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INTEGRAL PRODUCTS, BOCHNER-MARTINELLI
TRANSFORMS AND APPLICATIONS

Chia-Chi Tung

Abstract. A generalized Bochner-Martinelli formula for the push-forward of
a Lipschitz function over a weak Stokes domain is proved. By means of inte-
gral products, the ∂̄-Euler and the ∂̄-Neumann vector fields, local and global
characterizations of the holomorphicity of functions on a Riemann domain are
given. As further applications characterizations of isogeneity and Liouville
properties for the push-forward of semi-harmonic functions on an analytic
covering space are obtained.

1. INTRODUCTION

This paper is a sequel to [19], in which semi-harmonic functions on a com-
plex space are introduced and characterizations of semi-harmonicity are given, on a
Riemann domain, in terms of the local properties of the function such as the solid,
spherical, as well as the near, resp. weak, harmonicity.

On a semi-Riemann domain the connection between semi-harmonicity and holo-
morphicity of functions seems to lie in the ∂̄-Euler vector fields (see [19], §2).
Alternatively, one may consider the Dirichlet product of functions, which offers
a natural link, in a sense, between the Cauchy-Riemann and the Laplace opera-
tors. Consequently, on a normal semi-Riemann domain local characterizations of
the holomorphicity of functions are obtained in terms of the ∂̄-Euler vector fields
(Corollary 5.1) as well as isogeneity (Theorem 3.1 and Corollary 3.1) and weak-
harmonicity (Corollary 3.2). Also, by means of the Dirichlet product conditions
for a complex-valued function to be isogenic to a semi-harmonic function are given
(Proposition 3.3).
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To consider global characterizations of holomorphicity, a generalized Bochner-
Martinelli representation, in the form of a push-forward formula, needs to be proved:
(Theorem 4.1) Let X be a complex space of dimension m > 0 and f : X → Cm

a holomorphic map. Let G ⊂ X be a weak Stokes domain with dG �= ∅, and
φ ∈ Cλ(G). (1) Assume that : (i) w ∈ Cm\f(Spt∂G(φ)), and (ii) G ∩ f−1(w)
is discrete. Then ∀ξ ∈ G ∩ f−1(w),

(1.1) 〈〈φ〉〉
f,G

(w) = B+
∂G

(ξ) −
∫
G

∂̄φ ∧Kξ.

(2) For every ξ ∈ X\ ̂̄G,

B−
∂G

(ξ) =
∫
G

∂̄φ ∧Kξ.

Here B+
∂G

(ξ), resp. B−
∂G

(ξ), denotes the interior, resp. exterior, Bochner-
Martinelli transform of φ (relative to G). On a Riemann domain an alternative
form of the representation (1.1) is given in (5.11). The formula (1.1) implies that
the push-forward of a locally Lipschitz function with a vanishing ∂̄-Euler deriva-
tive admits a universal Bochner-Martinelli representation ((4.15)). By means of the
Euler product and the ∂̄-Neumann vector field, global characterizations of holomor-
phicity are given in Proposition 3.1, resp. Theorems 5.1 and 5.3. The latter gives a
generalization of the Aronov-Kytmanov theorem ([3], Theorem 1) in the following
form: Let p : X → Cm be a normal Riemann domain. Assume that G ⊆ X

is a weak Stokes domain with dG �= ∅, and φ ∈ Hw(G) ∩ C1,1(G). Then the
push-forward of φ admits the Bochner-Martinelli representation

p∗〈〈φ〉〉p,G(ξ) = B+
∂G

(ξ), ∀ξ ∈ G\∂̂G,
iff φ ∈ O(G). Finally, Liouville properties for the push-forward of semi-harmonic
functions on an analytic covering space are proved.

2. PRELIMINARIES

In what follows every complex space is assumed to be reduced and has a count-
able topology. The notations and terminology of [19] shall be used throughout this
paper. Some of these are recalled here for the convenience of the reader. Let ‖z‖
denote the Euclidean norm of z = (z1, · · · , zm) ∈ C

m, where zj = xj + i yj. The
space Cm shall be oriented so that the form υm := (ddc‖z‖2)m is positive. Let
X be a complex space of dimension m > 0 and p : X → Cm a holomorphic
map. Set a′ := p(a), p[a] := p− a′, ∀a ∈ X. Clearly the form
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(2.1) υp := ddc‖p[a]‖2 = (
i

2π
)∂∂̄ ‖p[a]‖2

is non-negative and independent of a. Let zj := (p[a])∗zj , j = 1, · · · , m, dz :
= dz1 ∧ · · · ∧ dzm, and dz̄[j] := dz̄1 ∧ · · · ∧ dz̄j−1 ∧ dz̄j+1 ∧ · · · ∧ dz̄m. The
Bochner-Martinelli form on X ×X is defined by

(2.2) K(z, a) := (−1)
m(m−1)

2
(m− 1)!
(2πi)m

m∑
j=1

(−1)j−1(
z̄j

‖p(z)− p(a)‖2m
) dz̄[j] ∧ dz,

where z �∈ p−1(a′). The form Ka = K( , a) can be written more compactly as

(2.3) Ka =
1

2πi
1

‖p[a]‖2m
∂‖p[a]‖2 ∧ υm−1

p .

The real part of Ka,

(2.4) σa :=
1
2
(Ka + Ka),

is d-closed:

(2.5) d σa = (ddc log ‖p[a]‖2)m = 0.

Define the Newtonian functions

(2.6) ga(z) :=



− 1

2πi
log

1
‖z′ − a′‖2

, if m = 1,

−(m− 2)!
(2πi)m

1
‖z′ − a′‖2m−2

, if m > 1,

where z ∈ X\p−1(a′). The Bochner-Martinelli form admits a useful alternative
representation in terms of the Newtonian functions:

(2.7) Ka = (−1)
m(m−1)

2

m∑
k=1

(−1)k−1 ∂ga

∂pk
dp ∧ dp̄[k].

If f : X → Y is a holomorphic map between complex spaces X, Y, and f is
light at a point z ∈ f−1(y), denote by νy

f (z) the multiplicity of f at z ([17], p.
22); set νy

f (z′) = 0, if z′ �∈ f−1(y). Let φ : X → CN be a continuous map. A
notion central to value distribution theory is the push-forward (or fiber integration)
of φ with respect to the restriction f
D. This is defined, in the case f
D has
discrete fiber over y ∈ Y, by

〈〈φ〉〉
f,D

(y) :=
∑
ξ∈D

νy
f (ξ) φ(ξ),
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provided the sum on the right-side exists (see Stoll [17]; for a topological treatment
see Radò and Reichelderfer [14] and Martio, Rickman and Väisälä [13]). Here
〈〈φ〉〉

f,D
(y) := 0, if D ∩ f−1(y) = ∅, and D is omitted if D = X .

A complex space X together with a holomorphic map p : X → Ω, where
Ω is a domain in Cm, is called a semi-Riemann domain iff there exists a thin
analytic subset Σ of Ω such that the inverse image Σp := p−1(Σ) is thin in X
and the restriction p : X 0 := X \Σp → Ω0 : = Ω \Σ has discrete fibers. If
Σ = ∅, then (X, p) is a Riemann domain ([5], p. 19, or [8], p.135; also [7], p.
116, where X is assumed a normal space). If p : X → Ω is in addition a local
homeomorphism, then (X, p) is said to be unramified. Every proper holomorphic
map of a pure m-dimensional complex space into a domain Ω ⊆ C

m of strict rank
m is a semi-Riemann domain ([2], p. 117).

A holomorphic map π : X → Y between complex spaces is called a (finite)
analytic covering of Y iff π is a finite mapping (i.e., closed with finite fibers) and
there exists a thin analytic subset E of Y with the following properties: (i) Eπ :=
π−1(E) is thin in X ; (ii) every point y ∈ Y \E has an open neighborhood V

such that π−1(V ) is a union of disjoint open subsets Uj for which the restrictions
π

Uj
:= π : Uj → V are homeomorphisms. An analytic covering π : X → Y is

necessarily a proper mapping. If Y \E is connected, then #π−1(y) = const. =
s, ∀y ∈ Y \E, and #π−1(y) < s, ∀y ∈ E. In this case the integer s is called the
sheet number of π.

