗. A multivalued operator T :
E → 2E∗

with domain D(T ) = {z ∈ E : Tz 6= ∅} is called monotone if 〈x1 −
x2, y1 − y2〉 ≥ 0 for each xi ∈ D(T ) and yi ∈ Txi, i = 1, 2. A monotone

operator T is called maximal if its graph G(T ) = {(x, y) : y ∈ Tx} is not properly
contained in the graph of any other monotone operator. A method for solving the

inclusion 0 ∈ Tx is the proximal point algorithm. Denote by I the identity operator

on E = H a Hilbert space. The proximal point algorithm generates, for any initial

point x0 = x ∈ H , a sequence {xn} in H , by the iterative scheme

xn+1 = (I + rnT )−1xn, n = 0, 1, 2, ...,
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where {rn} is a sequence in the interval (0,∞). Note that this iteration is equivalent
to

0 ∈ Txn+1 +
1
rn

(xn+1 − xn), n = 0, 1, 2, ....

This algorithm was first introduced by Martinet [18] and generally studied by Rock-

afellar [24] in the framework of a Hilbert space. Later many authors studied its con-

vergence in a Hilbert space or a Banach space. See for instance, [7,9,10,13,21,25]

and the references therein. On the other hand, Kamimura and Takahashi [12] re-

cently introduced and studied the following proximal-type algorithm for finding an

element of T−10 in a uniformly smooth and uniformly convex Banach space E,
which is an extension of Solodov and Svaiter’s proximal-type algorithm [26]:

(1.3)





x0 ∈ E arbitrarily chosen,
0 = vn + 1

rn
(Jyn − Jxn), vn ∈ Tyn,

Hn = {v ∈ E : 〈v − yn, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where {rn} is a sequence in the interval (0,∞) and J is the normalized duality

mapping on E. They derived a strong convergence theorem which extends and

improves Solodov and Svaiter’s result [26].

Recently, utilizing Nakajo and Takahashi’s idea [16], Qin and Su [20] first

introduced one iterative algorithm (i.e., modified Ishikawa iteration) for a relatively

nonexpansive mapping S : C → C, with C a closed convex subset of a uniformly

smooth and uniformly convex Banach space E

(1.4)





x0 ∈ C arbitrarily chosen,

zn = J−1(βnJxn + (1− βn)JSxn),
yn = J−1(αnJxn + (1 − αn)JSzn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0.

They proved that under appropriate conditions the sequence {xn} generated by
algorithm (1.4), converges strongly to ΠF (S)x0.

Let E be a real Banach space with the dual E∗. Assume that T : E → 2E∗

is a maximal monotone operator and S : E → E is a relatively nonexpansive

mapping. Very recently, inspired by algorithms (1.3)-(1.4), Ceng, Petruşel and Wu

[27] introduced and studied the following hybrid proximal-type algorithm for finding

an element of F (S) ∩ T−10 in a uniformly smooth and uniformly convex Banach
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space E.

(1.5)





x0 ∈ E arbitrarily chosen,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ Tx̃n,

zn = J−1(βnJx̃n + (1− βn)JSx̃n),
yn = J−1(αnJx̃n + (1 − αn)JSzn),
Hn = {v ∈ E : φ(v, yn) ≤ αnφ(v, x̃n)

+(1 − αn)φ(v, zn) and 〈v − x̃n, vn〉 ≤ 0},
Wn = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

where {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are sequences in

[0, 1]. The authors proved that under appropriate conditions the sequence {xn}
generated by algorithm (1.5), converges strongly to ΠF (S)∩T−10x0.

Let E be a reflexive, strictly convex, and smooth Banach space with the dual

E∗ and C be a nonempty closed convex subset of E. Let T : E → 2E∗
be a

maximal monotone operator, and S, S̃ : C → C be a pair of relatively nonexpansive

mappings. Let A : C → X∗ be an α-inverse-strongly monotone mapping and

f : C × C → R be a bifunction satisfying (A1)-(A4). The purpose of this paper

is to introduce and investigate a shrinking projection method of proximal-type for

finding an element of EP ∩ F (S) ∩ F (S̃) ∩ T−10, i.e., the following iterative
algorithm

(1.6)





x0 ∈ C0 arbitrarily chosen,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

un ∈ C such that
f(un, y) + 〈Aun, y − un〉 + 1

rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ C,

zn = J−1(αnJun + (1 − αn)JSun),

yn = J−1(βnJun + (1 − βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un)

+ + (1− βn)φ(v, zn) ≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where C0 = C, {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are se-

quences in [0, 1].

In this paper, we proposed a shrinking projection method of proximal-type in a

uniformly smooth and uniformly convex Banach space and established some strong
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convergence results which represent the improvement, generalization and develop-

ment of the previously known ones in the literature including Solodov and Svaiter

[26], Kamimura and Takahashi [12], Qin and Su [20], Ceng, Petruşel and Wu [27]

and Chang [28].

