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SOME WEIGHTED OPIAL-TYPE INEQUALITIES
ON TIME SCALES

H. M. Srivastava, Kuei-Lin Tseng, Shio-Jenn Tseng and Jen-Chieh Lo

Abstract. Motivated essentially by several recent investigations which claimed
to have generalized, improved and extended such classical inequalities as the
well-known Opial’s inequality, here we establish some general weighted Opial-
type inequalities on time scales. We also provide counterexamples, corrections
and modifications of the aforementioned recent claims by Wong et al.
[Taiwanese J. Math., 12 (2008), 463-471].

1. INTRODUCTION

Almost five decades ago, Opial [12] established an integral inequality which
we recall here as Theorem A below (see also a sequel by Olech [11] for a simpler
proof under weaker conditions as well as for the explicit extremal function).

Theorem A. Let f € C*[0,4a] (a > 0) with

FO)=f@)=0 and fl@)>0 (0<z<a).

Then
a a a
) [ lr@s@lde < § [15@) d.
where the constant factor ¢ is the best possible. Equality holds true in (1) if and
only if
cr <0 <z < %)
flx) =

cla—x) <%§$§a>v
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where ¢ is a positive constant.

The inequality (1) is well-known in the literature as Opial’s inequality. For
some recent results which generalize, improve and extend this classical inequality
(1), see (for example) [1-5, 8-10, 13, 14, 17] and [18] (see also the edited volume
[15]). In particular, Yang [18] established the following Opial-type inequalities.

Theorem B. Let the function f(z) be absolutely continuous on [0, a] (a > 0)
with f(0) = 0. Then, for

l,m e R = (—o0,0),

each of the following inequalities holds true under the additional conditions stated
with it:

@ e s () [rer

(f(0)=0; £20; m=1),

3) /0 @) f (@)™ d < (HLWJ az/o ’fl(x)’”mdx

(fla)=0; £20; m=1),

and

@ fu@t e as () G) [ 1o

(f0) = fla)=0; £20; m21).

By applying the Time Scales Theory and the concept of Delta Differentiability
(see Section 2 below for the details of the definitions and notations used here),
Agarwal et al. [2] extended the Opial’s inequality (1) to the following form.

Theorem C. Let the function f(¢) given by
f:00,a]NT—R (a>0)

be delta differentiable on [0, a]. Then

(5) /Oauf(t)—i—fa(t)] fA(t)|At§a/0a|fA(t)|2 .\
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Equality holds true in (5) when f(t) = ¢t for a constant c.

In a more recent investigation, Wong et al. [17] presented several generalizations
and variants of the inequality (5) for certain general cases involving time scales as
asserted by Theorems D, E, F and G below.

Theorem D. Let the function f(t) given by
fila,b)nT — R (b>az=0)
be delta differentiable on [a, b] N T. Suppose also that
p=20, ¢g=1 and  A(t) € Ciq ([a,b], [1,00)),
where Cyq ([a, ], [1, 00)) denotes the set of rd-continuous functions defined by

Cra ([av b]v[lvoo)) = {ﬂ K [av b] - [1700) and
(6) f(t) is an rd-continuous function} .

Then
b
JRCICIRSCIEY

G < () o-ar [ n 0P a

Theorem E. Let the function f(¢) given by
fila,b)nT — R (b>az=0)
be delta differentiable n times (n € N) on [a,b] N'T, where
N:={1,2,3,---}.
Suppose also that

p=>0, g=>1 and h(t) € Cra ([a,b], [1,00)).

(8) fla)y=f2a)=--=f""(a)=0 (neN),

then
b

ht) [F)P |27 ()] At
b
9) < (L) [(b— a)?]" / h(t) | 72" ()7 At

P+q

S~
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Theorem F. Let each of the functions f(¢) and g(¢) given by
fig:0a,0)NT —R (b>az=0)
be delta differentiable n times (n € N) on [a,b] N'T. Suppose also that
p=20, ¢g=1 and h(t) € Cra ([a, b],[1,00)).