Unless otherwise mentioned, let (X, p) be a semi-Riemann domain (over Ω) of
dimension m > 0. For an open subset D ⊆ X and each a ∈ D0 := D∩X0, there
exists an open neighborhood N with closure in D0 such that: i) p−1(a′)∩N = {a};
ii) for a sufficiently small ball U ′ = B[a′](ρ) in Cm, Ua := p−1(U ′) ∩ N =
p−1(U ′) ∩ N is connected and the mapping p
Ua : Ua → U ′ is an analytic
covering; iii) every branch V k, k = 1, · · · , sa, of Ua contains a; and iv)

(2.8) sa = deg (p
Ua) = νa′
p (a)

([17], Proposition 1.3). For convenience call such Ua a pseudo-ball (of radius
ρ) at a. Denote by X∗ the largest open subset of X on which p is locally
biholomorphic, and set D∗ := D ∩ X∗. Let �p = �p

U
denote the p

U
-pull-back

to an open set U ⊆ X∗ of the Laplace operator of the Euclidean metric on C
m.

3. INTEGRAL PRODUCTS AND HOLOMORPHICITY

If V is a complex vector space equipped with a semi-scalar product 〈 , 〉 :
V ×V → C, denote by |〈φ〉| :=

√〈φ, φ〉 the associated semi-norm of φ ∈ V, �K

the subspace generated by a subset K ⊆ V, and �K
⊥ its orthogonal complement.
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Let A(D) := C1(D) ∩ O(D∗) and Ac(D) := C1(D) ∩ O(D∗). If D ⊆ X

is relatively compact and φ, ψ ∈ C1(D), define the Euler product

(3.1) 〈φ, ψ〉
D

:=
1

2πi

∫
D

∂̄φ ∧ ∂ψ̄ ∧ υm−1
p .

In terms of the ∂-, respectively, ∂̄-, Euler vector field associated to φ ([19], (2.6)),
the Euler product can be written

〈φ, ψ〉
D

=
1

2m

∫
D∗

Eφ(ψ̄) υm
p .

It follows that

(3.2) 〈φ, ψ〉D = 〈ψ, φ〉D,

and

(3.3) 〈φ, φ〉
D

=
1
m

∫
D

m∑
µ=1

‖φp̄µ‖2 υm
p ≥ 0.

Furthermore, the identity (3.3) and the Cauchy-Riemann equations imply that if
φ ∈ C1(D) with |〈φ〉| = 0, then φ ∈ A(D). Thus the following is proved:

Proposition 3.1. If D ⊆ X is relatively compact, then the Euler prod-
uct (3.1) is a semi-scalar product on C 1(D) relative to which A(D) = {φ ∈
C1(D) | |〈φ〉D| = 0}.

Of importance to harmonic function theory is the Dirichlet product, which, on
a semi-Riemann domain, can be defined as follows: if η, φ : D → C are locally
Lipschitz functions ([18], §4), set

(3.4) [η, φ]D :=
∫
D

dη ∧ dcφ̄ ∧ υm−1
p ,

provided the integral exists. Alternatively the definition can be written

(3.5) [φ, η]D =
1
2
{〈φ, η〉D + 〈η̄, φ̄〉D}.

Therefore one has

(3.6) [φ, η]
D

= [η, φ]
D

= [η̄, φ̄]
D
,

provided one of the integrals exists. The Dirichlet product is an energy product in
that one can define the (kinetic) energy of a function φ ∈ C1(U) by setting

EU (φ) := [φ, φ]U .
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Denoting the real and imaginary parts of φ by u = Re (φ), v = Im (φ), one has,
by the relations (3.2)-(3.5),

(3.7) EU (φ) = EU (u) + EU (v) ≥ 0.

If U is a neighborhood of a, denote the semi-scalar product (3.4) (resp. (3.1)) with
D = Ua(r) by [φ, η]a,r (resp. 〈φ, η〉a,r), and similarly for the energy Ea,r(φ).
The identities (3.5) and (3.7) imply the following:

Proposition 3.2. If D ⊆ X is relatively compact, then the Dirichlet product
is a semi-scalar product on C 1(D) with A(D) ⊆ Ac(D)⊥; moreover, if D is
connected, then {φ ∈ C1(D) |E

D
(φ) = 0} = C.

Remark 1. There exists no finite orthonormal subset F of A(D) or Ac(D)
relative to either [ , ]

D
or 〈 , 〉

D
such that C1(D) = �F
⊥ ⊕(�F
⊥)⊥. The proof

goes as follows: Set ZV := {φ ∈ V | |〈φ〉| = 0}. Suppose L is a linear subspace
of V spanned by a finite orthonormal subset. Then standard argument and the
Schwartz inequality imply that (a) V = L ⊕ L⊥; (b) if φ = g + η ∈ L ⊕ L⊥,
then (i) |〈φ〉| = |〈g〉| ⇔ φ ∈ (L⊥)⊥, and (ii) ZV = L⊥ ∩ (L⊥)⊥. Hence if
Z

V
�= {0}, then V �= L⊥ ⊕ (L⊥)⊥.
Observe that the identity (3.6) yields, ∀φ, η ∈ C1(D),

Re [φ, η̄]U =
1

4m

∫
U

[∂∇α(u) − ∂∇β
(v)]υm

p ,

Im [φ, η̄]
U

=
1

4m

∫
U

[∂∇β
(u) + ∂∇α

(v)]υm
p ,

(3.8)

for all open sets U ⊆ D. Together with the Green’s first identity ([19], (5.9)),
the Dirichlet product thus provides a natural link, in a sense, between the Cauchy-
Riemann and the Laplace operators. Let η = (η1, · · · , ηN

) : D → CN be a
C1-mapping. Denote by �η1, · · · , ηN
⊥[D],loc

the set of all φ ∈ Cβ(D) such that
for some thin analytic subset A of D, φ ∈ C1(D∗\A), and there exists at each a ∈
D∗\A a pseudo-ball U for which [φ, η

k
]a,r = 0 for sufficiently small r > 0, ∀k =

1, · · · , N. Elements of �η̄1, · · · , η̄N
⊥[D],loc
are said to be η-isogenic (in D). The

set �η1, · · · , ηN
⊥〈D〉,loc
is similarly defined. The next Lemma is an immediate

consequence of the formulas in (3.8):

Lemma 3.1. Let η = (η1, · · · , ηN ) : D → C
N , ηk = αk +iβk, where αk, βk

are real-valued, be a C1-mapping. Then a function φ ∈ C β(D) is η-isogenic iff
the following equations hold:

(3.9) ∂∇αk
(u) = ∂∇βk

(v), ∂∇βk
(u) = −∂∇αk

(v), k = 1, · · · , N,
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locally in D∗\A, for some thin analytic subset A of D.

Remark 2. It follows from the equations in (3.9) that if φ ∈ C1(D) is η-
isogenic, then for each a ∈ D, [φ, η

k
]a,r = 0, ∀k, for sufficiently small r > 0.

Also, if φ = u+ iv and η = α+ iβ (where u, v, α, β are real-valued) are semi-
harmonic ([19], §4)) in D, then it is easily shown (using the identity (2.11) of [19])
that φ is η-isogenic iff the functions uα − vβ and uβ + vα are semi-harmonic.

Given a function φ = u + iv ∈ C1(D), one may also consider the complex
energy

E
c
U
(φ) := [φ, φ̄]U ,

for each open subset U ⊆ D. It is easily shown that, if ψ ∈ C1(D), then

(3.10) [φ, ψ̄]U =
1
2
{E

c
U
(φ+ ψ)− E

c
U
(φ) − E

c
U
(ψ)}.

