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ON DISTANCE TWO LABELLING OF UNIT INTERVAL GRAPHS

Peter Che Bor Lam1*, Tao-Ming Wang2, Wai Chee Shiu and Guohua Gu

Abstract. An L(2, 1)-labelling of a graph G is an assignment of non-negative
integers to the vertices of G such that vertices at distance at most two get
different numbers and adjacent vertices get numbers which are at least two
apart. The L(2, 1)-labelling number of G, denoted by λ(G), is the minimum
range of labels over all such labellings. In this paper, we first discuss some
necessary and sufficient conditions for unit interval graph G to have λ(G) =
2χ(G) − 2 and then characterize all unit interval graphs G of order no more
than 3χ(G) − 1, where χ(G) is the chromatic number of G. Finally, we
discuss some subgraphs of unit interval graphs G on more than 2χ(G) + 1
vertices with λ(G) = 2χ(G).

1. INTRODUCTION

The study of distance two labellings of graphs is motivated from the chan-
nel/frequency assignment problem (FAP ) introduced by Hale [5]. The FAP is the
assignment of frequencies to television and radio transmitters subject to restrictions
imposed by the distance between transmitters. This problem was first formulated as
a graph coloring problem by Hale, who introduced the notion of the T -coloring of a
graph. There has been a considerable effort to study the T-coloring problem over the
past decade. In 1988, Roberts (in a private communication with Griggs) proposed a
variation of the FAP in which “close” transmitters must receive different channels
and “very close” transmitters must receive channels at least two apart. Motivated by
this variation, Griggs and Yeh [4] first proposed and studied the L(2, 1)-labelling
of a simple graph with a condition at distance two. This is followed by many other
works. For examples, see [9, 2, 7, 1, 11, 6, 10, 3].
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Let G be a simple graph. A complete subgraph of G is called a clique. The
size of a clique is the number of its vertices. A t-clique of G, denoted by Kt, is
a clique of size t. The clique number of G, denoted by ω(G), is the size of the
maximum clique of G. We also use the usual notations V (G), E(G), n(G), ∆(G),
χ(G) and λ(G) to denote the vertex set, the edge set, the number of vertices, the
maximum degree, the chromatic number and the λ-number of G, respectively. The
reference to G will sometimes be omitted if no confusion is possible.

Suppose 0 ≤ a ≤ b are integers. We shall use [a, b] to denote the set {a, a +
1, · · · , b−1, b}. An L(2, 1)-labelling f of G is a function f : V (G) → [0, k], such
that |f(u)−f(v)| ≥ 2 if uv ∈ E(G); and |f(u)−f(v)| ≥ 1 if dG(u, v) = 2, where
dG(u, v) is the length (number of edges) of a shortest path between u and v in G.
Elements of the image under f are called labels, and the span of f , denoted by
span(f), is the difference between the maximum and minimum labels of f . Without
loss of generality, we assume that the minimum label of L(2, 1)-labellings of G is 0,
and so span(f) is the maximum label. The L(2, 1)-labelling number, or λ-number
of G, λ(G), is the minimum span over all such labellings. If span(f) = λ(G), then
f is a called a span labelling.

A graph is a unit m-sphere graph if each vertex represents a closed sphere in
Rm of unit diameter and edges correspond to pairs of spheres that overlap. In the
FAP, the interference graph is usually represented by a unit m-sphere graph for
m = 1, 2 , or 3. The unit 1-sphere graphs are called unit interval graphs, or simply
UI-graphs. The class of UI-graphs and its generalization are of particular interest
in the FAP. In [8], Roberts showed that a graph G on n vertices is UI if and only if
there exists an ordering v1, v2, . . . , vn of V such that if vi and vj are adjacent for
some i ≤ j, then {vi, vi+1, . . . , vj−1, vj} induces a (j − i + 1)-clique in G denoted
by [vi, vj]. Such an ordering is called a compatible ordering of G. Henceforth,
all UI-graphs will come with a listing v1, v2, . . . , vn according to some compatible
ordering. So when we say that a vertex v precedes or follows an other vertex w,
we mean that v appears before or after w respectively, according to that ordering.
Two distinct cliques in a UI-graph are adjacent if there exists a vertex in one clique
which is adjacent to at least one vertex in the other, otherwise separated. Any set
of vertices lying between (according to the compatible ordering) two separated χ-
cliques is called a set of separators of the two χ-cliques. Two consecutive χ-cliques
K ′ and K ′′ are properly separated if (i) they are separated and (ii) for any set of
separators S, the number of vertices in K′ ∪ K ′′ adjacent to all vertices of S is
at most χ − |S| − 1. Throughout this paper, we always assume that a UI-graph is
connected.