If the function f(t) satisfies the conditions in (8) and the function g(t) satisfies the
following conditions:

(10) gla)=g®a)=---=¢*""(a)=0 (neN),
then

b
[ ro {isor- 19> @ +lawr 112" 0]} a
a =)o
. / me) {F2 O + 10> (1)} At

Theorem G. Let each of the functions f(¢) and g(t) given by
f9:0a,0)NT —R (b>az=0)
be delta differentiable n times (n € N) on [a,b]NT. Suppose also that
a+b
2
If the function f(¢) satisfies the conditions in (8) as well as the following conditions:
(12) FO)=fAb) = =" () =0  (neN),

and if the function ¢(t) satisfies the conditions in (10) as well as the following
conditions:

(13) gb)=g*B) = =g~ () =0 (neN),
then

€la,b], p=0, ¢g=1 and h(t) € Cya ([a,b],[1,00)).

b n n
[ u {isr- 19> @ + lop - |1 0]} A

=) ()]

{12 @+ 12 0 At
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The object of this paper is to show that Theorems D, E, F and G above are not
valid as asserted by Wong et al. [17, Section 2] by presenting some counterexamples
for them. We also prove several general weighted Opial-type inequalities on time
scales. Some of our results are intended to provide corrections and modifications
of the aforementioned assertions by Wong et al. [17, Section 2].

2. A SET oF COUNTEREXAMPLES

Since the derivations of Theorems E, F and G by Wong et al. [17, Section 2]
are all based essentially upon Theorem D, it would suffice our purpose to give a
counterexample for Theorem D only. Indeed, if (in Theorem D) we set

T=R,p=q=1,a=0,b=r (r>0), f(¢)=t and h(t)=1t+1,

then the left-hand side of the inequality (7) becomes

3 2

(15) /(t+1)tdt:r——|—r— (r>0),
0 32
whereas the right-hand side of the inequality (7) assumes the following form:
1 " 3 r?
16 - Ddt = — + — .
(16) 2r/0(t—|— Jit="o+ T (r>0)

Upon substituting from (15) and (16) into (7), we readily arrive at a contradiction
in the inequality (7) for all » > 0. Thus, obviously, Theorem D (and hence also
Theorems E, F and G) do not hold true as asserted by Wong et al. [17, Section 2].

We remark in passing that a special case of Theorem E when n = 1, a special
case of Theorem F when f(t) = g(t), and a special case of Theorem G when

n=1 and f(t)=g(t),

all correspond to the erroneous inequality (7) asserted by Theorem D.

3. DEeFINITIONS, NOTATIONS AND PRELIMINARIES IN TIME SCALES THEORY AND
DELTA DIFFERENTIABILITY

In this section, we present some definitions, notations and preliminaries
concerning the Time Scales Theory and the concept of Delta Differentiability. These
concepts, together with the notion of rd-continuity, were used in Section 1 above.
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Definition 1. A time scale T is a nonempty closed subset of R, the two most
popular examples being

T=R and T=7:={0,%1,£2,---}.

The forward jump operator o : T — T and the backward jump operator p : T — T
are defined by

o(t):=inf{r|7€T and 7 >t} (teT; t<sup{T})

and
p(t):=sup{r |7€T and s <t} (teT; t>inf{T}),

respectively, each of which is being supplemented by
inf{@} = sup{T} and sup{@} = inf{T}.

Furthermore, a point ¢ € T is called right-scattered, right-dense, left-scattered or
left-dense if
o(t)y>t, o(t)=t, p(t)<t or p(t)=t,

respectively.

Definition 2. Let the time scale T have a right-scattered minimum m. Then we
define the set T* by

{ T\ {m} (m  exists)
TF .=

T (m does not exist).

(7)
On the other hand, if the time scale T has a left-scattered maximum 91, then we
define the set T" by

T\ {"M} (O exists)
T :=
{ T (Mt does not exist).

