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ON NEAR RELATIVE PRIME NUMBER IN A SEQUENCE
OF POSITIVE INTEGERS

Jyhmin Kuo and Hung-Lin Fu

Abstract. Let A be a sequence of positive integers. An element α of A
is called an s-near relative prime number (s-near relprime in short) if α is
coprime to any distinct element in A except exactly s elements of A. In
this paper, we study the existence of an arithmetic sequence with no 1-near
relprimes.

1. INTRODUCTION AND PRELIMINARIES

The study of primes plays the most important role in Number Theory. It is
well-known that the number of primes is infinite and also for each positive integer
n there are n consecutive integers which are not primes. Therefore, we may have a
very long sequence of integers which contains no primes. But, it is quite possible
to find an integer a in a sequence of integers A such that for each b ∈ A and b �= a,
the greatest common divisor of a and b is 1. For convenience, in what follows, we
say a and b are coprime and a is a relprime of A. A very fundamental argument
can show that for any sequence of at most 16 consecutive positive integers contains
at least one relprime. But, for 17 and larger, the existence of relprimes is in doubt.
First, in [4], Pillai proved that for l = 17, 18, ..., 430, there exists a sequence of l

consecutive integers which has no relprimes. Then, in [2], Evans generalized the
result of Pillai and showed that for l ≥ 17, there exists a sequence of l consecutive
integers which has no relprimes. Quite recently, the work was extended to study the
existence of relprime in a sequence A = < a, a + k, a + 2k, ..., a+ (n− 1)k > for
k ≥ 2. Ohtomo and Tamari were able to prove the following theorem.

Theorem 1.1. ([3]). For every positive k, there is a positive integer l 0(k)
such that for all integer n ≥ l 0(k), there exists a sequence A = < a, a + k, a +
2k, ..., a + (n − 1)k > which has no relprimes.
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By observation, it is not difficult to see that in a sequence of positive integers
A, even we can not find a relpime, we are able to find a number in A which is
very close to being a relprime. For example, in A = < 2184, 2185, ..., 2200 >, a
relprime does not exist. But, if we are looking for an integer in A which is coprime
to almost any other number except one, then 2189 and 2197 are the integers, we
call them 1-near relprimes. See Figure 1. (It is easily seen that the prime factors 2,
3, 5, 7, 11 and 13 occur at least twice.) The definition of an s-near relprime can be
defined accordingly.

� � � � � � � � � � � � � � � � �

2, 13 5 2 3 11 3 7 5 13 7 11

2184 2186 2188 2190 2192 2194 2196 2198 2200
2185 2187 2189 2191 2193 2195 2197 2199

Figure 1: a sequence with two 1-near relprimes

The Chinese Remainder Theorem. Suppose n1, n2, · · · , nr are coprime positive
integers. Let a1, a2, · · · , ar be any integers. Then there is a number x whose re-
mainder on division by ni is ai, for each i. That is, the system of linear congruences
x ≡ ai (mod ni) has a solution.

Therefor, in order to find a sequence which contains no s-near relprimes, it
suffices to arrange the prime factors less than the length of the sequence such that
each of them occurs at least s+2 times. Note that such sequence can be obtained by
using the Chinese Remainder Theorem. For example, in Figure 2, we have a1 ≡ 0
(mod 2), a1 ≡ 2 (mod 3), a1 ≡ 0 (mod 5), a1 ≡ 5 (mod 7), a1 ≡ 0 (mod 11),
and a1 ≡ 10 (mod 13) after arranging the prime factors in {2, 3, 5, 7, 11, 13}. In
fact, there are infinite many solutions for a1, say 27830, 57860, . . ..

� � � � � � � � � � � � � � � � �

2 5311 13 137 2 53 7 11

a1

Figure 2: a sequence with no relprimes which is obtained by using the first 6 prime
factors

Indeed, comparing to find a sequence with no relprimes, finding a sequence of
consecutive integers which contains no s-near relprime is getting harder. By using
of a computer program, we can construct a sequence of 41 consecutive integers
starting with 249, 606, 071, 931 such that no 1-near relprimes exist. In other words,
every integer contains at least 2 non-coprimes. As to 2-near relprime case, the se-
quence of consecutive integers without 2-near relprimes that we are able to find is
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a sequence of 115 integers with leading number
18, 513, 236, 242, 025, 789, 239, 118, 205, 871, 632, 181, 843, 428.