In [9], Sakai proved that each UI-graph G has only three possible λ-numbers:
2χ−2, 2χ−1 and 2χ. She also characterized UI-graphs G on 2χ+1 vertices with
λ(G) = 2χ(G) by the following theorem.
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Theorem 1.1. [9]. Let G be a UI-graph on n = 2χ + 1 vertices and χ > 2.
There is a compatible vertex ordering v1, v2, · · · , vn of vertices such that either

(1) v1vχ, vχ+2vn, vqvq+χ−1 ∈ E for some 3 ≤ q ≤ χ, or
(2) v1vχ, v2vχ+1, vχ+1vn−1, vχ+2vn ∈ E

if and only if λ = 2χ.

In [9], Sakai also stated three unsolved problems. Two of them are as follows.

(1) Generalize the characterization of UI-graphs on more than 2χ + 1 vertices
with λ = 2χ.

(2) Characterize UI-graphs with λ = 2χ − 2 and with λ = 2χ − 1.

In this paper, we study the above problems. In Section 2, we first discuss
some necessary conditions and some sufficient conditions for UI-graphs to have
λ = 2χ − 2. We then give a characterization of UI-graphs on at most 3χ − 1
vertices with λ = 2χ − 2. In Section 3, we obtain some sufficient conditions for
UI-graphs to have λ = 2χ.

2. UNIT INTERVAL GRAPHS WITH λ = 2χ − 2

In this section, we present some necessary conditions and some sufficient con-
ditions for a UI-graph to have λ = 2χ − 2.

Theorem 2.1. Let G be a UI-graph on n ≥ 2χ + 1 vertices with χ > 2. If
λ = 2χ − 2, then any two consecutive χ-cliques are properly separated.

Proof. Let G be a UI-graph on n ≥ 2χ + 1 vertices with χ > 2 and λ =
2χ − 2. If f is a λ-labelling of G, then for any χ-clique Kχ of G, f(V (Kχ)) =
{0, 2, 4, . . . , 2χ − 2}, the set of all available even labels. Let K ′ and K ′′ be two
consecutive χ-cliques. If they are not separated, then there exists v ∈ K′ \K ′′ such
that {v} ∪ K ′′ is of diameter two. So each vertex of {v} ∪ K′′ has to be assigned
a distinct label from {0, 2, 4, . . . , 2χ − 2}, which is impossible. Therefore K ′ and
K ′′ are separated. It remains to show that they are properly separated.

Suppose S is a set of separators of K′ and K ′′ such that there exists S∗ ⊂
K ′ ∪ K ′′ with |S∗| ≥ χ − |S| and each vertex in S∗ is adjacent to all vertices in
S. Clearly S∗ �⊂ K ′ and S∗ �⊂ K ′′, otherwise S∗ ∪ S is a χ-clique which is not
separated from K′ or K′′. Therefore each of K′ ∪ S, K ′′ ∪ S and S ∪ S∗ is of
diameter two. Consequently, each vertex of S and S∗ has to be assigned a distinct
label from {1, 3, · · · , 2χ− 3} and {0, 2, 4, . . . , 2χ− 2} respectively. But S∗ ∪ S is
of diameter two, so after labelling S, at least |S|+ 1 labels in {0, 2, 4, . . . , 2χ− 2}
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cannot be used to label S∗. That means only χ−|S|−1≤|S∗|−1 labels are available
for S∗. The contradiction shows that K ′ and K ′′ are properly separated.

It is straight-forward to show that the necessary condition of Theorem 2.1 is
satisfied when a UI-graph G has only one χ-clique, or any two consecutive χ-
cliques of G are separated by χ or more vertices. However, this condition is not
sufficient for a UI-graph G to have λ-number 2χ−2. To see this fact, we give two
UI-graphs HI and HII , each of which satisfies the necessary condition of Theorem
2.1, but λ ≥ 2χ − 1.

