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MULTIPLICITY RESULTS FOR DOUBLE EIGENVALUE PROBLEMS
INVOLVING THE p-LAPLACIAN

Hannelore Lisei!, Gheorghe Morosanu and Csaba Varga®

Abstract. The existence of multiple nontrivial solutions for two types of
double eigenvalue problems involving the p-Laplacian is derived. To prove
the existence of at least two nontrivial solutions we use a Ricceri-type three
critical point result for non-smooth functions of S. Marano and D. Motreanu
[12]. The existence of at least three nontrivial solutions is shown by combining
a result of B. Ricceri [17] and a Pucci-Serrin mountain pass type theorem of
S. Marano and D. Motreanu [12].

1. INTRODUCTION

Let i, : RY — RY be the homeomorphism defined by h,(x) = |z|P~2x for all
x € RN, where p > 1 is fixed and | - | denotes the Euclidean norm in R,
For T'> 0, let F : [0,T] x RY — R be a mapping satisfying:

(Fy) for each M > 0 there exists some ay; € L'(0,T) such that, for a.e.
te[0,T)and all z,y € By = {£ € RY : [¢] < M}, it holds

[F(t,x) = F(t,y)] < am(t)|z —yl;

(Fy) the mapping F(-,z) : [0,7] — R is measurable for each 2 € R" and
F(,O) € LI(O,T);

F(t — F(t,0
|z]—00 \:):\P
Let j : RV x RNV —] — 0o, +00] be a function having the following properties:

Received July 22, 2007, accepted November 21, 2007.

Communicated by B. Ricceri.

2000 Mathematics Subject Classification: 34A60, 35J60, 35J65.

Key words and phrases: Vector p-Laplacian, Critical points, Palais-Smale condition, Multiple solu-
tions.

' Research for this article was supported in part by Central European University (CEU) Special Ex-
tension Programs. The opinions expressed herein are the author’s own and do not necessarily express
the views of CEU. Financial support for this work was also given in part by MEdC-ANCS, Grant
CEEX M2 Nr. 2983/11.10.2005.

2Financial support for this work was given in part by MEdC-ANCS Grant CEEX M3, C3, Nr.
130(12441)/2006.

< 0 uniformly for a.e. t € [0, 7).
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(J1) D(j) = {(z,y) € RN x RN : j(z,y) < +oo} # 0 is a closed convex cone
with D(j) # {(0,0)};
(J2) jis a convex and lower semicontinuous (shortly, I.s.c.) function.

Let v > 0 be arbitrary. For X\, > 0 we consider the following double eigen-
value problem involving the p-Laplacian operator:

—[hp(W)) + Yhy(u) € NOF(t,u) ae. t € [0,T],

(Px\,u)
(o (w)(0), —hy(u)(T)) € 0 (u(0), w(T)),

where u : [0,7] — RY is of class C* and h,(u’) is absolutely continuous. Note,
that OF(t,n) denotes the generalized gradient (in the sense of Clarke) of F(t,-) at
n € RN, while 95 denotes the subdifferential of j in the sense of convex analysis.

Our approach to problem (P, ,) is a variational one and it relies on results
concerning Motreanu-Panagiotopoulos type functionals (see for example in [13] and
[14]), which are extensions of the critical point theory of Szulkin type functionals
[18].

Previous results concerning p-Laplacian systems with various types of boundary
conditions have been obtained by R. Manéasevich and J. Mawhin [8], [9], J. Mawhin
[10], [11], L. Gasinski and N. Papageorgiu [4], P. Jebelean and G. Morosanu [6], [7].
As far as we know, eigenvalue problems for differential inclusions involving the p-
Laplacian and having mixed boundary conditions where not studied yet. Eigenvalue
problems with no boundary conditions were investigated in the books [13],[14] (see
also the references therein).

In order to obtain the existence of multiple solutions for problem (P, ,) we
impose some further assumptions on F:

F - F .
(Fy) |li|m (¢ x)‘ L (t,0) < 0 uniformly for a.e. t € [0, T];
z|—0 X

T
(F5) there exists s € RY such that / (F(t, s9) — F(t, 0))dt > 0.