In the rest of this paper the symbol ⇀ stands for weak convergence and → for

strong convergence.

2. PRELIMINARIES

A Banach space E is called strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if xn −
yn → 0 for any two sequences {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E. Then

the Banach space E is called smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U . If E is smooth then J is single-valued. We shall still

denote the single-valued duality mapping by J .
It is also said to be uniformly smooth if the limit is attained uniformly for

x, y ∈ U . Recall also that if E is uniformly smooth, then J is uniformly norm-to-
norm continuous on bounded subsets of E. A Banach space E is said to have the

Kadec-Klee property if for any sequence {xn} ⊂ E, whenever xn ⇀ x ∈ E and

‖xn‖ → ‖x‖, we have xn → x. It is known that if E is uniformly convex, then E
has the Kadec-Klee property; see [8,19] for more details.

Let C be a nonempty closed convex subset of a real Hilbert space H and

PC : H → C be the metric projection of H onto C. Then PC is nonexpansive.

This fact actually characterizes Hilbert spaces and hence, it is not available in more

general Banach spaces. Nevertheless, Alber [2] recently introduced a generalized

projection operator ΠC in a Banach space E which is an analogue of the metric

projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional

defined as in [1,2] by

(2.1) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

It is clear that in a Hilbert spaceH , (2.1) reduces to φ(x, y) = ‖x−y‖2, ∀x, y ∈ H .

The generalized projectionΠC : E → C is a mapping that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y, x); that is, ΠCx = x, where
x is the solution to the minimization problem

(2.2) φ(x, x) = min
y∈C

φ(y, x).
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The existence and uniqueness of the operator ΠC follows from the properties of the

functional φ(x, y) and strict monotonicity of the mapping J (see, e.g., [3]). In a

Hilbert space H , ΠC = PC . From [2], in uniformly smooth and uniformly convex

Banach spaces, we have

(2.3) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E.

Let C be a nonempty closed convex subset of E, and let S be a mapping from C
into itself. A point p ∈ C is called an asymptotically fixed point of S [17] if C
contains a sequence {xn} which converges weakly to p such that Sxn − xn → 0.
The set of asymptotical fixed points of S will be denoted by F̂ (S). A mapping
S from C into itself is called relatively nonexpansive [4-6] if F̂ (S) = F (S) and
φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F (S).

We remark that if E is a reflexive, strictly convex and smooth Banach space,

then for any x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show
that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This implies that
〈x, Jy〉 = ‖x‖2 = ‖y‖2. From the definition of J , we have Jx = Jy. Therefore,
we have x = y; see [8,19] for more details.

We need the following lemmas for the proof of our main results.

Lemma 2.1. (see [12]). Let E be a smooth and uniformly convex Banach

space and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either
{xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.2. (see [2,12]). Let C be a nonempty closed convex subset of a

smooth, strictly convex and reflexive Banach space E, let x ∈ E and let z ∈ C.

Then

z = ΠCx ⇔ 〈y − z, Jx − Jz〉 ≤ 0, ∀y ∈ C.

Lemma 2.3. (see [2,12]). Let C be a nonempty closed convex subset of a

smooth, strictly convex and reflexive Banach space E. Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C and y ∈ E.

Lemma 2.4. (see [15]). Let C be a nonempty closed convex subset of a

reflexive, strictly convex and smooth Banach space E, and let S : C → C be a

relatively nonexpansive mapping. Then F (S) is closed and convex.

The following result is due to Blum and Oettli [22].

Lemma 2.5. (see [22]). Let C be a nonempty closed convex subset of a smooth,

strictly convex and reflexive Banach space E, let f be a bifunction from C ×C to
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R satisfying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such

that

f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C.

Motivated by Combettes and Hirstoaga [23] in a Hilbert space, Takahashi and

Zembayashi [11] established the following lemma.

Lemma 2.6. (see [11]). Let C be a nonempty closed convex subset of a

uniformly smooth, strictly convex and reflexive Banach space E, and let f be a
bifunction from C × C to R satisfying (A1)-(A4). For r > 0 and x ∈ E, define a

mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C}

for all x ∈ E. Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(iii) F (Tr) = F̂ (Tr) = EP (f);
(iv) EP (f) is closed and convex.

Using Lemma 2.6, one has the following result.

Lemma 2.7. (see [11]). Let C be a nonempty closed convex subset of a smooth,

strictly convex and reflexive Banach space E, let f be a bifunction from C ×C to

R satisfying (A1)-(A4), and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Utilizing Lemmas 2.5, 2.6 and 2.7 as above, Chang [28] derived the following

result.