Also, by the relations in (3.8), one has

(3.11) E
c
U
(φ) = EU (u)− EU (v) + 2 i [u, v]U .

If a ∈ U, set
E

c
a,r(φ) := E

c
U[a](r)

(φ), ∀r > 0,

(omitting the superscript ”c” if φ is real-valued). The function φ is said to be
self-isogenic at a ∈ D iff E

c
a,r(φ) = 0 for sufficiently small r > 0. If a ∈ D∗,

this means that u and v have equal maximal rate of growth at a and the level
surfaces {u = c1} and {v = c2} through the point a are orthogonal at a (by the
condition (3.9)).

If φ and η ∈ C1(D) are self-isogenic, then by the identity (3.10), φ is η-
isogenic iff φ − η is self-isogenic. The Cauchy-Riemann equations imply that if
φ ∈ O(D∗) ∪ O(D∗), then φ is self-isogenic in D. The converse statement is
valid only for the case m = 1, as is shown by the next example:

Example 3.1. On a semi-Riemann domain (X, p) of dimension m > 1, let
φ ∈ O(D∗) such that φpj

�= 0 and φp
k

= 0 for some j, k with j �= k. Let
ψ := p̄k. Then φ is ψ -isogenic, hence the function Ψ := φ − ψ is self-isogenic,
but Ψ is neither holomorphic nor anti-holomorphic.

Denote by dD the (maximal) boundary manifold of R(D) in R(X), the
manifold of simple points of X, oriented to the exterior of R(D) ([18], p. 218), and
dσdD the induced (Lebesgue) surface measure on dD ([19], §4). If φ ∈ C0(D),
denote by Zero(φ) the zero set of φ. The above example leads to the natural
question as to when a function is isogenic to a semi-harmonic function. An answer
is given by the following



1590 Chia-Chi Tung

Proposition 3.3. Let (X, p) be a Riemann domain. Assume that φ = u+iv ∈
Cλ(D) and η = α + iβ ∈ C1,1(D). Then: (a) if η is semi-harmonic, then φ is
isogenic to η iff there exists a thin analytic subset A of D such that, locally at
each a ∈ D∗\A, there is a neighborhood basis {U} consisting of weak Stokes
domains ([19], §4 ) U � D∗\A, for which the equations∫

dU

(u (∂να) − v (∂νβ))) dσ
dU

= 0,

∫
dU

(u (∂νβ) + v (∂να))) dσ
dU

= 0.
(3.12)

hold; (b) if φ has thin zero set and η is isogenic to φ, then η is semi-harmonic
in D iff (φ, η) satisfies the equations in (3.12) for some neighborhood basis {U}
as above at each point of D ∗\A.

Proof. The function η being semi-harmonic in D, coincides off a thin analytic
subset with a C∞-function ([19], Theorem 4.2 and Corollary 4.1). Hence by
Corollary 4.1, the identities (5.9), (5.7) and Proposition 5.1 of [19], the relation

(3.13) [φ, η̄]U = (−1)
m(m−1)

2
1

2‖S‖
∫
dU

φ (∂νη) dσdU

holds for any weak Stokes domainU � D∗, whence the assertion (a) follows.
Observe that the semi-harmonicity of α and β in D∗\A∪Zero(φ) (hence also

in D) is equivalent to the conditions

u�p α − v�pβ = 0,

u�p β + v�pα = 0,

locally in D∗\A. These equations are equivalent, in turn, to the condition

(3.14)
∫
U

φ ddcη ∧ υm−1
p = 0.

This last equation (for any weak Stokes domain U � D∗) is, as above, equivalent
to the representation (3.13). It follows that η is semi-harmonic in D iff (φ, η)
satisfies the equations in (3.12).

Examples show that a function isogenic to a holomorphic map needs not be
holomorphic. This condition turns out, however, to be sufficient if either the map has
maximal strict rank ([2], p. 17) or its components are essentially one dimensional:
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Theorem 3.1. Let (X, p) be a normal semi-Riemann domain and φ ∈ C β(D).
Assume η = (η1, · · · , ηN ) : D → C

N such that each ηj ∈ O(D) (resp. ηj ∈
Ō(D)), and one of the following conditions holds: (a) η (resp. η̄ = (η̄ 1, · · · , η̄N

))
is of strict rank m in D; (b) N = m, Zη := ∪m

k=1Zero((ηk)pk
) (resp. Zη̄) is thin

in D, and with ηj = αj + i βj, j = 1, · · · , m,

(3.15) ∂∇jαj(ηk
) = ∂∇jβj(ηk

) = 0, ∀j �= k,

holds in D∗\Zη (resp. D∗\Zη̄). Then φ ∈ O(D) (resp. φ ∈ Ō(D)) iff φ is
η-isogenic.

Proof. Assume that φ ∈ Cβ(D) ∩ C1(D∗\A), for some thin analytic subset
A of D. Consider at first the case where each η

k
∈ O(D). Then

(3.16) 2
m∑

j=1

∂j(ηk) ∂̄jφ = ∂∇η
k
(φ), k = 1, · · · , N,

in D∗\A (by the identities (2.7)-(2.8) of [19]). According to Remmert [15], Satz
16, the set B(m), consisting of all simple points z ∈ D where the Jacobian
matrix Jη = ∂(η1,··· ,ηN )

∂(p1,··· ,pm)
has rank less than m, has an analytic closure in D. If the

restriction η
D has strict rank m, then the set D ∗\B(m) is dense in D∗. Thus
the matrix Jη is row-reducible to an echelon form of rank m almost everywhere
in D∗. It follows from this, Lemma 3.1 and the Cauchy-Riemann equations that φ
is η-isogenic iff φ is holomorphic in D∗ (off a thin analytic subset of D), and by
the Riemann’s extension theorem, the latter is equivalent to φ being holomorphic
in D. The case where the ηj ’s are anti-holomorphic and η̄
D has strict rank m
can be similarly proved.

Assume now that η is holomorphic. Let a ∈ D∗\Zη. Locally the vector fields
∇jα

j, ∇jβ
j , j = 1, · · · , m, form an orthogonal set in the inner product space

Tz(D∗) (for z near a). Hence the vector fields ∇jα
k and ∇jβ

k are expressible
in D∗\Zη in terms of linear combinations of the ∇µα

µ, ∇µβ
µ, 1 ≤ µ ≤ m.

Under the hypothesis (3.15) one has, ∀j �= k,

∇jα
k = ck∇kα

k + dk∇kβ
k,

and similarly for ∇jβ
k. Thus ∇jα

k and ∇jβ
k belong to the span of ∂

∂x̃j
, ∂

∂ỹj
,

and that of ∂
∂x̃k

, ∂
∂ỹk

, in D∗\Zη; consequently ∇jα
k = ∇jβ

k = 0 in D∗\Zη.

Therefore by the equation (3.16),

2 (η
k
)pk

∂̄kφ = ∂∇η
k
(φ), k = 1, · · · , m,
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in D∗\(Zη ∪ A). These relations imply, as in the preceding, that φ is η-isogenic
iff φ is holomorphic in D. The remaining case where each ηj is anti-holomorphic
can be similarly proved.

Remark 3. The above proof shows that, if η is holomorphic with Zη thin in
D, the condition (3.15) is equivalent to the following: ∂η

k
∂pj

= 0 in D∗\Zη, ∀j �=
k; in particiular, the map η
D is of strict rank m.

Corollary 3.1. Let (X, p) be a normal semi-Riemann domain and η =
(η1, · · · , ηN ) : D → C

N a holomorphic map satisfying the same conditions as in
Theorem 3.1. Then:

(a) O(D) = {φ ∈ C1(D∗\A)∩Cβ(D) |Ec
a,r(φ+ηk) = E

c
a,r(φ), loc. in D∗\A, 1 ≤

k ≤ N}, for any thin analytic subset A of D.
(b) O(D) = {φ ∈ C1(D∗\A) ∩ Cβ(D) |Ea,r(φ + η̄

k
) = Ea,r(φ + i η̄

k
) =

Ea,r(φ) + Ea,r(η̄k
), loc. in D∗\A, 1 ≤ k ≤ N}, for any thin analytic

subset A of D.
(c) O(D) = �η̄1, · · · , η̄N
⊥〈D〉,loc

.