To extent the study of Theorem 1.1, we can also investigate the existence of a
sequence < a, a+ k, a + 2k, ..., a+ (n− 1)k > such that no 1-near relprimes exist
where k > 1. To see the difficulty of this study, we consider A a set of consecutive
odd integers. Then, by using a computer program, we can find a sequence of 229 odd
integers starting from 17867559870915810441505496179807231100678713 which
contains no relprimes. Compare to finding consecutive integers, this is a sequence
of huge numbers and we are not able to find a sequence of smaller integers satisfying
this condition at this moment.

Note that if (a, k) �= 1 holds, then clearly A has no s-near relprimes. So, we
only treat the case (a, k) = 1 throughout this paper, and we shall prove the following
theorem.

Theorem 1.2. For every positive integer k, there is a positive integer l 0(k)
such that for all integer n ≥ l 0(k), there exists an arithmetic sequence A = < a, a
+k, a + 2k, · · · , a + (n − 1)k > which has no 1-near relprimes.

In other words, every element in this arithmetic sequence A with length n(large
enough) contains at least 2 non-coprimes. This result also proves Theorem 1.1.

2. THE MAIN RESULT

Since we are mainly looking for a sequence which contains mostly the composite
integers, the estimation of the number of primes between two distinct integers is
crucial. The following result plays an important role in counting the number of
primes.

Lemma 2.1. ([1] cf. Erd"os 1949). For every λ > 1, there exist real numbers
C(λ) > 0 and x0 = x0(λ) such that

C(λ)
x

logx
< π(λx)− π(x)

for x ≥ x0(λ), where π(x) denotes the number of primes ≤ x.

In counting, we also need an inequality which is a basic result in Calculus.

Lemma 2.2. Let n be a positive integer and ε and c be positive numbers.
Then, there exists a positive number N0 = N0(ε, n, c) such that (log cx)n ≤ εx for
x ≥ N0.
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The plan of our proof is to form a sequence of n (sufficiently large) positive
integers A = < a, a + k, a + 2k, ..., a + (n − 1)k > such that for each x ∈ A
there exist at least 2 distinct integers in A which are not relatively prime with x.
Since k is given, it suffices to find a and n. For brevity, we prove only for the
case when n = 4m + 1, m ≥ 2, and the other cases 4m, 4m + 2, 4m + 3 are
similar. Therefore, we may let all sequences we consider throughout this paper
are of the following form A = {a−2m, a−2m+1, ..., a−1, a0, a1, ..., a2m−1, a2m} in
which ai − ai−1 = k ≥ 2, i = −2m + 1,−2m + 2, · · · , 2m. In A, we also let
JA(a0, m) = {j|(a0, aj) = 1, 1 ≤ j ≤ 2m} and |JA(a0, m)| = µA(a0, m). In
case that µA(a0, m) is fixed, we denote µA(a0, m) by µ for brevity. The following
lemma is essential to the proof of our main theorem.

Lemma 2.3. Given k. Then, there exist a0 and m such that

(1) 4µ(a0, m) ≤ π(2m)− π(m) and

(2) 16µ(a0, m) ≤ π(3m)− π(2m).

Proof. For each positive integer m, let K = {k1, k2, · · · , kα} be the set of
prime factors of k and let Q = {q1, q2, · · · , qβ}, R = {r1, r2, . . . , rγ} and T =
{t1, t2, . . . , tδ} be the set of primes in (0, 2m), (m, 2m) and (2m, 3m) respectively.
For convenience, the primes in K, Q, R and T are listed in increasing order. Now,
let a0 be a positive integer such that q|a0 for each q ∈ Q \ K. Then is is easily
checked that (a0, aj) = 1 if and only if j =

∏α
i=1ki

fi where fi’s are non-negative
integers. Let li, i = 1, · · · , α, be the maximum integers satisfying kli

i ≤ 2m. Then,
we have µ(a0, m) ≤ (l1 + 1) · · · (lα + 1). Therefore,

µ(a0, m) ≤
α∏

i=1

(
log 2m

log ki
+ 1

)

≤
(

log 2m

log k1
+ 1

)α

≤
(

1
log k1

)α (log 2k1m)α+1

log 2m

≤
(

1
log k1

)α (log 2k1m)α+1

log m

holds. Let C(2) and x0(2) be positive numbers defined in Lemma 2.1 such that

C(2)
m

logm
≤ π(2m)− π(m)
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for m ≥ x0(2). Let ε = 1
4(log k1)αC(2). By Lemma 2.2, there exists an N0 =