Proposition 2.1. (see [28, Lemma 2.5]). Let E be a smooth, strictly convex

and reflexive Banach space and C be a nonempty closed convex subset of E. Let

A : C → E∗ be an α-inverse-strongly monotone mapping, let f be a bifunction
from C ×C to R satisfying (A1)-(A4), and let r > 0. Then there hold the following

(I) for x ∈ E, there exists u ∈ C such that

f(u, y) + 〈Au, y − u〉+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C;
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(II) if E is additionally uniformly smooth and Kr : E → C is defined as

(2.4)
Kr(x) = {u ∈ C : f(u, y) + 〈Au, y − u〉

+
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C}, ∀x ∈ E,

then the mapping Kr has the following properties:

(i) Kr is single-valued,

(ii) Kr is a firmly nonexpansive-type mapping, i.e.,

〈Krx − Kry, JKrx − JKry〉 ≤ 〈Krx − Kry, Jx − Jy〉, ∀x, y ∈ E,

(iii) F (Kr) = F̂ (Kr) = EP ,

(iv) EP is a closed convex subset of C,

(v) φ(p, Krx) + φ(Krx, x) ≤ φ(p, x), ∀p ∈ F (Kr).

Proof. Define a bifunction F : C × C → R as follows:

F (x, y) = f(x, y) + 〈Ax, y − x〉, ∀x, y ∈ C.

Then it is easy to verify that F satisfies the conditions (A1)-(A4). Therefore, The

conclusions (I) and (II) of Proposition 2.1 follow immediately from Lemmas 2.5,

2.6 and 2.7.

3. MAIN RESULTS

Throughout this section, unless otherwise stated, we assume that T : E → 2E∗

is a maximal monotone operator, S, S̃ : C → C are a pair of relatively nonexpansive
mappings, A : C → E∗ is an α-inverse-strongly monotone mapping and f : C ×
C → R is a bifunction satisfying (A1)-(A4), where C is a nonempty closed convex

subset of a reflexive, strictly convex, and smooth Banach space E. In this section,

we study the following algorithm

(3.1)





x0 ∈ C0 arbitrarily chosen,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ Tx̃n,

un ∈ C such that
f(un, y)+〈Aun, y−un〉+ 1

rn
〈y−un, Jun−Jx̃n〉 ≥ 0, ∀y ∈ C,

zn = J−1(αnJun + (1− αn)JSun),

yn = J−1(βnJun + (1− βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un)

+(1− βn)φ(v, zn) ≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,
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where C0 = C, {rn}∞n=0 is a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 are se-

quences in [0, 1].
First we investigate the condition under which the algorithm (3.1) is well defined.

Rockafellar [30] proved the following result.

Lemma 3.1. (Rockafellar [30]). Let E be a reflexive, strictly convex, and

smooth Banach space and let T : E → 2E∗
be a multivalued operator. Then there

hold the following

(i) T−10 is closed and convex if T is maximal monotone such that T−10 6= ∅;
(ii) T is maximal monotone if and only if T is monotone with R(J + rT ) = E∗

for all r > 0.

Utilizing this result, we can show the following lemma.

Lemma 3.2. Let E be a reflexive, strictly convex, and smooth Banach space.

If EP ∩F (S)∩F (S̃)∩T−10 6= ∅, then the sequence {xn} generated by algorithm
(3.1) is well defined.

Proof. First it is easy to see that Dn is a closed and convex subset of C for

all n ≥ 1. Second, let us show that Cn is a closed and convex subset of C for all

n ≥ 1. Indeed, observe that

φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)
⇔ 2〈v, (1− βn)Jzn + βnJun − Jyn〉 ≤ (1 − βn)‖zn‖2 − ‖yn‖2 + βn‖un‖2

and

βnφ(v, un) + (1 − βn)φ(v, zn) ≤ φ(v, x̃n)
⇔ 2〈v, Jx̃n − (1 − βn)Jzn − βnJun〉 ≤ ‖x̃n‖2 − (1− βn)‖zn‖2 − βn‖un‖2.

Hence we have

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)
≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0} = {v ∈ Cn : φ(v, yn)
≤ βnφ(v, un)+(1−βn)φ(v, zn)} ∩ {v ∈ Cn : βnφ(v, un)+(1−βn)φ(v, zn)
≤ φ(v, x̃n)} ∩ {v ∈ Cn : 〈v − x̃n, vn〉 ≤ 0}
= {v ∈ Cn : 2〈v, (1− βn)Jzn + βnJx̃n − Jyn〉
≤ (1− βn)‖zn‖2 − ‖yn‖2 + βn‖x̃n‖2}

∩{v ∈ Cn : 2〈v, Jx̃n − (1 − βn)Jzn − βnJun〉
≤ ‖x̃n‖2 − (1− βn)‖zn‖2 − βn‖un‖2}

∩{v ∈ Cn : 〈v, vn〉 ≤ 〈x̃n, vn〉}.
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Thus, this implies that Cn is closed and convex for each n ≥ 1.
On the other hand, let w ∈ EP ∩ F (S) ∩ F (S̃) ∩ T−10 be arbitrarily chosen.