Proof. Since any two holomorphic functions are mutually isogenic, the first
assertion is an immediate consequence of the identity (3.10) and Theorem 3.1. To
prove the second assertion, observe that the identities (3.10) and (3.7) imply that,
for any thin analytic subset A of D, the equations in (3.9) (for the real and
imaginary parts of φ) are equivalent to the conditions on the pairs (φ, η

k
) given in

(b). Therefore the desired conclusion follows from Lemma 3.1 and Theorem 3.1.
The assertion (c) follows from Theorem 3.1 and the identity (for a holomorphic map
η) �η̄1, · · · , η̄N
⊥〈D〉,loc

= �η̄1 , · · · , η̄N
⊥[D],loc
.

Corollary 3.2. Let (X, p) be a normal semi-Riemann domain and η =
(η1, · · · , ηN ) : D → C

N a holomorphic map satisfying the same conditions as in
Theorem 3.1. Then:

(a) O(D) = {φ ∈ C2(D∗\A)∩Cβ(D) | �p (η
k
φ) = η

k
�p (φ), loc. in D∗\A, 1 ≤

k ≤ N}, for any thin analytic subset A of D.
(b) O(D) = {φ ∈ Hw(D0) ∩Cβ(D) | ηkφ ∈ Hw(D0), 1 ≤ k ≤ N}.

Proof. By the identity (2.11) of [19], if φ ∈ C2(D∗\A), then

∂∇η
k
(φ) =

1
2

[�pU
(η

k
φ) − η

k
�pU

(φ)], 1 ≤ k ≤ N,

in D∗\A. Hence the assertion (a) is an immediate consequence of Theorem 3.1.
By Theorem 4.2, ibid., every weak solution in D0 of the semi-Laplace equation



Bochner-Martinelli Transforms 1593

((4.2), ibid.) is semi-harmonic. Therefore the assertion (b) is a consequence of the
assertion (a).

4. BOCHNER-MARTINELLI TRANSFORMS

If D is compact, a ∈ D0, and φ ∈ C0(D[a][r0]), define the solid, resp.
spherical, mean-value function of φ (with resp. to p [a]) by

(4.1) 〈φ
D〉a,r : =
1
r2m

∫
D[a](r)

φ υm
p , ∀r ∈ (0, r0),

(4.2) [φ
D]a,r : =
∫

dD[a](r)

φσa, ∀r ∈ (0, r0).

If S ⊆ X, set ∂̂S := p−1(p(∂S)). Let φ ∈ C0(∂D). If ∂D is compact, define,
∀ξ ∈ X\∂̂D, the Bochner-Martinelli average of φ on dD (relative to p[ξ]) by

[[φ]]
∂D

(ξ) : =
∫
dD

φ(ζ)Kξ(ζ).

The function
B+

∂D
(ξ) := [[φ]]

∂D
(ξ), ∀ξ ∈ D\∂̂D,

respectively,
B−

∂D
(ξ) := [[φ]]

∂D
(ξ), ∀ξ ∈ X\(D ∪ ∂̂D),

is called the interior, respectively, exterior, Bochner-Martinelli transform of φ.
By replacing D with U[a](r), a ∈ D, the functions [[φ
U ]]a,r(ξ), B+

a,r(ξ) and
B−

a,r(ξ) are similarly defined (for sufficiently small r > 0).

Lemma 4.1. Let φ ∈ C0(D). For each pseudo-ball U ⊆ D at a ∈ D 0 of
radius ra,

(4.3) [[φ
U ]]a,r(a) =
∫

dU[a](r)

φKa = [φ
U ]a,r, ∀r ∈ (0, ra).

Proof. Let a ∈ D0. Using the notations as in the proof of Lemma 3.1 and
Theorem 4.2 of [19], the Stokes’ theorem implies that, ∀r ∈ (0, ra),∫

S[a′](r)
φ̂j,ε d ‖z‖2 ∧ υm−1 =

∫
S[a′ ](r)

d (φ̂j,ε ‖z‖2 υm−1) − dφ̂j,ε ∧ ‖z‖2υm−1

= −r2
∫

S[a′](r)
dφ̂j,ε ∧ υm−1 = 0,
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where z = z′ − a′. Since the functions φ̃j,ε converge to φ̃j uniformly on the
closure of B[a′](r), it follows that

∫
dU[a](r)

φ d ‖p[a]‖2 ∧ υm−1
p =

s∑
j=1

∫
S[a′ ](r)

φ̂j d ‖z‖2 ∧ υm−1 = 0.

Hence ∫
dU[a](r)

φ ∧ ∂ ‖p[a]‖2 ∧ υm−1
p =

∫
dU[a](r)

φ ∧ (−∂̄ ‖p[a]‖2) ∧ υm−1
p .

Therefore from this and the identities (2.3)-(2.5) the formula (4.3) follows.

Remark 4. The identities (4.3) and (2.4) imply that (for φ, a and U as
above)

(4.4)
∫

dU[a](r)

φ Im(Ka) = 0, ∀r ∈ (0, ra).

Hence for every weak Stokes domain D ⊆ X0, a ∈ D, and w = p(a), the Stokes
Theorem and Proposition 3.1 of [19] yield a refinement of the assertion (3.1) of
Martinelli [12]:

(4.5)
∫
dD

Im(Ka) = 0;
∫
dD

σa =
∑

{νw
p (aj) | aj ∈ D}.

On account of Theorem 4.1 and Remark 1 to Theorem 4.2 of [19], the formula
(4.3) yields another characterization of semi-harmonicity:

Corollary 4.1. A locally integrable function φ in D is semi-harmonic iff
φ ∈ C0(D∗) and has the Bochner-Martinelli mean-value property at each a ∈ D ∗:
there exists a pseudo-ball U at a of radius r a such that

(4.6) [[φ
U ]]a,r(a) = νp(a) φ(a), ∀r ∈ (0, ra).

Let a ∈ X. A solution φ ∈ C1(D) of the equation

∂̄φ ∧ Ka = 0

can also be regarded as a solution to a ∂̄-Euler equation, for, it follows from the
identity (2.7) that

(4.7) Ēga
(φ) dp ∧ dp̄ = (−1)

m(m+1)
2 ∂̄φ ∧Ka
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locally in D∗\p−1(a′). Alternatively, let Ēp,a denote the ∂̄-Euler vector field
associated to ‖p[a]‖ ([19], (5.2)). Then

Ēp,a(φ) υm
p[a] =

−m
2πi

∑
z̄j (

∂φ

∂ z̄j
) d zj ∧ d z̄j ∧ υm−1

p[a]

=
m

2πi
∂̄φ ∧ ∂ ‖p[a]‖2 ∧ υm−1

p[a]

locally in D∗. Hence the identity (2.3) yields the relation

(4.8) Ēp,a(φ) υm
p[a] = m ‖p[a]‖2m ∂̄φ ∧Ka

locally in D∗\p−1(a′).

Proposition 4.1. Let φ ∈ C1(D) and ξ ∈ D∗. (1) If Ēp,ξ(φ) = 0 locally
in D∗, then B−

∂G
(ξ) = 0 for any open set G � D\p−1(ξ′). (2) If at every

z ∈ D∗\p−1(ξ′) there is a pseudo-ball B = B [z](r0) with B ⊆ D\p−1(ξ′) such
that B−

z,r(ξ) = 0, 0 < r < r0, then Ēp,ξ(φ) = 0 locally in D∗.