(18)

Moreover, the forward graininess p : T — [0, co) is defined by

0 (T =R)

u(t) ==o(t)—t (teT) :{
1 (T=27)

and the backward graininess v : T — [0, co) is defined by
0 (T =R)

v(t):=t—p(t) (teT) = {
1 (T=17)



Some Weighted Opial-Type Inequalities on Time Scales 113

Definition 3. A mapping f : T — R is said to be regressive if

L+u@®ft) #0  (teT),

Furthermore, if § : T — R, then the mapping {7 : T — R is defined by
f7(t) =f(o(t)) (teT),

where o(t) is given in Definition 1 above.

Definition 4. A mapping f : T — R is said to be rd-continuous if it satisfies
each of the following conditions:
(i) f is continuous at every right-dense point or maximal point of T;
(if) The left-sided limit:
lim f(7) = §(i—)

T—t—

exists at every left-dense point of T.

Just as in Equation (6) above, the space of all rd-continuous functions from
T — R is denoted as follows:

Cra (T,R):={f|f: T— R and f(t) is an rd-continuous function} .

Definition 5. Assume that f : T — R. Then we define §2(¢) to be the number
(if it exists) with the property that, for any given ¢ > 0, there is a neighborhood N
of ¢ such that

[§(o(8)) = () = 12O [o(t) = 7][ S elo(t) = 7| (T €N).

In this case, we say that f*(¢) is the delta derivative of f(¢) at the point ¢t € T*.
If f is delta differentiable for every ¢t € T, then § is delta differentiable on T and
§2(t) is a new function defined on T*.
If § is delta differentiable at ¢ € T*, then it is easily seen that
o f) = ()
1 —_— t)=0
T—>t1(r’];1€'ﬂ') t—T (M( ) )
fo(t) —§(®)
p(t)

Several useful delta derivative formulas are recorded here under Lemma 1 below.

(19) A () =
(n(t) > 0).

Lemma 1. The above-defined delta derivatives satisfy each of the following
properties:

(20) Flo(t) = F(8) + p(t) f2(0),
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(21) (F(D9(D))™ = fA19(t) + f(a(t) g™ (1)
and

FONS A9 — F(Dg (1)
(22) <g<t>> OO

Lemma?2 below isan easy consequence of the property (20) asserted by Lemmal.

Lemma 2. If f: T — R is rd-continuous at ¢ € T and ¢ is right-scattered,
then

_ fle®) - f®)
(23) O T et

Definition 6. A function § : T — R is said to be an antiderivativeof f : T — R
if
ORI (teT").
In this case, we define the integral of f by

(24) / AT = 3(0) - 3(s) (5,6 €T)

and we say that { is integrable on T.

The results asserted by Lemma 3 below are rather immediate consequences of
(21) and (24).

Lemma 3. Each of the following integral formulas holds true:

(25) (/ tf(ﬂm)A - )

and

o) [ 1mgrmar =m0 - [ FAmglew)ar

for any constant a € T.

2. THE MAIN OPIAL-TYPE INEQUALITIES ON TIME SCALES

We begin this section by proving our first Opial-type inequality on time scales.
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Theorem 1. Let f : [a,b]NT — R be defined as in Theorem D. Also let
pz0 and ¢=1,

and suppose that h(t) is a right-continuous, positive and non-increasing function
on [a, 7] N'T. Then the Opial-type inequality (7) holds true.

Proof. Suppose that the function g(¢) is given by

t q
a(t) = [ )77 20" s (t € [a,7]NT),

so that
(27) g@)=0 and  g2(t) = [a(t)]7 | fA8)]"

In the case when ¢ > 1, by using Holder’s inequality with indices

q
q and 1

we have

Lmngfu%mAs
— [ ) T |1 6)] As

a

S[£t0M$T7ﬁ)ﬁTA%%%[thM$FﬁWﬁ¥QDqA%E
Sﬂwmvﬁf%([rAngwwﬁ
= [h(0)] 7 (t - )T (9],

which readily yields

28) ()77 £ £ (- a) T [g(o)]F

In the case when ¢ = 1, we find that

Lmnifu%mAs

1

= [ I |15 o) As

< )7 [ 50| as

a
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which shows that the inequality (28) holds true also when ¢ = 1. Thus, by means
of (27) and (28), we observe that