N0(ε, α + 1, 2k1) such that

(log 2k1m)α+1 ≤ 1
4
(log k1)αC(2)m

for m ≥ N0. Then we have

µ(a0, m) ≤ 1
4
C(2)

m

logm

for m ≥ N = max(N0, x0(2)). Therefore, we have

4µ(a0, m) ≤ π(2m)− π(m).

satisfying the condition (2.1).
By the same process, let C(3

2 ) and x0( 3
2) be positive numbers defined in Lemma

2.1 such that
C

(
3
2

)
2m

log 2m
< π(3m)− π(2m)

for 2m ≥ x0( 3
2 ). Let ε′ = 1

16(log k1)αC( 3
2 ), x′

0 = 1
2x0( 3

2) and N1 = N (ε′, α +
1, k1), where N (ε′, α+1, k1) is the positive number described in Lemma 2.2. Then,
from Lemma 2.1 and Lemma 2.2,

16µ(a0, m) ≤ π(3m)− π(2m)

which is the inequality (2.2). Now, by choosing m ≥ max(N0, x0(2), N1,
1
2x0( 3

2)),
we have the desired a0 and m. This concludes the proof.

By observation, the candidates of 1-near relprimes in A are aj and a−j where
j ∈ JA(a0, m) (Lemma 2.3) and the total number of candidates is 2µA(a0, m). All
the others are not 1-near relprimes, since for each i �∈ JA(a0, m), a0, ai and a−i do
have common divisors larger than 1. Now, we are ready to prove the main result.
Review that we shall arrange the prime factors less than the length of the sequence
4m + 1 such that each prime factor occurs at least three times. Therefore, at the
beginning stage, ai ∈ A represents the position of an integer and the exact solution
for A will be obtained later by using the Chinese Remainder Theorem.

Proof of Theorem 1.2. By Lemma 2.3, there exist a0 and m such that equations
1 and 2 hold. It follows that there are at most 2µA(a0, m) = 2µ 1-near relprimes
in A.

If these 2µ integers are indeed not 1-near relprimes in A, then we are done.
Otherwise, we have to arrange prime factors such that these 2µ integers do have
common prime factors with at least two other integers in A. In order to do that we
rename A as A′ =< a′−2m, ..., a′0, ..., a

′
2m > where the following three conditions

hold.
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(1) q|a′0 for each q ∈ Q\(K∪{r1, r2, · · · , r4µ}) where r1, · · · , r4µ are 4µ primes
in (m, 2m). (By Lemma 2.3.)

(2) ri|a′ji
, ri+µ|a′ji

for ji ∈ JA(a0, m), 1 ≤ i ≤ µ.
(3) ri+2µ|a′−ji

, ri+3µ|a′−ji
, for ji ∈ JA(a0, m), 1 ≤ i ≤ µ.

By the above adjustment, we conclude that a′ji
and a′−ji

are not 1-near rel-
primes any more for each ji ∈ JA(a0, m). But, now, we have to make sure the
8µ integers ai

′, i ∈ {±r1,±r2, · · · ,±r4µ}, where |i| > m, are not 1-near rel-
primes. So, again, we use the trick to arrange the 16µ primes, t1, t2, · · · , t16µ

in (2m, 3m), obtained from Lemma 2.3 to the above 8µ integers as their
prime factors (two for each one of them). This can be done by letting

(4) ti|a′ri
, ti+4µ|a′ri

for i = 1, 2, · · · , 4µ; and
(5) ti+8µ|a′−ri

, ti+12µ|a′−ri
, for i = 1, 2, · · · , 4µ.

Now since m<ri <2m and 2m < ti < ti+4µ < 3m, we have −2m < ri−ti <
0 and −2m < ri − ti+4µ < 0. Then (a′ri

, a′ri−ti) = ti > 0 and (a′ri
, a′ri−ti+4µ

) =
ti+4µ > 0, where i = 1, 2, · · · , 4µ. By the same process, (a′−ri

, a′−ri+ti+8µ
) =

ti+8µ > 0 and (a′−ri
, a′−ri+ti+12µ

) = ti+12µ > 0, where i = 1, 2, · · · , 4µ. Therefore,
all integers in A′ are not 1-near relprimes in their corresponding positions. By the
Chinese Remainder Theorem, there exists a sequence satisfying the equations (1) to
(5). This completes the proof.

3. CONCLUDING REMARKS

For the case s > 1 or k > 1, the following problem is an interesting one. For
which s and k, there is a sequence A = (a, a + k, a + 2k, . . . , a + (n − 1)k)
containing no s-near relprimes. We believe that for fixed integers s and k such a
sequence does exist, but we are not able to obtain a proof at this moment.
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