Proof. The assertion (1) follows from the relations (4.8), (2.3)-(2.4) and the
Stokes theorem. To prove the assertion (2), note that, ∀ξ ∈ X, the Bochner-
Martinelli form can be written

(4.9) Kξ(z) = const.
m∑

j=1

(−1)j−1 1
‖z′ − ξ′‖2m−1

z̄j

‖z′ − ξ′‖ dz̄[j] ∧ dz.

Hence it follows from [18], Proposition 6.2.8-(1), that, ∀ψ ∈ A1,µ∩β(D), the
form ψ ∧ Kξ is locally integrable on D. Let ξ ∈ D∗, z ∈ D∗\p−1(ξ′), and
B = B[z](r0) be a pseudo-ball at z with closure contained in D\p−1(ξ′) such
that B−

z,r(ξ) = 0, ∀r ∈ (0, r0). Then it follows as above from (4.8) that∫
B[z](r)

1
m ‖p[ξ]‖2m

Ēp,ξ(φ) υm
p[ξ] =

∫
B[z](r)

∂̄φ ∧Kξ = 0, ∀r ∈ (0, r0).

By splitting the function Ēp,ξ(φ) into real and imaginary parts, this relation implies
that Ēp,ξ(φ)(z) = 0. Consequently Ēp,ξ(φ) ≡ 0 (locally) in D∗\p−1(ξ′), hence
also in D∗.

A function may satisfy a specific ∂̄-Euler equation Ēp,a(φ) = 0 without being
holomorphic; in fact, it can even be differentialble at a to a high order and real-
analytic elsewhere. An example (Rudin [16], p. 63) is given below. It will be
shown, however, that a function φ ∈ Cλ(D) satisfying the equation Ēp,a(φ) = 0
is nearly harmonic at a, if a ∈ D∗ (Proposition 4.2).
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Example 4.1. Let s = const. ≥ 2. Define φ : C2 → C by

φ(z) =



z̄1z2

2+s 1
‖z‖2 , if z �= 0;

0, if z = 0.

Then: i) φ ∈ Cs(C2); ii) Ēp,0(φ) = 0; iii) φ is real analytic in C2\{0}; iv) for
each fixed z2 = c, the function φ(z1, c) is bounded and non-constant, hence not
harmonic in z1, and therefore φ /∈ O(C2).

Observe that if φ ∈ Cλ(D) and U is a neighborhood of a ∈ D0 such that
U[a](r0) � D, then the Stokes’ theorem ([18], (7.1.3)) and the identity (2.5) imply
that

(4.10) [φ
U ]a,r − [φ
U ]a,s =
∫

U[a][s,r)

dφ ∧ σa,

for 0 < s < r < r0, where U[a][s, r) := U[a](r)\U[a](s).
The push-forward of a locally Lipschitz function with a vanishing ∂̄-Euler

derivative admits, as will be shown, a universal Bochner-Martinelli representation.
The underlying principle is a fundamental relation which, being likely of some
independent interest, is given below in a general form (using the same notations as
in the case of a projection mapping p).

Theorem 4.1. Let X be a complex space of dimension m > 0 and f : X →
Cm a holomorphic map. Let G ⊂ X be a weak Stokes domain with dG �= ∅,
and φ ∈ Cλ(G). (1) Assume that: (i) w ∈ C

m\f(Spt∂G(φ)) ([18], §4.2), and (ii)
G ∩ f−1(w) is discrete. Then ∀ξ ∈ G ∩ f−1(w),

(4.11) 〈〈φ〉〉
f,G

(w) = B+
∂G

(ξ) −
∫
G

∂̄φ ∧Kξ.

(2) For every ξ ∈ X\ ̂̄G,

(4.12) B−
∂G

(ξ) =
∫
G

∂̄φ ∧Kξ.

Proof. Assume that G ∩ f−1(w) = {a1, · · · , as} �= ∅. Choose at each aj a
pseudo-ball Uj,r := Uaj (r) � G, ∀r ∈ (0, r∗), such that the Uj’s are pairwise
disjoint. Observe that for ξ = a1 and r ∈ (0, r∗),∫

d(G\∪Uj,r)

φKξ =
∫
dG

φKξ −
s∑

j=1

[[φ
Uj,r]]aj ,r(ξ).
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Here the existence of the boundary integrals follows from [18], Lemma 7.1.8. Hence
the Stokes’ theorem and the equation (2.5) imply that

(4.13) [[φ]]
∂G

(ξ) =
s∑

j=1

[[φ
Uj,r]]aj ,r(ξ) +
∫

G\∪Uj,r

∂̄φ ∧ Kξ.

By the identity (2.8) and Proposition 3.1 of [19],

(4.14) 〈〈φ〉〉
f,G

(w) = lim
r→0

s∑
j=1

[φ
Uj,r]aj,r.

Consequently, from the relations (4.3), (4.13)-(4.14), and the local integrability of
the form ∂̄φ ∧ Kξ, the push-forward formula (4.11) follows by letting r → 0 in
(4.13). The assertion (2) is an immediate consequence of the Stokes’ theorem.

Let now p : X → Ω be a semi-Riemann domain, and set 〈〈φ〉〉p,a,r (w) :=
〈〈φ〉〉

p,U[a](r)
(w), the local push-forward of φ
U, where U is a neighborhood of a

and r > 0, if defined.

Theorem 4.2. Let Q ⊆ X be an open set. (1) Assume that φ ∈ Cλ(Q) and
w ∈ Ω0. Then the Bochner-Martinelli representation

(4.15) 〈〈φ〉〉p,G(w) = B+
∂G

(ξ)

holds for every weak Stokes domain G ⊆ Q with dG �= ∅ and ξ ∈ G∩p−1(w)\∂̂G
iff φ satisfies the equation Ēp,ξ(φ) = 0 locally in Q∗. (2) Let φ ∈ C1,1(Q) be
weakly harmonic in Q and a ∈ Q0. For any neighborhood D of a and ∀r 0 > 0
such that D[a](r0) ⊆ Q0,

(4.16) p∗〈〈φ〉〉p,a,r (a) = [φ
D]a,r = 〈φ
D〉a,r, ∀r ∈ (0, r0).

Proof. (1) Let G ⊆ Q be a weak Stokes domain with dG �= ∅ and 0 /∈
p[ξ](∂G). If Ēp,ξ(φ) = 0 (locally) in G∗, then by the identity (4.8), the form
Kξ ∧ ∂̄φ = 0 in G∗\p−1(p(ξ)). Hence the push-forward formula (4.11) yields the
representation (4.15). Conversely, assume the representation (4.15) holds for φ.
Then by the push-forward formula (4.11) and the identity (4.8), for each z ∈ Q∗
and any pseudo-ball B � Q∗\p−1(p(ξ)) at z,∫

B[z](r)

1
m ‖p[ξ]‖2m

Ēp,ξ(φ) υm
p[ξ] =

∫
B[z](r)

∂̄φ ∧Km,ξ = 0,
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for sufficiently small r > 0. Hence it follows as in Proposition 4.1 that Ēp,ξ(φ) ≡ 0
in Q∗\p−1(p(ξ)), hence also in Q∗.

(2) Assume φ ∈ C1,1(Q) is weakly harmonic in Q. Let a ∈ Q0 and D

be a neighborhood of a such that D[a](r0) � Q0. By [19], Theorem 4.2, φ is
semi-harmonic in Q, hence it follows from the formulas (5.9) and (3.7), ibid., and
the identity (3.6) that
(4.17) [φ
D]a,r = 〈φ
D〉a,r, ∀r ∈ (0, r0).

Let D[a][r0] ∩ p−1(a′) = {c1, · · · , cl}, and Dj � D[a](r0) a pseudo-ball at cj
such that the Dj’s are pairwise disjoint. It can be shown as in Theorem 4.1 that
for sufficiently small r∗ > 0 and W (r∗) := ∪l

j=1Dj(r∗),

〈〈φ〉〉p,a,r (a
′) =

∫
dD[a](r)

φσa −
∫

D[a](r)\W (r∗)

dφ ∧ σa.