HI is the UI-graph on 3χ+s (χ > 2, χ−3 ≥ s ≥ 0) vertices v1, v2, · · · , v3χ+s

such that [v1, vχ] and [v2χ+s+1, v3χ+s] are two χ-cliques and [vχ, v2χ−2], [vχ+1, v2χ−1]
are two (χ−1)-cliques, and [v2χ, v2χ+s+1] is an (s+2)-clique. HII is the UI-graph
on 4χ − 5 (χ > 3) vertices v1, v2, · · · , v4χ−5 such that [v1, vχ] and [v3χ−4, v4χ−5]
are two χ-cliques; and [vχ, v2χ−2] and [v2χ−2, v3χ−4] are two (χ − 1)-cliques (see
Figure 1).

Fig. 1. UI-Graphs HI and HII .

Lemma 2.2. λ(HI) ≥ 2χ − 1 and λ(HII) ≥ 2χ − 1.

Proof. We first prove λ(HI) ≥ 2χ− 1. Suppose to the contrary that λ(HI) =
2χ− 2 and f is a span labelling of HI . Then f([v1, vχ]) = f([v2χ+s+1, v3χ+s]) =
{0, 2, · · · , 2χ − 2}. Since [v1, v2χ−2] is of diameter two, f([vχ+1, v2χ−2]) ⊂
{1, 3, · · · , 2χ − 3}. Similarly, f([v2χ, v2χ+s]) ⊂ {1, 3, · · · , 2χ − 3}. The label
of vχ must be either 2χ − 2 or 0, otherwise there are at most χ − 3 odd inte-
gers in {1, 3, · · · , 2χ − 3} available to label vχ+1, · · · , v2χ−2, which is impossi-
ble. Assume that f(vχ) = 2χ − 2 (the case of f(vχ) = 0 is similar). Then
f([vχ+1, v2χ−2]) = {1, 3, · · · , 2χ − 5} and f(v2χ−1) = 2χ − 3. Hence any odd
integer in {1, 3, · · · , 2χ−3} cannot be used to label v2χ because v2χ is at a distance
of at most two from any vertex in [vχ+1, v2χ−1], a contradiction.

To prove that λ(HII) ≥ 2χ−1, we assume to the contrary that λ(HII) = 2χ−2.
Let f be a span labelling of HII . With the same argument as above, we may assume
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that f(vχ) = 2χ − 2 and hence f([vχ+1, v2χ−2]) = {1, 3, · · · , 2χ − 5}. Similar
argument leads to f(v3χ−4) = 0 or 2χ−2. But since vχ is at distance 2 from v3χ−4,
we have f(v3χ−4) = 0 and f([v2χ−2, v3χ−5]) = {3, · · · , 2χ− 3}. This means that
χ − 1 labels are available to label [χ + 1, 3χ− 5], a graph on 2χ− 5 vertices with
diameter two. Because χ ≥ 5, we have χ − 1 < 2χ − 5 and a contradiction.

Therefore, we have the following necessary condition for a UI-graph to have
λ = 2χ − 2.

Theorem 2.3. Let G be a UI-graph on n ≥ χ vertices. If λ = 2χ − 2, then
no subgraph of G is isomorphic to H I or HII .

We also have the following sufficient condition for a UI-graph to have λ =
2χ − 2.

Theorem 2.4. Let G be a UI-graph. If

(a) G contains exactly one χ-clique, or
(b) G has at least two χ-cliques and the number of vertices between any pair of

consecutive χ-cliques is (2m − 1)χ − m for some integer m ≥ 1,

then λ = 2χ − 2.

Proof. We first observe that the infinite periodic sequence

· · · , 1, 3, · · · , 2χ− 3,
︸ ︷︷ ︸

︷ ︸︸ ︷

0, 2, · · · , 2χ− 2, 1, 3, · · · , 2χ− 3,
︸ ︷︷ ︸

︷ ︸︸ ︷

0, 2, · · · , 2χ − 2, · · · (A)

has the following properties:

(1) Period of the sequence is 2χ−1, and elements in the same period are distinct
from each other,

(2) All elements in any string of length χ − 1 differs from each other by at least
two, and

(3) Between any two strings of even integers 0, 2, · · · , 2χ − 2, there are (2m −
1)χ − m elements for some m ≥ 1.