Then w ∈ EP, w ∈ F (S)∩ F (S̃) and w ∈ T−10. From (3.1), it follows that

φ(w, yn)

= φ(w, J−1(βnJun + (1− βn)JS̃zn))

= ‖w‖2 − 2〈w, βnJun + (1 − βn)JS̃zn〉 + ‖βnJun + (1− βn)JS̃zn‖2

≤ ‖w‖2 − 2βn〈w, Jun〉 − 2(1− βn)〈w, JS̃zn〉 + βn‖un‖2 + (1− βn)‖S̃zn‖2

= βnφ(w, un) + (1 − βn)φ(w, S̃zn)
≤ βnφ(w, un) + (1 − βn)φ(w, zn)
= βnφ(w, un) + (1 − βn)φ(w, J−1(αnJun + (1 − αn)JSun))
= βnφ(w, un) + (1 − βn)[‖w‖2 − 2〈w, αnJun + (1− αn)JSun〉

+‖αnJun + (1 − αn)JSun‖2]
≤ βnφ(w, un) + (1 − βn)[‖w‖2 − 2αn〈w, Jun〉 − 2(1 − αn)〈w, JSun〉

+αn‖un‖2 + (1 − αn)‖Sun‖2]
= βnφ(w, un) + (1 − βn)[αnφ(w, un) + (1− αn)φ(w, Sun)]
≤ βnφ(w, un) + (1 − βn)[αnφ(w, un) + (1− αn)φ(w, un)]
= φ(w, un) = φ(w, Krnx̃n) ≤ φ(w, x̃n),

for all n ≥ 0. Now, from Lemma 3.1 it follows that there exists (x̃0, v0) ∈ E ×E∗

such that 0 = v0 + 1
r0

(Jx̃0 − Jx0) and v0 ∈ Tx̃0. Since T is monotone, it follows

that 〈x̃0 − w, v0〉 ≥ 0, which implies that w ∈ C1. Furthermore, it is clear that

w ∈ D1 = C. Then w ∈ C1 ∩ D1, and therefore x1 = ΠC1∩D1x0 is well defined.

Suppose that w ∈ Cn∩Dn and xn is well defined for some n ≥ 1. Again by Lemma
3.1, we deduce that (x̃n, vn) ∈ E × E∗ such that 0 = vn + 1

rn
(Jx̃n − Jxn) and

vn ∈ Tx̃n. Then from the monotonicity of T we conclude that 〈x̃n − w, vn〉 ≥ 0,
which implies that w ∈ Cn+1. It follows from Lemma 2.4 that

〈w − xn, Jx0 − Jxn〉 = 〈w − ΠCn∩Dnx0, Jx0 − JΠCn∩Dnx0〉 ≤ 0,

which implies that w ∈ Dn+1. Consequently, w ∈ Cn+1 ∩ Dn+1. This shows

that EP ∩ F (S) ∩ F (S̃) ∩ T−10 ⊂ Cn ∩ Dn for all n ≥ 1. Therefore xn+1 =
ΠCn+1∩Dn+1x0 is well defined. Then, by induction, the sequence {xn} generated
by (3.1) is well defined for each integer n ≥ 0.

Remark 3.1. From the above proof, we obtain that

EP ∩ F (S)∩ F (S̃) ∩ T−10 ⊂ Cn ∩ Dn

for each integer n ≥ 1.
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We are now in a position to prove the main theorem.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach

space. Let {rn}∞n=0 be a sequence in (0,∞) and {αn}∞n=0, {βn}∞n=0 be sequences

in [0, 1] such that

(3.2) lim inf
n→∞

rn > 0, lim inf
n→∞

αn(1 − αn) > 0 and lim inf
n→∞

βn(1− βn) > 0.

Let EP ∩F (S)∩F (S̃)∩T−10 6= ∅. If S is uniformly continuous, then the sequence
{xn} generated by algorithm (3.1) converges strongly to Π

EP∩F (S)∩F (S̃)∩T−10
x0.

Proof. We divide the proof into several steps.

Step 1. We claim that {xn} is bounded, and limn→∞ ‖xn+1 − xn‖ = 0.
Indeed, it follows from the definition of Dn that xn = ΠDn+1x0. Since xn+1 =

ΠCn+1∩Dn+1x0 ∈ Dn+1, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.

Thus {φ(xn, x0)} is nondecreasing. Also from xn = ΠDn+1x0 and Lemma 2.3, we

have that

φ(xn, x0) = φ(ΠDn+1x0, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0)

for each w ∈ EP∩F (S)∩F (S̃)∩T−10 ⊂ Dn+1 and for each n ≥ 0. Consequently,
{φ(xn, x0)} is bounded. Moreover, according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2,

we conclude that {xn} is bounded. Thus, we have that limn→∞ φ(xn, x0) exists.
From Lemma 2.3, we derive

φ(xn+1, xn) = φ(xn+1, ΠDn+1x0)
≤ φ(xn+1, x0)− φ(ΠDn+1x0, x0)
= φ(xn+1, x0)− φ(xn, x0)

for all n ≥ 0. This implies that φ(xn+1, xn) → 0. So it follows from Lemma 2.1
that limn→∞ ‖xn+1 − xn‖ = 0.