P. Jebelean and G. Morosanu [6] pr(;)ved the existence of a nontrivial solution
for a differential inclusion problem of the type (P ,) by using "mountain pass
theorems”. Our paper completes their results by proving the existence of at least two
nontrivial solutions for a first type of double eigenvalue problem and the existence
of at least three nontrivial solutions for a second type of double eigenvalue problem.
For this, we need assumptions on the behavior around zero and close to infinity of
the function F' (see (F3), (F4), (F5)). The two types of problems (P, ,) rely on
different assumptions for the function j, and for this reason we use different tools
for their investigation.
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The main tool for the first type problem is a Ricceri-type three critical point
result for non-smooth functions of S. Marano and D. Motreanu [12, Theorem 3.1].
For the second type problem we use a recent result of B. Ricceri [17, Theorem
4] concerning the existence of multiple solutions and a Pucci-Serrin mountain pass
type theorem of S. Marano and D. Motreanu [12, Corollary 2.1].

This paper is organized as follows: in Section 2, there are introduced some
notations and important preliminary results for problem (P, ,). Then, in Section 3
it is proved the existence of at least two nontrivial solutions for the first type double
eigenvalue problem (P, ,) and in Section 4 we complete the results of Section 3
by showing the existence of at least three nontrivial solutions for the second type
double eigenvalue problem (P, ,). Finally, Section 5 contains important results
from variational calculus concerning the critical point theory, which are used in our
investigations.

2. NOTATIONS AND PRELIMINARY RESULTS

Let WiP = WhP(0, T; RY) be the usual Sobolev space equipped with the norm

1/p
leally = (Il £, + nllul,)

where > 0, and || - ||z» is the norm of LP = L?(0, T; RY)

1/p
lullzr = /\u )|Pdt

We consider C' = C([0, T]; R™) endowed with the norm
|lul|c = max{|u(t)| : t € [0,T]}.

For v > 0, we consider ¢, : W — R defined by
1
oy (u) 1= (o5 + 7 ully,) for all u e W',

Note, that ¢., is convex and ¢, € C*(WP;R) with

T
dt—i—fy/(h (u), v)dt for all u,v € W,
0

o\ﬂ

We define the function .J : WP —] — oo, +o0] by
J(u) = j(u(0),u(T)) for all u € WP,
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J is a proper, convex and l.s.c. function. Note, that
D(J) = {ue W (u(0),u(T)) € D(j)}.

We introduce the constant v; = ~1(p,y) > 0 by setting

P p
n = inf{ I ”LMJ”“”L” cu e W\ {0},ue D(J)} .
P

By computation one has
27 ull, < (1N + Allull20) P < Jlull, forall uw e D(J). (2.1)

We consider the functional # : C — R defined by
T T
Fo) = — /F(t,v)dt—i— /F(t, 0)dt for all v € C
0 0

and F : WP — R defined by F = ]:"‘Wlp. The functional F is sequentially

weakly continuous, since the embedding W' — C' is compact.
Note that for 1 < r < pand p < ¢ < p* the embeddings LP — L™, WP «— L9,
WP — C are continuous, hence there exist constants C. ,,, Cy, ,,, ¢ > 0 such that

lullzr < Crpllullze, Nullze < Copllullwrn, llulle < Elullwrs for all u e WP,
Let £ :[0,00) x [0,00) x WP —] — 00, oc] be defined by
E pu) = @y (u) + AF (u) + pd (u).
The functional £ is of Motreanu-Panagiotopoulos type.

Proposition 2.1. [6, Proposition 3.2]. Assume that F' : [0,7] x RY — R
satisfies (F;) and (F») and j : RY x RY —] — oo, +-oc] satisfies (J1) and (Jo). If
u € WP is a critical point of £(\, u, -) (in the sense of Definition 5.1), then w is
a solution of (P ).

Remark 2.1. Lete > 0 be arbitrary. From (F}), (F») and (F3) it follows that
there exists 6; > 0 (depending on ¢) such that

F(t,x) — F(t,0) < elz|P + ag,(t)6;  forall z € RN ae. t €[0,T].