Now we assign the string {0, 2, · · · , 2χ − 2} to one χ-clique. If there are more
χ-cliques, then because of (b) and (3), all other χ-cliques will be fitted with the
string {0, 2, · · · , 2χ−2}. After trimming off excess elements from the sequence, we
shall see that we have in fact obtained an L(2, 1)-labelling of G with span 2χ− 2.

Suppose u and v are two adjacent vertices. If their positions in the compatible
ordering differs by χ − 1, then they must belong to the same χ-clique and so each
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are assigned distinct even labels. If their positions in the compatible ordering differs
by χ − 2, then by (2), their labels differ by at least 2.

Suppose a shortest path connecting two vertices u and v has length two with
intermediate vertex w. Since [u, w] and [w, v] cannot be both χ-cliques, there are
at most 2χ−4 vertices lying between u and v. So by (1), they get distinct labels.

Although the condition of Theorem 2.1 is not sufficient for a general UI-graph
G to have λ = 2χ − 2, it is sufficient for UI-graph in which any two consecutive
χ-cliques are separated by at most χ − 1 vertices.

Theorem 2.5. Let G be a UI-graph such that any two consecutive χ-cliques
K ′ and K ′′ are properly separated by at most χ−1 vertices. Then λ(G) = 2χ−2.

Proof. We only need to give an L(2, 1)-labelling of G with span 2χ − 2. If
G contains exactly one χ-clique, then the labelling can be obtained as in Theorem
2.4.

Suppose G contains at least two χ-cliques. We shall denote the strings of labels
{1, 3, · · · , 2χ− 3} and {0, 2, · · · , 2χ− 2} by Io and Ie respectively. We first take
a sequence (A) truncated just after the end of one Ie, fit that string to the first
χ-clique and trim the unused elements in the front. Similarly, we take a sequence
(A) truncated just before the beginning of one Ie, fit that string to the last χ-clique
and trim the unused elements at the rear. For other χ-cliques, if any, we assign
one Ie. For vertices between two consecutive χ-cliques, we label them with one Io,
preserving the order, but with segments appropriately trimmed off if necessary. We
shall describe this process in the following paragraphs.

Let K ′ = [v1, vχ] and K ′′ = [vl+1, vl+χ], be two consecutive χ-cliques properly
separated by the set S = [vχ+1, vl] with l−χ = s ≤ χ− 1. For each q ∈ [1, s], we
put q′ = |NK′(vχ+q)| and q∗ = |NK′′(vχ+q)|. Note that either q′ or q∗ can possibly
be zero. We set f ′(vχ+q) = 2q − 1 and f ′′(vχ+q) = 2q∗ + 1 for each q ∈ [1, s].

If f ′(vχ+j) ≥ f ′′(vχ+j) for all j ∈ [1, s], then label vχ+j with f ′(vχ+j) for all
j ∈ [1, s]. Since f ′(vχ+j) is odd and 2s − 1 ≤ 2(χ− 1)− 1 = 2χ− 3, all vertices
of S have been labelled with elements from Io. If there exists j ∈ [1, s] such that
f ′(vχ+j) < f ′′(vχ+j), then let q be the smallest of such integers. We shall call
vχ+q a critical vertex. We label vχ+j with f ′(vχ+j) for all j ∈ [1, q− 1], and label
vχ+q with f ′′(vχ+q). Consider the fact that

(1) f ′′(vχ+q) − f ′(vχ+q) = (2q∗ + 1)− (2q − 1) = 2k > 0.

Since both 2q∗+1 and 2q−1 are odd integers, it follows that k is a natural number.
For q < j ≤ s, we adjust the value of f ′(vχ+j) to 2(j+k)−1. Since vχ+q is adjacent
to vl+q∗ , the clique [vχ+q, vl+q∗ ] is of order (s − q + 1) + q∗ ≤ χ − 1. Using this
inequality and (1), we can deduce that 2(s+k)−1 = 2(s−q+1+q∗)−1 ≤ 2χ−3.
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Therefore all adjusted values of f ′(vχ+j), q < j ≤ s, belong to Io. By comparing
values of f ′(vχ+j) and f ′′(vχ+j) for all j ∈ [q +1, s], we repeat the above process,
adjusting f ′ at critical vertices, if any, until all vertices of S have been labelled.