Step 2. We claim that limn→∞ ‖Jxn+1 − Jyn‖ = limn→∞ ‖Jxn+1 − Jun‖ =
limn→∞ ‖Jxn+1 − Jzn‖ = limn→∞ ‖Jxn+1 − Jx̃n‖ = 0.
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Indeed, since xn+1 = ΠCn+1∩Dn+1x0 ∈ Cn+1, from the definition of Cn+1, we

have

(3.3)
φ(xn+1, yn) ≤ βnφ(xn+1, un) + (1− βn)φ(xn+1, zn)

≤ φ(xn+1, x̃n) and 〈xn+1 − x̃n, vn〉 ≤ 0.

Observe that

φ(ΠCn+1xn, xn) − φ(x̃n, xn) = ‖ΠCn+1xn‖2 − ‖x̃n‖2 + 2〈x̃n − ΠCn+1xn, Jxn〉
≥ 2〈ΠCn+1xn − x̃n, Jx̃n〉 + 2〈x̃n − ΠCn+1xn, Jxn〉
= 2〈x̃n − ΠCn+1xn, Jxn − Jx̃n〉.

Since ΠCn+1xn ∈ Cn+1 and vn = 1
rn

(Jxn − Jx̃n), it follows that

〈x̃n − ΠCn+1xn, Jxn − Jx̃n〉 = rn〈x̃n − ΠCn+1xn, vn〉 ≥ 0

and hence that φ(ΠCn+1xn, xn) ≥ φ(x̃n, xn). Further, from xn+1 ∈ Cn+1, we have

φ(xn+1, xn) ≥ φ(ΠCn+1xn, xn), which yields

φ(xn+1, xn) ≥ φ(ΠCn+1xn, xn) ≥ φ(x̃n, xn).

Then it follows from φ(xn+1, xn) → 0 that φ(x̃n, xn) → 0. Hence it follows from
Lemma 2.1 that x̃n − xn → 0. Since from (3.3) we derive

φ(xn+1, x̃n)− φ(x̃n, xn)
= ‖xn+1‖2 − 2〈xn+1, Jx̃n〉 + ‖x̃n‖2 − (‖x̃n‖2 − 2〈x̃n, Jxn〉+ ‖xn‖2)
= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1, Jx̃n〉 + 2〈x̃n, Jxn〉
= ‖xn+1‖2 − ‖xn‖2 − 2〈xn+1 − x̃n, Jx̃n − Jxn〉
−2〈xn+1 − x̃n, Jxn〉+ 2〈x̃n, Jxn − Jx̃n〉

= (‖xn+1‖ − ‖xn‖)(‖xn+1‖ + ‖xn‖) + 2rn〈xn+1 − x̃n, vn〉
−2〈xn+1 − x̃n, Jxn〉+ 2〈x̃n, Jxn − Jx̃n〉

≤ ‖xn+1 − xn‖(‖xn+1‖+ ‖xn‖) + 2‖xn+1 − x̃n‖‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖
≤ ‖xn+1 − xn‖(‖xn+1‖

+‖xn‖) + 2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖,

we have

φ(xn+1, x̃n) ≤ φ(x̃n, xn) + ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖)
+2(‖xn+1 − xn‖ + ‖xn − x̃n‖)‖xn‖ + 2‖x̃n‖‖Jxn − Jx̃n‖.

Thus from φ(x̃n, xn) → 0, xn − x̃n → 0 and xn+1 − xn → 0, we know that
φ(xn+1, x̃n) → 0. Consequently, from (3.3) it follows that

(3.4)
limn→∞ φ(xn+1, yn) = lim

n→∞
φ(xn+1, un)

= lim
n→∞

φ(xn+1, zn) = lim
n→∞

φ(xn+1, x̃n) = 0.
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Utilizing Lemma 2.1 we deduce that

(3.5)
limn→∞ ‖xn+1 − yn‖ = lim

n→∞
‖xn+1 − un‖ = lim

n→∞
‖xn+1 − zn‖

= lim
n→∞

‖xn+1 − x̃n‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from (3.5)
we get

(3.6)
limn→∞ ‖Jxn+1−Jyn‖= lim

n→∞
‖Jxn+1−Jun‖ = lim

n→∞
‖Jxn+1−Jzn‖

= lim
n→∞

‖Jxn+1−Jx̃n‖ = 0.

Step 3. We claim that

(3.7) lim
n→∞

‖un − Sun‖ = lim
n→∞

‖zn − S̃zn‖ = 0.

Indeed, it follows from (3.6) that

lim
n→∞

‖Jyn − Jzn‖ = lim
n→∞

‖Jun − Jzn‖ = 0.

Also, it follows from (3.1) that

Jzn − Jun = (1 − αn)(JSun − Jun),

and

Jyn − Jzn = βn(Jun − Jzn) + (1− βn)(JS̃zn − Jzn).