JNCIRCIISCION
= [ @ 1O b (720 A

< / (- )" ) P (A

=a

[IA

(=0 T (L) ol

p+q
since (by definition) g(a) = 0 as given by (27).
On the other hand, from Holder’s inequality with indices
Ptq and k|
p q

)

we obtain

g(r) = [ oI [P

([ 'At)ﬁ [ (went o) Y &
< (-7 ([ no |20 o) i

Therefore, we finally have
JNCIRCIISCION
< (L) -ar [nlroP

P+q

which evidently completes the proof of Theorem 1.

Theorem 2. Let the function f : [a,b] N T — R be delta differentiable with
f(b) = 0. Also let
p=0 and qg=1,
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and suppose that h(t) is a right-continuous, positive and non-increasing function
on [7,b]N'T. Then

b
JRCICITSOIRN
b
(29) < <L> (b—T1)P / h(t) [FA @) A,

Proof. We consider a function g(¢) given by

b q
9(6) = [ 1)) |£20)|" A (telnBnT),
t
so that
(30) g)=0 and  g2(t) = ~[a()]7 | A0
In the case when ¢ > 1, by using Holder’s inequality with indices
q and q_—l,

we get
b
(1) < / 172(s)| As
b

— [T b)) As

t

which implies the following inequality:

plg—1) P
q

(31) ) [FOF < (b= 7 [g(t)]
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In the case when ¢ = 1, we have

b
£ (1) S/t 172 (5)| As
b

1

_ / ()] "7 [(s)]) 7T [ £2(5)| As

which shows that the inequality (31) holds true also when ¢ = 1. Thus, by (30)
and (31), we find that

b b p q
/ RO £ | £ 0)]" At = / )7 P )77 | 72 )| At
b p(g—1) 2
< [0-0" ol [~ 0) A

b-n" | NGOG

t=T1

-0 (L) (- )
R e

[IA

[IA

[IA

p+q
since (by definition) g(b) = 0 as given by (30).
On the other hand, in view of Holder’s inequality with indices

P+q and P+q

we have
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Therefore, we finally obtain
b
JRCICITSCIEN
9 _ b A |PTa
< (L)oo a0 120 a

which is precisely the inequality (29) asserted by Theorem 2.
Theorem 3. Let the function f : [a,b] N T — R be delta differentiable with

fla) = f(b) =0.

Also let
p =0, q=1 and 7 €[a,b]NT.

Furthermore, suppose that the function h(t) is positive and non-increasing on
[a, 7] N'T and non-increasing on [7,b] N T. Then

b
JRCICITECIEY
< (L) (r—a)’ / h(t) [FA ) AL

P+q

(32) + (L) (b— 1) / bh(t) A At

P+q T

Proof. By Theorem 1 and 2, we get
/ ") £ |72 (0] At = JRCITOISCIR
-/ ") £ |72 (0] At
< (L) -ar [P ar
4 <L> (b—7)P / "h) 1A O A,

P+q

which obviously completes the proof of Theorem 3.

By setting
a+b
2

T =
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in Theorem 3, we arrive at an interesting special case as given below.

Corollary. The following weighted Opial-type inequality holds true on time
scales:

b
JRCICRTSCIEY

(33) < (1%(1) (b;“>p/abh(t) A [ At

Theorems 4, 5 and 6 below can be proven by employing the same methods as
those used in the proofs of Theorems E, F and G, respectively (see, for details,

[17]).

Theorem 4. Let the function f be defined as in Theorem E. Also let p, ¢ and
the function h(t) be defined as in Theorem 1. Then the inequality (9) holds true.

Theorem 5. Let the functions f and g be defined as in Theorem F. Also let p,
g and the function h(t) be defined as in Theorem 1. Then the inequality (11) holds
true.

Theorem 6. Let the functions f and ¢ be defined as in Theorem G. Also let p,
g and the function h(t) be defined as in Theorem 1. Then the inequality (14) holds
true.
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