Thus ∀s ∈ (0, r∗),

(4.18) 〈〈φ〉〉p,a,r (a
′) =

∫
dD[a](r)

φσa −
∫

D[a][s,r)

dφ ∧ σa +
∫

W (r∗)\D[a][s]

dφ ∧ σa.

Since

(4.19) σa =
dc ‖p[a]‖2

‖p[a]‖2m
∧ υm−1

p ,

and
dc ‖p[a]‖2 ∧ dφ ∧ υm−1

p = − d ‖p[a]‖2 ∧ dcφ ∧ υm−1
p ,

the semi-harmonicity of φ and the Stokes theorm imply that the second integral on
the right-hand side of the above relation (4.18) vanishes. Also, by [18], Proposition
6.2.8-(1), the last integral in the above relation tends to zero as r∗ → 0. Therefore
one has

(4.20) 〈〈φ〉〉p,a,r (a
′) = [φ
D]a,r, ∀r ∈ (0, r0).

Hence the formula (4.16) follows from the relations (4.17) and (4.20).

Remark 5. The proof of the assertion (1) above implies the following: If
φ ∈ Cλ(Q) and ξ ∈ Q0, then φ satisfies the equation Ēp,ξ(φ) = 0 locally in Q∗

iff for every pseudo-ball B � Q∗ (not necessarily centered at ξ) with 0 /∈ p[ξ](∂B),
the representation (4.15) holds with G = B.

Lemma 4.2. Let D ⊆ X be a weak Stokes domain with dD �= ∅, and
a ∈ D ∩ p−1(w)\∂̂D ⊆ X0. If u ∈ Cλ(D) is real-valued, then:

(4.21)
∑

{νw
p (a) u(a) | a ∈ D} =

∫
dD

u σa −
∫
D

Re (∂̄u ∧Ka).
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(4.22)
∫
dD

u Im (Ka) =
∫
D

Im (∂̄u ∧Ka),

Proof. By the push-forward formula (4.11), one has

(4.23)
∑

{νw
p (a) u(a) | a∈ D} =

∫
dD

uKa −
∫
D

∂̄u ∧Ka.

The formula (4.21), resp. (4.22), follows from this representation by equating the
real, resp. imaginary parts, of both sides.

Observe that, ∀φ ∈ Cλ(D), the equation

(4.24)
∫
D

∂̄φ ∧ Ka = 0

can be written, owing to the identity (4.22), in an equivalent form:∫
D

Re(∂̄u ∧Ka) =
∫
dD

v Im(Ka),

∫
D

Re(∂̄v ∧Ka) = −
∫
dD

u Im(Ka).
(4.25)

Proposition 4.2. Let φ ∈ C1,1(D) and a ∈ D∗. If φ satisfies the equation
Ēp,a(φ) = 0 a.e. in a neighborhood of a, then φ is nearly harmonic at a.

Proof. Let U ⊆ D be a pseudo-ball at a ∈ D∗ ∩ p−1(w), of radius r0, in
which Ēp,a(φ) = 0 a.e. Then by the relation (4.8),

(4.26)
∫

U[a][s,r)

∂̄φ ∧Ka = 0, 0 < s < r < r0.

Thus it follows from the assertion (4.4) that both integrals on the left-hand sides of
the relations (4.25) must vanish. Hence by the identity (4.22) and the relations in
(4.25), one has

(4.27)
∫

U[a][s,r)

∂φ ∧ Ka = 0.
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Therefore the relations (4.26), (4.27) and (4.10) imply that

[φ
U ]a,r − [φ
U ]a,s =
∫

U[a][s,r)

dφ ∧ σa = 0, 0 < s < r < r0,

whence
[φ
U ]a,r = const., ∀r ∈ (0, r0).

From this and Lemma 3.3 of [19], the near-harmonicity of φ at a follows.

The converse of Proposition 4.2 is false, as is shown by the harmonic function
φ : C

2 → C, φ(z) = x1 y1 + i x2 y2, where z = (z1, z2), zj = xj + iyj, xj, yj ∈
R, j = 1, 2. Clearly one has Ēp,0(φ) �≡ 0 in C2.

5. APPLICATIONS

For a domain D in C
m with piece-wise smooth boundary, it is known that the

only solutions to the problem of finding harmonic functions φ in D subject to the
∂̄-Neumann boundary condition (∂̄nφ)�dD = 0 ([10], p. 62, and [19], (5.16)) are
the holomorphic functions (see [10], Theorems 14.1, 15.1, and [9], Theorem 1). By
modifying the proofs of [10], this assertion can be generalized as follows:

Theorem 5.1. Let (X, p) be a normal semi-Riemann domain and G ⊂ X a
weak Stokes domain with dG �= ∅. (1) Assume that φ ∈ C 1,1(G) ∩ (Cλ

0 (G; R))⊥

(with respect to the Dirichlet product). If ( ∂̄nφ)�dG = 0, then φ ∈ O(G). (2)
Every weak solution φ ∈ C1,1(G) to the homogeneous ∂̄-Neumann problem

(5.1) ddc (φ υm−1
p ) = 0 in G∗, (∂̄nφ)�dG = 0,

is holomorphic in G. (3) If ∂G ⊂ X 0, then every φ ∈ O(G) ∩ C1,1(G) is a
solution to the above homogeneous ∂̄-Neumann problem.

Proof. (1) If φ ∈ C1,1(G)∩ (Cλ
0 (G; R))⊥, then φ is semi-harmonic in G by

[19], Proposition 5.2. Hence by the Stokes’ theorem, one has

〈φ, φ〉
G

=
i

2π
( ∫

dG

φ̄ ∂̄φ ∧ υm−1
p −

∫
G

φ̄ ∂∂̄φ ∧ υm−1
p

)
= Const.

∫
dG
φ̄ µ

φ
,

(5.2)

where the (m− 1, m)-form µ
φ

is given by

(5.3) µφ :=
m∑

k=1

(−1)m+k−1(
∂φ

∂p̄k
) dp

[k]
∧ dp̄.
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Thus the identity

(5.4) (∂̄nφ) dσ
U∩dG

= 21−mi−m j∗
U∩dG

µ
φ

((5.19), ibid.) and the ∂̄-Neumann condition (∂̄nφ)�dG = 0 imply that |〈φ〉
G
| = 0.

Therefore the desired conclusion follows from Proposition 3.1
(2) If φ is a weak solution to the ∂̄-Neumann problem (5.1), then by Theorem

4.2, ibid., φ is semi-harmonic in G. Hence it follows as in the preceding that
φ ∈ O(G).

(3) Observe that the relation

(5.5) µφ = im2m−1 ∗ (∂̄φ)

holds in G∗ for all φ ∈ C1(G). Assume now that φ ∈ O(G) ∩ C1,1(G) and
ξ ∈ X\∂̂G. There exists a neighborhood W of ∂G such that ξ /∈ p−1(p(W )).
Let g

ξ
, ξ /∈ ∂̂G, be the Newtonian functions given by (2.6). By the identities (5.4)

and (5.5), for each ξ /∈ ∂̂G the integral∫
dG

gξ(z) (∂̄nφ)(z) dσdG(z) =
∫
dG

gξ(z) j∗
dD

(∗ ∂̄φ)(z)

exists. Thus for such ξ the Stokes’ theorem and the ∂-closedness of the form ∗ ∂̄φ
yield ∫

dG

g
ξ
(z) (∂̄nφ)(z) dσ

dG
(z) =

∫
G

∂ g
ξ
∧ ∗ ∂̄φ.

Therefore if φ ∈ A(G), then

(5.6)
∫

dG
g

ξ
(z) (∂̄nφ)(z) dσ

dG
(z) = 0, ∀ξ /∈ ∂̂G.