Thus, we have

(1 − αn)‖JSun − Jun‖ = ‖Jzn − Jun‖ → 0,

and

(1− βn)‖JS̃zn − Jzn‖ = ‖Jyn − Jzn − βn(Jun − Jzn)‖
≤ ‖Jyn − Jzn‖ + βn‖Jun − Jzn‖ → 0.

This implies that ‖JSun − Jun‖ → 0 and ‖JS̃zn − Jzn‖ → 0. Since J−1 is

uniformly norm-to-norm continuous on bounded subsets of E∗, we conclude that

‖Sun − un‖ → 0 and ‖S̃zn − zn‖ → 0.

Step 4. We claim that ωw({xn}) ⊂ EP ∩ F (S) ∩ F (S̃) ∩ T−10, where

ωw({xn}) := {x̂ ∈ C : xnk
⇀ x̂ for some subsequence {nk} ⊂ {n} with nk ↑ ∞}.

Indeed, since {xn} is bounded and E is reflexive, we know that ωw({xn}) 6= ∅.
Take x̂ ∈ ωw({xn}) arbitrarily. Then there exists a subsequence {xnk

} of {xn} such
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that xnk
⇀ x̂. Hence from xn+1 − xn → 0 and (3.5) it follows that un − xn → 0

and zn − xn → 0. So we deduce that unk
⇀ x̂ and znk

⇀ x̂. Since S and

S̃ are relatively nonexpansive, from (3.7) we obtain that x̂ ∈ F̂ (S) = F (S) and
x̂ ∈ F̂ (S̃) = F (S̃). This implies that x̂ ∈ F (S) ∩ F (S̃).

Now let us show that x̂ ∈ T−10. Since xn − x̃n → 0, we have that x̃nk
⇀ x̂.

Moreover, since J is uniformly norm-to-norm continuous on bounded subsets of E

and lim infn→∞ rn > 0, we obtain

vn =
1
rn

(Jxn − Jx̃n) → 0.

It follows from vn ∈ Tx̃n and the monotonicity of T that

〈z − x̃n, z′ − vn〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. This implies that

〈z − x̂, z′〉 ≥ 0

for all z ∈ D(T ) and z′ ∈ Tz. Thus from the maximality of T , we infer that

x̂ ∈ T−10. Therefore, x̂ ∈ F (S)∩F (S̃)∩T−10. Further, let us show that x̂ ∈ EP .
Since x̃n − xn → 0 (due to Step 2), from xnk

⇀ x̂ we know that x̃nk
⇀ x̂.

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from
un − x̃n → 0 (due to (3.5)) we derive

lim
n→∞

‖Jun − Jx̃n‖ = 0.

From lim infn→∞ rn > 0, it follows that

(3.8) lim
n→∞

‖Jun − Jx̃n‖
rn

= 0.

By the definition of un := Krn x̃n, we have

F (un, y) +
1
rn

〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ C,

where
F (un, y) = f(un, y) + 〈Aun, y − un〉.

Replacing n by nk , we have from (A2) that

1
rnk

〈y − unk
, Junk

− Jx̃nk
〉 ≥ −F (unk

, y) ≥ F (y, unk
), ∀y ∈ C.

Since y 7→ f(x, y)+ 〈Ax, y− x〉 is convex and lower semicontinuous, it is also
weakly lower semicontinuous. Letting nk → ∞ in the last inequality, from (3.8)

and (A4) we have

F (y, x̂) ≤ 0, ∀y ∈ C.
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For t, with 0 < t ≤ 1, and y ∈ C, let yt = ty + (1− t)x̂. Since y ∈ C and x̂ ∈ C,

then yt ∈ C and hence F (yt, x̂) ≤ 0. So, from (A1) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, x̂) ≤ tF (yt, y).

Dividing by t, we have

F (yt, y) ≥ 0, ∀y ∈ C.

Letting t ↓ 0, from (A3) it follows that

F (x̂, y) ≥ 0, ∀y ∈ C.

So, x̂ ∈ EP . Therefore, we obtain that ωw({xn}) ⊂ EP ∩ F (S) ∩ F (S̃) ∩ T−10
by the arbitrariness of x̂.

Step 5. We claim that ωw({xn}) = {Π
EP∩F (S)∩F (S̃)∩T−10

x0} and xn →
ΠEP∩F (S)∩F (S̃)∩T−10x0.

Indeed, put x = Π
EP∩F (S)∩F (S̃)∩T−10

x0. From xn+1 = ΠCn+1∩Dn+1x0 and

x ∈ EP ∩F (S)∩F (S̃)∩T−10 ⊂ Cn+1 ∩Dn+1, we have φ(xn+1, x0) ≤ φ(x, x0).
Now from weakly lower semicontinuity of the norm, we derive for each x̂ ∈
ωw({xn})

φ(x̂, x0) = ‖x̂‖2 − 2〈x̂, Jx0〉 + ‖x0‖2

≤ lim inf
k→∞

(‖xnk
‖2 − 2〈xnk

, Jx0〉+ ‖x0‖2)

= lim inf
k→∞

φ(xnk
, x0)

≤ lim sup
k→∞

φ(xnk
, x0)

≤ φ(x, x0).