We shall denote the above labelling by f and show that f is in fact an L(2, 1)-
labelling of G. Suppose that v and w are two adjacent vertices. If they both belong
to the first χ-clique together with its preceding vertices, or to the last χ-clique
together with its succeeding vertices, then by Theorem 2.4 their labels differ by
at least two. If they both belong to the separators of two consecutive χ-cliques,
then they were assigned distinct odd labels, and so their labels differ by at least
two. Since it is impossible to have a χ-clique between two adjacent vertices, the
only remaining case is that v = vχ+q belongs to the separators of two consecutive
χ-cliques K ′ = [v1, vχ] and K ′′ = [vl+1, vl+χ], and w = vr belongs to one of the
two χ-cliques. If vr ∈ K ′′, then r − l − χ + 1 ≤ q∗ and f(vχ+q) ≥ 2q∗ + 1.
Therefore f(vr) = 2(r − l − χ) ≤ 2q∗ − 2 ≤ f(vχ+q) − 3. If vr ∈ K ′, then
χ− q′ + 1 ≤ r ≤ χ and f(vr) = 2(r− 1) ≥ 2χ− 2q′. Suppose f(vχ+q) = 2q − 1,
then f(vr) − f(vχ+q) ≥ 2χ − 2q′ − 2q + 1 = 2(χ − 1 − q − q′) + 3. Since
[vχ−q′+1, vχ+q] is a clique of size q + q′ and is not separated from K ′, therefore
χ−1 ≥ q+q′. It follows that f(vr) ≥ f(vχ+q)+3. Suppose f(vχ+q) > 2q−1, then
we can determine vχ+qo , the first vertex in S preceding vχ+q (possibly qo = q), for
which f(vχ+qo) = 2q∗o +1. Consider the set S∗ = [vχ+qo , vχ+q], a set of separators
for K′ and K ′′. Because of the property of compatible ordering, all vertices in S
are adjacent to q′ and q∗o vertices in K ′ and K ′′ respectively. Because K′ and K ′′

are properly separated, we have

(q − qo + 1) + q′ + q∗o ≤ χ − 1.(2)

Because f(vχ+qo) = f ′′(vχ+qo) = 2q∗o +1, we have f(vχ+q) = 2q∗o +1+2(q−qo).
Using (2), we can deduce that f(vχ+q) ≤ 2χ − 2q′ − 3 ≤ f(vr) − 3.

Let vr and vs, r ≤ s, be two vertices at distance two. We may assume that both
of them belong to χ-cliques, or none of them belongs to a χ-clique. Suppose both
of them belong χ-cliques, then because they are at distance two from each other,
they belong to consecutive χ-cliques, say K′ = [v1, vχ] and K ′′ = [vl+1, vl+χ],
where χ + 1 ≤ l ≤ 2χ − 1. Since no vertex in K′ is adjacent to any vertex of
K ′′, there exists a vertex v ∈ [vχ+1, vl] adjacent to both vr and vs. From the
previous paragraph, we have shown that f(vr)− 3 ≥ f(v) ≥ f(vs) + 3, and hence
f(vr) > f(vs). Finally, suppose vr and vs comes before and after a χ-clique K,
respectively. If v ∈ K is adjacent to both vr and vs, then again by the above
argument, we have f(vr) − 3 ≥ f(v) ≥ f(vs) + 3 (same conclusion holds if either
vr or vs precedes the first χ-clique or follows the last χ-clique respectively). A
gain, we have f(vr) > f(vs).

With Theorems 2.1, 2.4 and 2.5, we can characterize all UI-graphs on at most
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3χ−1 vertices with λ = 2χ−2. In particular, we have the following Theorem and
Corollary.