Then
Fu) > —e|ullf, — Sillas, |1z forallue WhHP. (2.2)
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Proposition 2.2. Assume that ' : [0,7] x RY — R satisfies (F}), (Fy) and
(F3) and that j : RY x RY —] — oo, +-oc] satisfies (J;) and (J;). Then the
following properties hold:

(1) E(\, p, -) is weakly sequentially lower semicontinuous on W 1» for each \ >
0, p =05
(2) lim &\, p,u) = +oo for each A > 0, u > 0;

llullyy =00

(3) E(A, u, -) satisfies the (P.S) condition for each A, i > 0.

Proof. (1) The function £(), u, -) is weakly sequentially I.s.c on W1, because
F is weakly sequentially l.s.c., while ¢, and J are convex and l.s.c., hence they
are also weakly sequentially 1.s.c.
(2) First observe that
1
ullf, < —|ul®, for all u e WP
71
In (2.2) we choose ¢ < %p. Using that the embedding L? — L' is continuous and
that (2.1) holds, we have for all uw € D(J)

1
EO ) > 5(|ru'|vzp +yllullsy) = Aellully — Adillas, o) + I (u)
25Ap

IV

o lull5, = Adullas, |2y o,r) + pd (w).

Since J is convex and l.s.c. it is bounded from below by an affine functional and
then there exist constants ¢y, ¢z, c3 > 0 such that for all w € D(.J)

fy 25)\p

EN pyu) > ————|ull}, — Aé1llas, || 210,y — c1|u(0)] — e2|u(T)| — 3.

By the continuity of the embedding W'? < C we have for all v € W»
E pyu) = callullf, — esllully, —cs,

where ¢y, c5, cg > 0 are constants. Since, 1 < p it follows that (A, p, ) — +o0
when ||ul|,, — +oo.
(3) Let {u,} in WP be a sequence satisfying £(\, p, u,) — c and

AFO (n; 0=n) +05 (0) = 0 (n) +12J (v) = ] () > —enllv—1in|s,, Yo € W,

where {&,} C [0,00) with £,, — 0. We have a subsequence {u,} C D(J) (we
just eliminate the finite number of elements of the sequence which do not belong
to D(J)), since 1 > 0 and E(, i, u,) — c.
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But £(A, u,-) is coercive, this implies that {u,} is bounded in W'P. The
embedding W'? — C'is compact, then we can find a subsequence, which we still
denote by {u,}, which is weakly convergent to a point u € W' and strongly in
C.

In the above inequality we take v = u,, + s(u — w,,), with s > 0, then divide
both sides of the inequality by s and let s ™\, 0, to obtain

AFO (u; U= ) F@ (tn; U—up )+ (Un; u—1n) > —epllu—unll,, Vn € N.
By the upper semicontinuity of Z° (see [14], Chapter 1), it follows that

lim inf <¢;(un; u—up) + MJ/(un; U — un)) > 0.

n—oo

By Lemma 4.1 in [6] it follows that {u,,} converges strongly to u € W'». [ |

Remark 2.2. From (Fi), (Fy), (F3) and (Fy) it follows that for each & > 0
there exist d., . > 0 such that

t
F(t,z) — F(t,0) < elz|P + a_f—_(l)\:):\r forall z € RY, ae. t € (0,77,
&€

where r > 1. Then, by using the continuity of the embedding W' ? — C we get

¢" ||, ”Ll(o,T

Flu) 2 ~<llully, — ——== Halz, forallue wh».  (23)
€

Remark 2.3. If [: [0, 7] xRY — R satisfies (1) and (F}), then 0 € 9F(t,0)
for a.e. t € [0, T]. In order to prove this property, let z € RV be fixed. From (F))
it follows that there exists § > 0 such that

F(t,z) — F(t,0) < |z|P for each |z| < ¢ and a.e. t € [0, T]. (2.4)