To show that the function (∂̄nφ)�dG annihilates (as a distribution) all functions
f ∈ C∞

0 (dG) ∩ G∗, by using a C∞-partition of unity one needs only consider
the case where the f is supported in a branch U µ of a pseudo-ball at a point of
(dG) ∩G∗. Note that the set U µ being biholomorphic under p to an open ball in
Cm, the Keldysh-Lavrentiev Lemma ([1], 1.5, and [11], p. 347, if m = 1) asserts
that the function f can be uniformly approximated on dG by elements of the form
g

ξk
, ξk ∈ Uµ\∂̂D. Consequently in view of the equation (5.6), one concludes that

the ∂̄-Neumann condition (∂̄nφ)�dG = 0 is satisfied.

Remark 6. Let (X, p) and G be as in the assertion (2) above. Assume
that ρ ∈ A2m,0(G\S), where S is thin analytic in G, and η ∈ Cλ(∂G). If
ψ = ψ0 ∈ C1,1(G) is a weak solution to the ∂̄-Neumann problem

ddc (ψ υm−1
p ) = ρ in G∗, (∂̄nψ)�dG = η,
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then the set of all weak solutions in C 1,1(G) to the ∂̄-Neumann problem is {ψ0 +
φ | φ ∈ O(G) ∩ C1,1(G)}.

Corollary 5.1. Let (X, p) be a normal semi-Riemann domain and T a thin
analytic subset of an open set D ⊆ X with G : = D\T ⊆ X ∗. Assume that
φ ∈ Cλ(G) ∩ Cβ(D). If Ēp,ξ(φ) = 0 in G, ∀ξ ∈ G, then φ is holomorphic in
D.

Proof. For each a ∈ G choose a pseudo-ball Ba with Ba ⊆ G. It follows
from the identities (5.2) and (5.17) of [19] that

(∂̄nφ)
∂Ba =
1
ρa

Ēp,a(φ).

Since the function φ satisfies in Ba the equation Ēp,ξ(φ) = 0, ∀ξ ∈ Ba, the
push-forwatd formula (4.11) and the identity (4.8) imply that

φ(ξ) =
∫
dBa

φ(ζ)Kξ(ζ), ∀ξ ∈ Ba\∂̂Ba.

This relation implies that the function φ is semi-harmonic in Ba. Thus φ is a
solution to the homogeneous ∂̄-Neumann problem (5.1). Therefore by Theorem
5.1-(2), φ is holomorphic in Ba. It follows then from the Riemann’s extension
theorem that φ is holomorphic in D.

Theorem 5.2. (A jump formula) Let (X, p) be a Riemann domain and
G ⊂ X a weak Stokes domain with dG �= ∅. If F ∈ C 1,1(G), then the Bochner-
Martinelli transforms of φ := F
∂G, B+

∂G
(ξ) and B−

∂G
(ξ), have continuous

extensions (denoted by the same) to G\( ∂̂G∩G), resp. X. Moreovr, the function
p∗〈〈φ〉〉p,G has a continuous extension (denoted by the same) to G\( ∂̂G∩G) with

(5.7) p∗〈〈F 〉〉
p,G

(ξ) = B+
∂G

(ξ) − B−
∂G

(ξ), ∀ξ ∈ G\(∂̂G ∩G).

Proof. Choose an open covering {Uµ}l
µ=1, consisting of pseudo-balls Uµ, of

G, and a subordinated C∞-partition of unity {αµ}l
µ=1 on G. Set Fµ := αµ F ∈

C1,1
0 (Uµ). It is shown in Proposition 4.1 that the integral

T
G
(ξ) :=

∫
G

∂̄F ∧Kξ =
∑
µ,j

∫
G∩V µ,j

∂̄Fµ ∧ Kξ, ∀ξ ∈ X,

exists, where V µ,j, 1 ≤ j ≤ sa, are the branches of Uµ. Moreover, the push-
forward formula (4.11) applied to the function F yields
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〈〈F 〉〉p,G(p(ξ)) = B+
∂G

(ξ) − TG(ξ), ∀ξ ∈ G\∂̂G.
Also, if ξ ∈ X\(G ∪ ∂̂G), one has, by the formula (4.12),

B−
∂G

(ξ) = TG(ξ).

On account of the expression (4.9), the function T
G
(ξ), hence also B−

∂G
(ξ), extends

continuously to X according to [18], Proposition 6.2.8-(2). Therefore, it follows
from the continuity of the fiber sum p∗〈〈F 〉〉

p,G
on X\∂̂G (Theorem 5.1.2, ibid.)

that the function B+
∂G

(ξ) is continuous in G\∂̂G.
Let {λµ}l

µ=1 be a C∞-partition of unity on ∂G subordinated to an open
covering {Uµ}l

µ=1 by open sets of the same type as above. Set F̃µ := λµ F ∈
C

1,1
0 (Uµ). Let V µ,j, 1 ≤ j ≤ sa, be the branches of Uµ. By [1], Proposition

0.10, the function

Mµ,j(ξ) :=
∫

dG∩V µ,j

F̃µ(ζ) gξ(ζ) dp̄[k] ∧ dp, ξ ∈ G\∂̂G,

has a C1-extension to Uµ, if m > 1; the case m = 1 is similar (cf. [6], pp. 169-
174; a different proof will be given elsewhere). The Bochner-Martinelli transform
B+

∂G
(ξ) is a linear combination of derivatives of functions of the form Mµ,j(ξ),

and consequently extends continuously to a neighborhood of ∂G. It follows that
the function p∗〈〈F 〉〉p,G has a continuous extension to G\(∂̂G ∩ G), in terms of
which the jump relation (5.7) holds.

Lemma 5.1. (Cf. Aronov-Kytmanov Theorem [10], pp. 159-160) Let (X, p)
be a Riemann domain and G ⊂ X a weak Stokes domain with dG �= ∅. If
φ ∈ Hw(G) ∩C1,1(G) and the push-forward of φ admits the Bochner-Martinelli
representation

(5.8) p∗〈〈φ〉〉p,G(ξ) = B+
∂G

(ξ), ∀ξ ∈ G\∂̂G,

then (∂̄nφ)�dG = 0.

Proof. As in Theorem 5.2, if φ ∈ C1(G) the integral

T
G
(ξ) :=

∫
G

∂̄φ ∧Kξ, ξ ∈ X,

exists. Also, it follows from the identity (4.7) and the definition (5.3) that

(5.9) ∂̄φ ∧Kξ = ∂ ĝ
ξ
∧ µ

φ
,



1604 Chia-Chi Tung

locally in G∗\p−1(ξ′), where ĝ
ξ

:= (−1)
m(m−1)

2 g
ξ
. The Stokes’ theorem together

with the identities (5.4) and (5.9) imply that

(5.10)
∫
dG

(∂̄nφ)(z) ĝ
ξ
(z) dσ

dG
(z) = (−1)m 21−mim TG(ξ)

for every ξ �∈ ∂̂G. The push-forward formula (4.11) and the representation (5.8)
imply that TG(ξ) = 0 on G\∂̂G. Let {ξn} be a sequence in G\∂̂G converging to
a point ξ ∈ ∂G. Then the Bochner-Martinelli transform B+

∂G
(ξn) = p∗〈〈φ〉〉p,G(ξn).

Hence by the jump formula (5.7), the continuous extension of the exterior transform

B−
∂G

(ξ) = [[φ]]
∂G

(ξ), ξ ∈ Y := X\(G ∪ ∂̂G),

vanishes on ∂G. Also, lim‖ξ′‖→∞ B−
∂G

(ξ) = 0. Let Y0 be the union of all com-
ponent(s) Y j of Y with Y j ∩∂G �= ∅. Since the function B−

∂G
is semi-harmonic

in Y, Corollary 4.2 of [19] implies that B−
∂G

≡ 0 in Y0. For each ξ ∈ Y, the form
φKm,ξ being smooth in G, the Stokes’ theorem shows that T

G
(ξ) = 0, ∀ξ ∈ Y0.