Theorem 2.6. Let G be a UI-graph on n < 3χ vertices and χ > 3. Then
λ = 2χ − 2 if and only if (1) G contains exactly one χ-clique or (2) G contains
precisely two properly separated χ-cliques.

Corollary 2.7. Let G be a UI-graph on 2χ + 1 vertices and χ > 3. Then
λ = 2χ − 2 if and only if (1) G contains exactly one χ-clique or (2) G contains
precisely two nonadjacent χ-cliques and the remaining vertex of G has degree at
most χ − 2.

The following theorem follows from Corollary 2.5 in [[9]] and Theorem 2.1.

Theorem 2.8. Let G be a UI-graph on n vertices, χ + 1 ≤ n ≤ 2χ. Then
1. λ = 2χ − 2 if and only if G contains exactly one χ-clique,
2. λ = 2χ − 1 if and only if G contains at least two χ-cliques.

Theorem 1.1 and Corollary 2.7 together characterizes all UI-graphs on 2χ + 1
vertices with any possible λ, i.e. 2χ − 2 ≤ λ ≤ 2χ. Theorem 2.8 characterize all
UI-graphs on ≤ 2χ vertices with any possible λ, i.e. 2χ − 2 ≤ λ ≤ 2χ − 1.

3. UNIT INTERVAL GRAPHS WITH λ = 2χ

If the span of an L(2, 1)-labeling of a graph G is 2k−2, then any k-clique of G
can only receive one set of labels, namely {0, 2, . . . , 2k−2}. However, if the span of
L is 2k−1, then a k-clique can receive any one of the following sets of integers [9].

L1(k) = {0, 2, 4, 6, · · · 2k − 8, 2k − 6, 2k − 4, 2k − 2},
L2(k) = {0, 2, 4, 6, · · · 2k − 8, 2k − 6, 2k − 4, 2k − 1},
L3(k) = {0, 2, 4, 6, · · · 2k − 8, 2k − 6, 2k − 3, 2k − 1},
L4(k) = {0, 2, 4, 6, · · · 2k − 8, 2k − 5, 2k − 3, 2k − 1},

· · · · · ·
· · · · · · (L)

Lk−2(k) = {0, 2, 4, 7, · · · 2k − 7, 2k − 5, 2k − 3, 2k − 1},
Lk−1(k) = {0, 2, 5, 7, · · · 2k − 7, 2k − 5, 2k − 3, 2k − 1},

Lk(k) = {0, 3, 5, 7, · · · 2k − 7, 2k − 5, 2k − 3, 2k − 1},
Lk+1(k) = {1, 3, 5, 7, · · · 2k − 7, 2k − 5, 2k − 3, 2k − 1},

Some nice properties about the above sets of integers are given by the following
useful lemmas:

Lemma 3.1. [9] If r < s < t are integers and x ∈ Lr(k) ∩ Lt(k), then
x ∈ Ls(k).
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Lemma 3.2. [9] Let G be a graph and let k > 2 be an integer. Suppose that
there is an L(2, 1)-labelling with span 2k − 1. If K is a k-clique of G, then the
set of labels of K is L i(k) for some integer i, 1 ≤ i ≤ k + 1.

Suppose f is an L(2, 1)-labelling of G with span 2k−1 and K is a k-clique in
G. If 1 or 2k − 2 ∈ f(K), then f(K) = L1(k) or Lk+1(K) respectively. Lemma
3.1 and Lemma 3.2 lead to Lemma 3.3 that appears below. Recall that an r-path
on n-vertices, denoted by Pr

n , is the graph G with V (G) = {vi : i = 1, 2, . . . , n}
and E(G) = {vivj : 1 ≤ |i − j| ≤ r}.

Lemma 3.3. Let P k−1
2k be a (k − 1)-path on 2k vertices v1, . . . , v2k and f

is an L(2, 1)-labelling of P k−1
2k with span 2k − 1. Then either f(vi) = 2(k − i)

and f(vk+i) = 2(k − i) + 1 for i = 1, 2, . . . , k; or f(vi) = 2(i − 1) + 1 and
f(vk+i) = 2(i− 1) for i = 1, 2, . . . , k.