But
—F(t F(t
(—=F)°(t,0;z) = lim sup (t,w+ sx) + (,’w)'
N0 o< jw|<e s
0<s<e

Let ¢ > 0 be fixed and let {w,} be a sequence in RY such that |w,| N\, 0 and
|wy| < e forall n € N. Then for 0 < s < ¢ and n € N we have

—F(t, wy, + sz) + F(t, wy,) < sup —F(t,w+ sz) + F(t, w)'
S o<|wl<e S
0<s<e
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Since F\(t,-) is continuous (see (F1)), we get for n — oo

“F(tsa) £ F(£0) _ Flbw +sr) + F(tw)

)
S o< |wl<e S
0<s<e

when 0 < s < e. By (2.4) it follows that

_s P < sup —F(t,w+ sx) —I-F(t,w)’
o< |wl<e S
0<s<e

when s is small enough such that |sz| < 6. Finally we take € \, 0 and get
0 < (=F)(t,0;2) = FO(t,0; —z) for all z € RY.
This implies, 0 € dF (¢, 0) for a.e. ¢ € [0, T).

3. FIRsST TYPE PROBLEM

In order to obtain the existence of at least two nontrivial solutions for (P ,,) we
impose some further assumptions on the convex function j : RN xRN —]—o0, +00]
which satisfies (J1) and (Js):

(J3) 7(0,0) =0, j(z,y) >0 forall (z,y) € RV x RV,

Theorem 3.1. Let F: [0,7] x RY — R be a function satisfying (1) — (F5)
and let j : RY x RY —] — oo, +00] be a function satisfying (J1) — (J3). Then for
each fixed 1 > 0, there exists an open interval A, C]0,+oo[ such that for each
A € A, the problem (P, ,) has at least two nontrivial solutions.

Proof. Let x> 0 be fixed. We define the function g :]0, +00[— R, by
g(t) =sup{—F(u) : @oy(u)+pJ(u) <t}, for all t>0.

Using (2.3) for r €]p, p*[ it follows that for all « € W' we have

€ clas oy,
—F(u) < —fullfy + ——=——llull}
gl O¢
Since p < r, this implies
t
im 40 _ g,
t—o+ t

Using (Fs) we define ug(t) = so for a.e. t € [0,T]. Then, ug € W»\ {0} and
—F(up) > 0. Due to the convergence relation above, it is possible to choose a real
number ¢, such that 0 < ¢ty < ¢ (uo) + pJ(ug) and

g(to)

o < lpa(wo) ] (u0)] ™+ (= F (ug)).
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We choose pg > 0 such that

g(to) < po < [ipy(uo) + 1 (uo)] ™" - (=F (uo))to- (3.1)
We apply Theorem 5.2 to the space W'?, the interval A =]0, +oo[ and the
functions G, H : WP — R, h: A — R defined by

G(u) = py(u), Y (u) = pJ (u), H(u) = F(u), h(A) = poA-

By Proposition 2.2 the assumption (a) from Theorem 5.2 is fulfilled.
We prove now the minimax inequality

sup Jof (w(u) + pd () + AF (u) + poA)

< uell?vflm ilelg (@7(11,) + pd (u) + AF(u) + po)\>.

The function

A nf (mu) + pd (u) + AF (u) + po)\>

is upper semicontinuous on A. Since

it (ipy(u) + (1) + AF (W) + pod) < 05 (o) + I (o) + AF (o) + po)

and pg < —F (up), it follows that

/\Erfoo uellfll/fl’p (@W(u) + pd (u) + AF (u) + po)\> = —00.

Thus we can find A € A such that

1= ilelg uell?vflm (@7(11,) + pd (u) + AF (u) + po)\>

= inf (%(u) 4 (u) + NF(u) + po)\>.