Thus the relation (5.10) implies that, for every ξ in a neighborhood of ∂G,
φ satisfies the equation (5.6). Consequently it follows as in Theorem 5.1 that
(∂̄nφ)�dG = 0.

Remark 7. Let (X, p) be a Riemann domain and G ⊂ X a weak Stokes
domain with dG �= ∅. Assume that φ ∈ C1,1(G). Then by the identity (5.9),

∂̄φ ∧ Kξ = d (ĝ
ξ
µ

φ
) − 1

4
ĝ

ξ
(�pφ) dp̄ ∧ dp

locally in G∗\p−1(ξ′). Therefore for each w ∈ Cm\p (Spt∂G(φ)), the push-
forward formula (4.11) admits an alternative form: for all ξ ∈ G ∩ p−1(w),

(5.11) 〈〈φ〉〉
p,G

(w) =
∫
dG

(φKξ − ĝ
ξ
µ

φ
) − 1

4

∫
G

ĝ
ξ
(�pφ) dp̄ ∧ dp.

Theorem 5.3. (Cf. Aronov-Kytmanov [3], Theorem 1). Let (X, p) be
a normal Riemann domain and G ⊂ X a weak Stokes domain with dG �= ∅.
Assume that φ ∈ Hw(G) ∩ C1,1(G). Then the push-forward of φ admits the
Bochner-Martinelli representation (5.8) iff φ ∈ O(G).

Proof. If φ ∈ O(G), then the push-forward of φ admits the representation
(5.8) by the formula (4.11). Conversely, by Lemma 5.1, the Bochner-Martinelli
representation (5.8) implies that the ∂̄-Neumann derivative (∂̄nφ)�dG = 0. Hence
from part (2) of Theorem 5.1 the holomorphicity of φ in G follows.
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In the following let π : X → Cm be a (finite) analytic covering map. For
a continuous function φ : X → R, set M(φ, r) := sup

X[r]
φ. A well-known

theorem of Bôcher ([4], p. 50) characterizes real-valued harmonic functions which
are positive near an isolated singularity. It is of some interest to see to what extent
this theorem, in its generalized form given by Axler, Bourdon and Ramey ([4],
9.11), carries over to a semi-harmonic function. A step in helping towards this goal
might be the following (cf. [4], 9.10):

Theorem 5.4. (Generalized Liouville property I). Assume that: (i) φ : X → R

is semi-harmonic; (ii) there exists a0 ∈ X such that

lim inf‖π[a0](ξ)‖→∞
φ(ξ)

‖π[a0](ξ)‖ ≥ 0.

Then the push-forward 〈〈φ〉〉π is constant on Cm.

Proof. Let a ∈ X and a′ = π(a). For a given ε > 0, choose R > ‖a′‖ such
that φ(ξ) ≥ −ε ‖π[a0](ξ)‖, ∀ξ ∈ X with ‖π [a0](ξ)‖ > R− ‖a′‖. Let S[a,a0](R)
be the symmetric difference of B[a](R) and B[a0](R). The push-forward formula
(4.16) (with U = X ) implies that

|〈〈φ〉〉π,a,R(a′)− 〈〈φ〉〉π,a0,R(a′0)| ≤
1

R2m

∫
S[a,a0](R)

|φ| υm
π .

The above last integral can be estimated by following an idea of [4], p. 198. Note
that for each y in the annulus A(a0) := B[a0](R + ‖a′‖)\B[a0](R − ‖a′‖), one
has R − ‖a′‖ < ‖π[a0](y)‖ < R+ ‖a′‖; hence φ(y) ≥ −ε ‖π[a0](y)‖. Therefore,
for such y,

|φ(y)| ≤ (φ(y) + ε ‖π[a0](y)‖) + ε ‖π[a0](y)‖ ≤ φ(y) + 4εR.

Hence

|〈〈φ〉〉π,a,R(a′) − 〈〈φ〉〉π,a0,R(a′0)| ≤
1

R2m

∫
A(a0)

(φ + 4εR)υm
π .

Consequently it follows from Theorem 5.2.2 of [18] and the sheet number formula
([19], (2.4)) that

|〈〈φ〉〉π,a,R(a′) − 〈〈φ〉〉π,a0,R(a′0)|

≤ (R+ ‖a′‖)2m − (R− ‖a′‖)2m

R2m
deg (π) (M + 4εR),
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where M := sup{|φ(y)| | ‖π[a0](y)‖ ≤ R+ ‖a′‖}. Thus letting R → ∞ yields

|〈〈φ〉〉π(a′) − 〈〈φ〉〉π(a′0)| ≤ 8mε deg (π) ‖a′‖.
Now taking the limit as ε → 0, one has |〈〈φ〉〉π(a′) − 〈〈φ〉〉π(a′0)| ≤ 0. Thus
〈〈φ〉〉π(a′) = 〈〈φ〉〉π(a′0) = constant.

Theorem 5.5. (Generalized Liouville property II). Assume that: (i) φ =
(φ1, · · · , φN) : X → C

N is semi-harmonic (i.e., each φj is semi-harmonic);
(ii) there exists α ∈ (0, 1) such that either limsup r→∞M(‖φ‖, r)/rα < ∞ or
each φj is real-valued wih lim supr→∞M(φj, r)/rα <∞. Then the push-forward
〈〈φ〉〉π is constant on C

m.

Proof. Let a0 and a be distinct points of X and set d = ‖a ′ − a′0‖. By the
assumption (ii), there exists a constant K such that, for sufficiently large r > d,

(5.12) ‖φj(ξ)‖ ≤ K rα (resp., φj(ξ) ≤ K rα), 1 ≤ j ≤ N,

on X(r). Since X[a](r) ⊆ X(r+ ‖a′‖), the inequality ‖φj(ξ)‖ ≤ K(r+ ‖a′‖)α

(resp., φj(ξ) ≤ K(r + ‖a′‖)α) holds for every ξ ∈ X[a](r). Hence the inequality
(5.12) remains valid on X[a](r) (with a suitable constant K).

Let π̃ = π−a′0, S = {ξ ∈ X | νπ̃(ξ) > 1}, and E = π̃(S). Then the mapping
π̃ : X̂ = X\Eπ → Cm\E is proper, holomorphic, and locally topological. Setting
uj := −Re (φj) and noting that X[a0](r− d) ⊆ X[a](r), one has∫

X̂[a](r)

(uj +K rα) υm
π ≥

∫
X̂[a0](r−d)

(uj +K rα) υm
π .

Thus by the definition (4.1) (with U = X ),

r2m〈uj〉a,r − (r− d)2m〈uj〉a0,r−d +K rα(
∫

X̂[a](r)

υm
π −

∫
X̂[a0](r−d)

υm
π ) ≥ 0.

The above volume difference can be estimated by using an idea of [6], p. 94: setting
ξ̃ = π̃(ξ), ξ ∈ X̂, one has∫

X̂[a](r)

υm
π −

∫
X̂[a0](r−d)

υm
π =

∫
{‖ξ̃‖>r−d, ‖ξ̃−ã‖<r}

υm
π̃

≤
∫

{r−d<‖ξ̃‖<r+‖ã‖}

υm
π̃

= 2m deg (π)

r+‖ã‖∫
r−d

ρ2m−1 dρ.
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Therefore by the push-forward formula (4.16),

〈〈uj〉〉π,a,r(a′) − (
r − d

r
)2m 〈〈uj〉〉π,a0,r−d(a′0)

≥ − K deg (π)
r2m−α

((r+ ‖ã‖)2m − (r− d)2m).

Letting r → ∞, the above inequality implies that 〈〈uj〉〉π (a′) − 〈〈uj〉〉π (a′0) ≥ 0.
Since X[a](r − d) ⊆ X[a0](r), the preceding argument shows that 〈〈uj〉〉π (a′0) −
〈〈uj〉〉π (a′) ≥ 0. Therefore 〈〈uj〉〉π (a′) = constant on Cm. Clearly the same is true
for the imaginary part of φj .
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