The λ-number of a graph cannot be less than that of any of its subgraphs. If
a UI-graph G contains a subgraph G′ with λ(G′) = 2χ(G), we can conclude that
λ(G) = 2χ(G). Therefore one method of determining whether a UI-graph has
λ-number equal to 2χ is to look for subgraphs having λ-number 2χ. Now we shall
discuss three types of UI-graphs with λ = 2χ. The first type of UI-graphs is one
that satisfies condition 2 of Theorem 1.1.

A graph is called UI if it is a UI-graph on 2χ + 1 vertices containing four
χ-cliques [v1, vχ], [v2, vχ+1], [vχ+1, v2χ] and [vχ+2, v2χ+1], see Figure 2.

Fig. 2. Sketch of graph UI .

Fig. 3. Sketch of graph UII .

A graph is called UII if it is a UI-graph on at least 2χ+1 vertices containing three
χ-cliques [vr, vχ+r−1], [vs, vχ+s−1] and [vt, vχ+t−1], where r < s ≤ χ + r − 1 <
t − 1, see Figure 3.

Theorem 3.4. If a UI-graph contains a subgraph isomorphic to either U I or
UII , then λ = 2χ.
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Proof. Since the graph UI defined above satisfies condition (2) of Theorem
1.1, λ(UI) = 2χ. Although the graph UII is more general than the graph specified
in condition (1) of Theorem 1.1, an argument similar to that of Sakai shows that
λ(UII) = 2χ (see [9]).

A sequence of χ-cliques of a UI-graph G is called a χ-chain if the sequence
consists of consecutive non-separated χ-cliques one following another. The number
of χ-cliques in the chain is called the length of the chain. The number of vertices
covered by the χ-chain is called the order of the chain. Hence the sequence of
χ-cliques Ki = [vni , vni+χ−1], where 1 ≤ i ≤ s and nj < nj+1 ≤ nj + χ − 1 for
j = 1, 2, . . . , s− 1, will be called a χ-chain of length s and of order ns + χ − n1.
A χ chain of length s is maximal if its order is χ + s − 1, i.e. nj + 1 = nj+1

for j = 1, 2, . . . , s − 1 in the above example. Since any χ-chain of order 2χ + 1
contains either UI or UII as subgraph, the following lemma follows from Theorem
3.4.

Lemma 3.5. For a UI-graph with λ ≤ 2χ− 1, the order of any χ-chain is at
most 2χ.

Lemma 3.5 implies the following Theorem.

Theorem 3.6. If there is a χ-chain of order 2χ + 1 or more in a UI-graph ,
then λ = 2χ.

The third graph UIII is a UI-graph consisting of two consecutive maximal χ-
chains C1 and C2, each of which is of length χ. Moreover if vi and vj is the last
vertex of C1 and the first vertex of C2 respectively, then [vi, vj] consists of at least
three vertices and is of diameter at most 2.

Fig. 4. Sketch of UIII .

Theorem 3.7. If a UI-graph contains a subgraph isomorphic to U III , then
λ = 2χ.

Proof. It is sufficient to show that λ(UIII) = 2χ. Suppose the two maximal
χ-chains in UIII are A = [v1, v2χ] and B = [vs+1, vs+2χ], where s + 1 ≥ 2χ + 1.
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Also suppose C = [v2χ, vs+1] contains at least three vertices and is of diameter at
most two (Figure 4).

Suppose for contradiction purposes that λ ≤ 2χ−1 and f is an L(2, 1)-labelling
of G with span(f) ≤ 2χ − 1. Since A is a maximal χ-chain of length χ and of
order 2χ, then by Lemma 3.3, we must have f(v2χ) = 2(χ− 1) or 1 and similarly
f(vs+1) = 2(χ − 1) or 1 also. Since C contains at least three vertices and its
diameter is at most 2, there is at least one vertex x between v2χ and vs+1 such that
v2χxvs+1 is a path of length 2. Therefore v2χ and vs+1 cannot get the same label.

If f(v2χ) = 2(χ − 1), then f(vs+1) = 1. So the cliques [vχ+1, v2χ] and
[vs+1, vs+2χ] are labelled with all the integers from 0 to 2χ − 1. But x is adjacent
to v2χ and vs+1. So its distance from each vertex of these two cliques is one. That
means x cannot be labelled. The contradiction shows that λ(UIII) = 2χ.