It follows from the definition of Π
EP∩F (S)∩F (S̃)∩T−10

x0 that x̂ = x and hence

lim
k→∞

φ(xnk
, x0) = φ(x, x0).

So we have limk→∞ ‖xnk
‖ = ‖x‖. Utilizing the Kadec-Klee property of E, we

conclude that {xnk
} converges strongly to Π

EP∩F (S)∩F (S̃)∩T−10
x0. Since {xnk

} is
an arbitrary weakly convergent subsequence of {xn}, we know that {xn} converges
strongly to ΠEP∩F (S)∩F (S̃)∩T−10x0. This completes the proof.

The following corollaries can be obtained from Theorem 3.1 immediately.

Corollary 3.1. Let E and C be the same as in Theorem 3.1. Let T : E → 2E∗

be a maximal monotone operator, f : C × C → R be a bifunction satisfying (A1)-

(A4), and S, S̃ : C → C be a pair of relatively nonexpansive mappings such that

EP (f)∩ F (S)∩ F (S̃) ∩ T−10 6= ∅. Let {xn} be the sequence generated by
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(3.9)





x0 ∈ C, C0 = C,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

un ∈ C such that
f(un, y) + 1

rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ C,

zn = J−1(αnJun + (1− αn)JSun),

yn = J−1(βnJun + (1− βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)
≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to Π

EP (f)∩F (S)∩F (S̃)∩T−10
x0.

Proof. Put A ≡ 0 in Theorem 3.1. Then EP = EP (f). Hence from Theorem
3.1 we immediately obtain the desired conclusion.

Corollary 3.2. Let E and C be the same as in Theorem 3.1. Let T : E → 2E∗

be a maximal monotone operator, A : C → E∗ be an α-inverse-strongly monotone
mapping and S, S̃ : C → C be a pair of relatively nonexpansive mappings such

that V I(C, A)∩ F (S) ∩ F (S̃) ∩ T−10 6= ∅. Let {xn} be the sequence generated
by

(3.10)





x0 ∈ C, C0 = C,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ Tx̃n,

un ∈ C such that
〈Aun, y − un〉 + 1

rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ C,

zn = J−1(αnJun + (1 − αn)JSun),

yn = J−1(βnJun + (1 − βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)

≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to Π

V I(C,A)∩F (S)∩F (S̃)∩T−10
x0.

Proof. Put f ≡ 0 in Theorem 3.1. Then EP = V I(C, A). Hence from
Theorem 3.1 we immediately obtain the desired conclusion.
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Corollary 3.3. Let E and C be the same as in Theorem 3.1. LetA : C → E∗ be

an α-inverse-strongly monotone mapping, f : C×C → R be a bifunction satisfying

(A1)-(A4), and S, S̃ : C → C be a pair of relatively nonexpansive mappings such

that EP ∩ F (S) ∩ F (S̃) 6= ∅. Let {xn} be the sequence generated by

(3.11)





x0 ∈ C, C0 = C,

un ∈ C such that
f(un, y)+〈Aun, y−un〉+ 1

rn
〈y−un, Jun−Jxn〉≥0, ∀y ∈ C,

zn = J−1(αnJun + (1− αn)JSun),

yn = J−1(βnJun + (1− βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un)

+(1 − βn)φ(v, zn) ≤ φ(v, xn)},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to ΠEP∩F (S)∩F (S̃)x0.

Proof. Put T ≡ 0 in Theorem 3.1. Then vn ≡ 0 and so x̃n = xn, ∀n ≥ 0.
Hence from Theorem 3.1 we immediately obtain the desired conclusion.

Corollary 3.4. Let E and C be the same as in Theorem 3.1. Let T : E → 2E∗

be a maximal monotone operator, and S, S̃ : C → C be a pair of relatively

nonexpansive mappings such that F (S) ∩ F (S̃) ∩ T−10 6= ∅. Let {xn} be the
sequence generated by

(3.12)





x0 ∈ C, C0 = C,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ Tx̃n,

un = ΠC x̃n,

zn = J−1(αnJun + (1 − αn)JSun),

yn = J−1(βnJun + (1− βn)JS̃zn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1 − βn)φ(v, zn)

≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to ΠF (S)∩F (S̃)∩T−10x0.
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Proof. Put A ≡ 0 and f ≡ 0 in Theorem 3.1. Then un = ΠC x̃n, ∀n ≥ 0.
Hence from Theorem 3.1 we immediately obtain the desired conclusion.