In order to prove that 8, < tg, we distinguish two cases:
3 ol
LIFO< A< oy We have
B < 9y(0) + pJ(0) + AF(0) + po = Apo < to.
. If x> %% then we use py < —F(up) and the inequality (3.1) to get

_ _ t
M < or(uo) 4 (1) + AF (ug) 4+ poX < @v(u0)+MJ(uo)+p—2(Po+7(uo)) < to.
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From g(tp) < po it follows that for all u € WP with @, (u) + pJ(u) < to we
have —F(u) < po. Hence

to < inf {py(u) + pJ(u) : —F(u) = po}.
On the other hand,

B2 = inf sup(ey(u) + pd(u) + AF (u) + poX)
ueWhr? \eA

inf {py (u) + pJ (u) : =F(u) = po} -

We conclude that
B <ty < Pa.

Hence, assumption (b) from Theorem 5.2 holds. Then, by Theorem 5.2 it follws that
there exists an open interval A, C]0, c0) such that for each A € A, the function
¢ + puJ + AF has at least three critical points in W 1. By Proposition 2.1 it
follows that these critical points are solutions of (P, ,). Since 0 € 0F(t,0) for a.e.
t € [0,T], we get that at least two of the above solutions are nontrivial. |

Remark 3.1. The two conditions from (.J3) can be replaced by
(J}) j(x,y) > 4(0,0) for all (z,y) € RV x RV,

Then, all the proofs above can be adapted by considering

J(u) = j(u(0),u(T)) - 5(0,0).

Corollary 3.1. Let F:[0,7] x RY — R be a function satisfying (F1) — (F5)
and let b : RY xRN — R be a positive, convex and Gateaux differentiable function
with 5(0,0) = 0. Assume that S ¢ RY x R is a nonempty closed convex cone
with S # {(0,0)}, whose normal cone we denote by Ng. Then for each fixed
v, > 0, there exists an open interval Ay CJ]O, 4+oo[ such that for each A € Ay,
the following problem

—[hp(W)])" + vhy(u) € AOF(t,u) ae. t € [0,T],
(Py,) { (w0),u(T)) €S,

(o) (0), ~hp(u!)(T)) € Vb(u(0), u(T)) + N (u(0), u(T)),
has at least two nontrivial solutions.

Proof. The statement follows by applying Theorem 3.1 to the function F' and
the convex function j : RY x RY —] — 0o, +-oc] defined by

() = b(z,y) + Is(z,y), for all (z,y) € RN x RV,
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where
0, if (z,y) e S

Is(z,y) =
5(®,9) {—I—oo, if (z,y) € RV xRN\ S,

is the indicator function of the cone S.
Note, that in this case D(j) = S and j satisfies the conditions (J1) — (J3).
Moreover,

dj(z,y) = Vb(z,y) +0ls(x,y) = Vb(x,y) + Ns(z,y) for all (z,y) € S. =

Example 3.1. We give an example of a function F' that satisfies the assumptions
(Fy) to (F5): Let F: [0, T] x RY — R be defined by

F(t,x) = f(t) — min{|z|P*®, |z[P~F + 1} for all t € [0, T], z € RY,

where o > 0, 8 €]0,p|, f € L*(0,T).
Various possible choices of b and S from Corollary 3.1 recover some classical
boundary conditions. For instance:

(@) b=0and S = {(x,z) : = € RN} we get periodic boundary conditions
w(0) = u(T), u'(0) = u'(T);

() b=0and S = RN x R we get Neumann type boundary conditions «/(0) =
u'(T) = 0;

(c) b(z) = 3(Az,2)gen, z € R?N, where A is a symmetric, positive 2N x 2N
real valued matrix, and S = R x R"; we get the following mixed boundary

conditions
< hy(u')(0) > 4 < u(0) >
hy)(T) )\ u(r) )
For these choices of F, b and S it follows by Corollary 3.1 that for each fixed

v, p > 0, there exists an open interval Ay C]0, +oo] such that for each A € A the
problem (P, ,) has at least two nontrivial solutions.

4, SEcoND TYPE PROBLEM

Theorem 4.1. Let F: [0,7] x RY — R be a function satisfying (1) — (F5)
and let j : RV x RY — R be a convex function. Then, there exist a non-degenerate
compact interval [a, b] C]0, +oo[ and a number o > 0 such that for every \ € [a, b
there exists o > 0 such that for each p €]0, 1], the problem (P ,) has at least
three solutions with norms less than oo. Moreover, if 0 ¢ 95(0,0), then these
solutions are nontrivial.
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Proof.  We define the function g :]0, +oco[— R, by
g(t) =sup{—F(u) : ¢y(u) <t}, for all t>0.