4. CONCLUDING REMARKS

Although we did not answer all three questions mentioned at the end of [9]
completely in this paper, we have completely characterized all UI-graphs G on at
most 2χ + 1 vertices and all UI-graphs G on at most 3χ − 1 vertices for which
λ = 2χ − 2. In addition, we have given some necessary conditions and some
sufficient conditions for a UI-graph with λ = 2χ − 2. We have also given some
sufficient conditions for a UI-graph to have λ-number 2χ.

However, it seems to be difficult to characterize unit interval graphs G with
particular λ-numbers completely. Consiser the following two examples.

Let H1 be a UI-graph of 19 vertices with χ = 4 with two maximal 4-chains on
[v1, v8] and [v12, v19] respectively. Further, let v8v9v10 be a path and [v10, v12] be a
3-clique. We can follow the argument of Theorem 3.7 to get λ(H1) = 8 = 2χ.

Now let H2 be a UI-graph of 29 vertices with χ = 6 with two maximal 6-chains
on [v1, v12] and [v18, v29] respectively. Further, let v12v13v14 be a path and [v14, v18]
be a 5-clique. We obtain an L(2, 1)-labelling f of H2 with span 11 = 2χ − 1 as
follows.

f(vi) = f(v17+i) = 2(χ − i), for i = 1, 2, 3, 4, 5, 6,

f(v6+j) = f(v23+j) = 2(χ − j) + 1, for j = 1, 2, 3, 4, 5, 6,

f(v11+k) = 2(χ − k) + 1, for k = 3, 4, 5,

and f(v13) = 4. Thus λ(H2) = 11 = 2χ − 1.
We can see that the structure of H1 and H2 are very similar, but λ(H1) = 2χ,

whereas λ(H2) = 2χ−1. It seems that there is something to do with their chromatic
numbers.



1178 Peter Che Bor Lam, Tao-Ming Wang, Wai Chee Shiu and Guohua Gu

ACKNOWLEDGMENT

The authors gratefully accept the valuable comments of the referees.

REFERENCES

1. G. J. Chang, W.-T. Ke, D. Kuo, D. D.-F. Liu and R. K. Yeh, On L(d, 1)-labellings
of graphs, Discrete Math., 220 (2000), 57-66.

2. G. J. Chang and D. Kuo, The L(2, 1)-labelling problem on graphs, SIAM J. Discrete
Math., 9 (1996), 309-316

3. J. P. Georges, D. W. Mauro and M. I. Stein, Labelling products of complete graphs
with a condition at distance two, SIAM J. Discrete Math., 14 (2000), 28-35.

4. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance two, SIAM
J. Discrete Math., 5 (1992), 586-595.

5. W. K. Hale, Frequency Assignment: Theory and Applications, Proc. IEEE, 68
(1980), 1497-1514.

6. J. van den Heuvel, R. A. Leese and M. A. Shepherd, Graph labelling and radio
channel assignment, J. Graph Theory, 29 (1988), 263-283.

7. D. D.-F. Liu and R. K. Yeh, On distance two labellings of graphs, Ars Combinatoria,
47 (1997), 13-22.

8. F. S. Roberts (1971), On the compatibility between a graph and a simple order, J.
Combin. Theory, 11 (1971), 28-38.

9. D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete
Math., 7 (1994), 133-140.

10. M. A. Whittlesey, J. P. Georges and D. W. Mauro, On the λ-number of Qn and
related graphs, SIAM J. Discrete Math., 8 (1995), 499-506.

11. K.-F. Wu and R. K. Yeh, Labelling graphs with the circular difference, Taiwanese J.
Math., 4 (2000), 397-405.

Peter Che Bor Lam
Department of Mathematics,
Tunghai University,
Taichung, Taiwan
E-mail: cblam2002@yahoo.com

Tao-Ming Wang
Department of Mathematics,
Tunghai University,
Taichung, Taiwan



L(2,1)-labelling of Unit Interval Graphs 1179

Wai Chee Shiu
Department of Mathematics,
Hong Kong Baptist University,
Hong Kong

Guohua Gu
Department of Mathematics, Southeast University,
Nanjing 210018,
P. R. China