4. APPLICATIONS

Let E be a reflexive, strictly convex, and smooth Banach space. Let U, Ũ :
E → 2E∗

be two maximal monotone operators. For r > 0, define the resolvent of
U and Ũ by Jr = (J + rU)−1J and J̃r = (J + rŨ)−1J , respectively. Then, Jr

(resp. J̃r) is a single-valued mapping from E to D(U) (resp. from E to D(Ũ)).
Also, for r > 0,

(4.1) U−10 = F (Jr) (resp. Ũ−10 = F (J̃r)),

where F (Jr) (resp. F (J̃r)) is the set of fixed points of Jr (resp. J̃r). We can

define, for r > 0, the Yosida approximation of U (resp. Ũ) by Ar = (J − JJr)/r
(resp. Ãr = (J − JJ̃r)/r). For r > 0 and x ∈ E, we know that Arx ∈ UJrx and

Ãrx ∈ Ũ J̃rx.

Lemma 4.1. Let E be a reflexive, strictly convex, and smooth Banach space,

and let U : E → 2E∗
be a maximal monotone operator with U−10 6= ∅. Then there

hold the following
(i) (see [29]) φ(z, Jrx) + φ(Jrx, x) ≤ φ(z, x) for all r > 0, z ∈ U−10 and

x ∈ E;
(ii) (see [28]) Jr : E → D(U) is a relatively nonexpansive mapping.

We are now in a position to apply Theorem 3.1 to proving the following result.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach

space, r > 0 be a positive constant, A : E → E∗ be an α-inverse-strongly
monotone mapping, and f : E × E → R be a bifunction satisfying (A1)-(A4). Let

T, U, Ũ : E → 2E∗
be three maximal monotone operators such that EP ∩ U−10∩

Ũ−10∩ T−10 6= ∅. Let {xn} be the sequence generated by

(4.2)





x0 ∈ E, C0 = E,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

un ∈ E such that
f(un, y) + 〈Aun, y − un〉+ 1

rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ E,

zn = J−1(αnJun + (1− αn)JJrun),

yn = J−1(βnJun + (1− βn)JJ̃rzn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)
≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},

Dn+1 = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,
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where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to Π

EP∩U−10∩Ũ−10∩T−10
x0.

Proof. From (4.1) and Lemma 4.1 it follows that Jr : E → D(U) and J̃r : E →
D(Ũ) both are relatively nonexpansive mappings and U−10 = F (Jr), Ũ−10 =
F (J̃r). Now put S = Jr and S̃ = J̃r in Theorem 3.1. Then from Theorem 3.1 we

immediately obtain the desired conclusion.

From Theorem 4.1, we can derive the following corollaries.

Corollary 4.1 LetE and r > 0 be the same as in Theorem 4.1. LetA : E → E∗

be an α-inverse-strongly monotone mapping and T, U, Ũ : E → 2E∗
be three

maximal monotone operators such that V I(E, A)∩U−10∩ Ũ−10∩T−10 6= ∅. Let
{xn} be the sequence generated by

(4.3)





x0 ∈ E, C0 = E,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

un ∈ E such that

〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ E,

zn = J−1(αnJun + (1 − αn)JJrun),

yn = J−1(βnJun + (1 − βn)JJ̃rzn),

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1 − βn)φ(v, zn)

≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},

Dn+1 = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to Π

V I(E,A)∩U−10∩Ũ−10∩T−10
x0.

Proof. Put f ≡ 0 in Theorem 4.1. Then from Theorem 4.1 we immediately
obtain the desired conclusion.

Corollary 4.2. Let E and r > 0 be the same as in Theorem 4.1. Let f :
E × E → R be a bifunction satisfying (A1)-(A4) and T, U, Ũ : E → 2E∗

be three

maximal monotone operators such that EP (f) ∩ U−10 ∩ Ũ−10 ∩ T−10 6= ∅. Let
{xn} be the sequence generated by
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(4.4)





x0 ∈ E, C0 = E,

0 = vn + 1
rn

(Jx̃n − Jxn), vn ∈ T x̃n,

un ∈ E such that
f(un, y) + 1

rn
〈y − un, Jun − Jx̃n〉 ≥ 0, ∀y ∈ E,

zn = J−1(αnJun + (1− αn)JJrun),

yn = J−1(βnJun + (1− βn)JJ̃rzn),
Cn+1 = {v ∈ Cn : φ(v, yn) ≤ βnφ(v, un) + (1− βn)φ(v, zn)

≤ φ(v, x̃n) and 〈v − x̃n, vn〉 ≤ 0},
Dn+1 = {v ∈ E : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn+1∩Dn+1x0, n = 0, 1, 2, ...,

where {rn} ⊂ (0,∞) and {αn}, {βn} ⊂ [0, 1] satisfy (3.2). Then {xn} converges
strongly to Π

EP (f)∩U−10∩Ũ−10∩T−10
x0.

Proof. Put A ≡ 0 in Theorem 4.1. Then from Theorem 4.1 we immediately
obtain the desired conclusion.
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