Using (2.3) for r €]p, p*[ it follows that for all « € W' we have

€ Meas Loy, o,
—F(u) < —flullf + ——=—"|ull’.
g 0z
Since p < r, this implies
lim @ =0
t—0t+ ¢ ’

As in the proof of Theorem 3.1, by (F3) there exists ug € WP\ {0} such that
—F(up) > 0. Due to the convergence relation above, it is possible to choose a real
number ¢, such that 0 < ¢y < ¢~ (ug) and

We choose pp > 0 such that

9(to) < po < [io3(u0)] ™" - (~F (uo))to-

We apply Theorem 5.3 to the space WP, the interval I =]0, 4+-oco[ and the
function ¥ : WP x I — R defined by

(u, ) = . (u) + A (po + F(u)), forall (u,\) € WP x T
and @ : WP — R by
®(u) = J(u) for all u € WhHP.

Clearly, by Proposition 2.2 ¥(-, \) and & are sequentially weakly I.s.c. for all
u € WHP. Moreover, ¥(-, \) is continuous (the norm ¢, and F are continuous
functions), coercive (by Proposition 2.2), and obviously ¥(w,-) is concave for all
ue Wwhp,
By the same technique as in the proof of Theorem 3.1 we prove the minimax
inequality
sup inf W(u,\) < inf sup¥(u,N).
rel ueWlp u€WLr \eg
Note, that the role of the function ¢, + J + AF + poA from Theorem 3.1 is now
replaced by ¥(-, ).
We can apply Theorem 5.3. Fix § > n, and for every A € I denote

Sy={ueW" : U(u,\)<d}.
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There exists a non-empty open set Iy C]0, +oo[ with the following property: for
every \ € I there exists Ao > 0, such that for each p €]0, o[, the functional

u— U(u, ) + pd(u)

has at least two local minima lying in the set S. Let [a, b] C Iy be a non-degenerate
compact interval.

We prove now the assertion of our theorem: Let A € [a, b] be a real number.
From what stated above, there exists 1o > 0 such that for all u €]0, o[ the func-
tional £(), 1, -) admits at least two local minima u} ,, u3 , € S», therefore by
Proposition 5.1 (for G(u) = AF (u), ¥ (u) = ¢ (u) + pJ(u),u € WHP) these are
critical points of £(A, 4, -).

Observe that

S:= |J S\CS.US
A€la,b]

Since W(-, A) is coercive (see Proposition 2.2 applied for £(\, 0, -)), the latter sets
are bounded, hence S is bounded as well. By choosing oy > sup ||ul|,,, we get
uesS

”u%\,u”’hv ”ui,u”’h < 0p-

To prove the existence of a third critical point for £(, u, -), we apply Proposition
5.2 (for G(u) = AF (u) + ¢ (u) + pJ(u), ¥ (u) = 0,u € WP; note that, since .J
is convex and continuous, it is then also locally Lipschitz), since the (PS) condition
holds by Proposition 2.2. Finally, by Proposition 2.1 it follows that these critical
points are solutions of (P ;).

Obviously, if 0 ¢ 95(0,0), then each solution is nontrivial. ]

Example 4.1. We give an example of functions F' and j that satisfy the as-
sumptions of Theorem 4.1: Let F': [0, 7] x RY — R be defined by

F(t,x) = —f(t) - min{|z[P**, |z|P~% + 1} for all t € [0, 7],z € RY,

where a > 0, 3 €]0, p[, f € L' (0, T;R,)\ {0}, and let j : RY x RY — R be given
by

j(x,y) = max{|(z, y)— (1, 1)|%+1, |(z, y)— (1,1)|°+1} for all (z,y) € RN xRY,

where @ > b > 1 and (1,1) € RY x RY denotes the vector with all coordinates
1. By Theorem 4.1 it follows that in this case there exist at least three nontrivial
solutions for the eigenvalue problem (P ,).
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5. APPENDIX - BAsic NOTIONS AND RESULTS

Let (X, | - ||) be a real Banach space and X* its topological dual. A function
G : X — Riis called locally Lipschitz if each point w € X possesses a neighborhood
N, such that |G(u1) — G(uz)| < Lljug — ug|| for all uy, uy € N, for a constant
L > 0 depending on N,,. The generalized directional derivative of G at the point
u € X in the direction z € X is

G(w + sz) — Q(w)'

S

G%(u;2) = limsup
w—u,s—01

The generalized gradient (in the sense of Clarke [1]) of G at u € X is defined by
0G(u) = {z* € X* : (a*,z) < Gu; x), Yz € X},

where (-, -) is the duality pairing between X * and X.
Let G : X — R be a locally Lipschitz function, and let ¢y : X —] — oo, +o¢]
be a convex, proper, l.s.c. function.

Definition 5.1. [14]. An element v € X is said to be a critical point of
E=G+,if
G (u; v —u) + 1 (v) — h(u) > 0,Vv € X.

In this case, £(u) is a critical value of £.

In the case of differentiable functions one gets the notion of critical point intro-
duced by A. Szulkin [18].

Definition 5.2. [14]. The functional £ = G + ¢ is said to satisfy the Palais-
Smale condition at level ¢ € R (shortly, (PS).) if every sequence {u,} in X
satisfying &£ (u,,) — ¢ and

go(um U= up) + ¢(’U) - w(un) > _571”7) - un”,V’U € X,

for a sequence {e,} C [0, 00) with €, — 0, contains a convergent subsequence.
If (PS). is verified for all ¢ € R, £ is said to satisfy the Palais-Smale condition
(shortly, (PS)).

Proposition 5.1. [12, Proposition 2.1]. Each local minimum of £ = G + ¢ is
necessarily a critical point of £.

Theorem 5.2. [12, Theorem 3.1]. Assume that X is a separable and reflexive
Banach space, A is a real interval, G, H : X — R are locally Lipschitz functions
and ¢ : X —] — 0o, +o00] is a convex, proper, |.s.c. function, such that:
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(a) for every A € A the function G + ¢ + AH fulfils the (PS) condition, together
with
(G(u) +w(w) + AH(w)) = +oo;

l[ull =00
(b) there exists a continuous concave function i : A — R satisfying

ilélA) ulg)f( (g(u) + Y (u) + NH(u) + h(A))

< inf sup (g(u) +ab(u) + NH(u) + h(A)).
uEX NeA

Then, there is an open interval Ay C A such that for each A € A the function

G + 1 + AH has at least three critical points in X.

The following result is proved by Marano and Motreanu and it generalizes results
of P. Pucci, J. Serrin [16]:

Proposition 5.2. [12, Corollary 2.1]. Let I = G+ satisfying the Palais-Smale
condition (PS). If £ has two local minima wg, u; € X, then it admits at least three
critical points.

The main tool in our investigations is the result of B. Ricceri [17, Theorem 4],
which we state for the reader’s convenience in a slightly modified form (adapted
for the weak topology), suitable for our purposes:

Theorem 5.3. Let X be a real, reflexive, separable Banach space, let I C R be
an interval, and let ¥ : X x I —] — 0o, +00] be a function satisfying the following
conditions:

(1) W(z,-)is concave in I for all z € X

(2) (-, v) is upper semicontinous, coercive and sequentially weakly lower semi-
continuous in X for all v € I;

3 = inf U(x,v) < inf U(x,v) =: no.

(3) m sup inf (z,v) < inf Sup (z,v) =:m2
Then, for each § > 7, there exists a non-empty open set I, C I with the following
property: forevery v € Iy and every sequentially weakly I.s.c. function® : X — R,
there exists 7o > 0 such that, for each 7 €]0, 79[, the function ¥(-, v) + 7®(-) has
at least two local minima lying in the set {z € X : U(z,v) < d}.
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