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MULTIPLICITY RESULTS FOR DOUBLE EIGENVALUE PROBLEMS
INVOLVING THE p-LAPLACIAN

Hannelore Lisei1, Gheorghe Moroşanu and Csaba Varga2

Abstract. The existence of multiple nontrivial solutions for two types of
double eigenvalue problems involving the p-Laplacian is derived. To prove
the existence of at least two nontrivial solutions we use a Ricceri-type three
critical point result for non-smooth functions of S. Marano and D. Motreanu
[12]. The existence of at least three nontrivial solutions is shown by combining
a result of B. Ricceri [17] and a Pucci-Serrin mountain pass type theorem of
S. Marano and D. Motreanu [12].

1. INTRODUCTION

Let hp : R
N → R

N be the homeomorphism defined by hp(x) = |x|p−2x for all
x ∈ RN , where p > 1 is fixed and | · | denotes the Euclidean norm in RN .

For T > 0, let F : [0, T ]× R
N → R be a mapping satisfying:

(F1) for each M > 0 there exists some αM ∈ L1(0, T ) such that, for a.e.
t ∈ [0, T ] and all x, y ∈ BM = {ξ ∈ R

N : |ξ| ≤M}, it holds

|F (t, x)− F (t, y)| ≤ αM (t)|x− y|;

(F2) the mapping F (·, x) : [0, T ] → R is measurable for each x ∈ R
N and

F (·, 0) ∈ L1(0, T );

(F3) lim
|x|→∞

F (t, x) − F (t, 0)
|x|p ≤ 0 uniformly for a.e. t ∈ [0, T ].

Let j : RN ×RN →]−∞,+∞] be a function having the following properties:
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(J1) D(j) = {(x, y) ∈ R
N × R

N : j(x, y) < +∞} �= ∅ is a closed convex cone
with D(j) �= {(0, 0)};

(J2) j is a convex and lower semicontinuous (shortly, l.s.c.) function.

Let γ > 0 be arbitrary. For λ, µ > 0 we consider the following double eigen-
value problem involving the p-Laplacian operator:

(Pλ,µ)




−[hp(u′)]′ + γhp(u) ∈ λ∂̄F (t, u) a.e. t ∈ [0, T ],(
hp(u′)(0),−hp(u′)(T )

)
∈ µ∂j(u(0), u(T )),

where u : [0, T ] → R
N is of class C1 and hp(u′) is absolutely continuous. Note,

that ∂̄F (t, η) denotes the generalized gradient (in the sense of Clarke) of F (t, ·) at
η ∈ R

N , while ∂j denotes the subdifferential of j in the sense of convex analysis.
Our approach to problem (Pλ,µ) is a variational one and it relies on results

concerning Motreanu-Panagiotopoulos type functionals (see for example in [13] and
[14]), which are extensions of the critical point theory of Szulkin type functionals
[18].

Previous results concerning p-Laplacian systems with various types of boundary
conditions have been obtained by R. Manásevich and J. Mawhin [8], [9], J. Mawhin
[10], [11], L. Gasinski and N. Papageorgiu [4], P. Jebelean and G. Moroşanu [6], [7].
As far as we know, eigenvalue problems for differential inclusions involving the p-
Laplacian and having mixed boundary conditions where not studied yet. Eigenvalue
problems with no boundary conditions were investigated in the books [13],[14] (see
also the references therein).

In order to obtain the existence of multiple solutions for problem (Pλ,µ) we
impose some further assumptions on F :

(F4) lim
|x|→0

F (t, x) − F (t, 0)
|x|p ≤ 0 uniformly for a.e. t ∈ [0, T ];

(F5) there exists s0 ∈ RN such that
T∫

0

(
F (t, s0) − F (t, 0)

)
dt > 0.

P. Jebelean and G. Moroşanu [6] proved the existence of a nontrivial solution
for a differential inclusion problem of the type (Pλ,µ) by using ”mountain pass
theorems”. Our paper completes their results by proving the existence of at least two
nontrivial solutions for a first type of double eigenvalue problem and the existence
of at least three nontrivial solutions for a second type of double eigenvalue problem.
For this, we need assumptions on the behavior around zero and close to infinity of
the function F (see (F3), (F4), (F5)). The two types of problems (Pλ,µ) rely on
different assumptions for the function j, and for this reason we use different tools
for their investigation.
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The main tool for the first type problem is a Ricceri-type three critical point
result for non-smooth functions of S. Marano and D. Motreanu [12, Theorem 3.1].
For the second type problem we use a recent result of B. Ricceri [17, Theorem
4] concerning the existence of multiple solutions and a Pucci-Serrin mountain pass
type theorem of S. Marano and D. Motreanu [12, Corollary 2.1].

This paper is organized as follows: in Section 2, there are introduced some
notations and important preliminary results for problem (Pλ,µ). Then, in Section 3
it is proved the existence of at least two nontrivial solutions for the first type double
eigenvalue problem (Pλ,µ) and in Section 4 we complete the results of Section 3
by showing the existence of at least three nontrivial solutions for the second type
double eigenvalue problem (Pλ,µ). Finally, Section 5 contains important results
from variational calculus concerning the critical point theory, which are used in our
investigations.

2. NOTATIONS AND PRELIMINARY RESULTS

Let W 1,p = W 1,p(0, T ; RN) be the usual Sobolev space equipped with the norm

‖u‖η =
(
‖u′‖p

Lp + η‖u‖p
Lp

)1/p
,

where η > 0, and ‖ · ‖Lp is the norm of Lp = Lp(0, T ; R
N)

‖u‖Lp =


 T∫

0

|u(t)|pdt



1/p

.

We consider C = C([0, T ]; R
N) endowed with the norm

‖u‖C = max{|u(t)| : t ∈ [0, T ]}.
For γ > 0, we consider ϕγ : W 1,p → R defined by

ϕγ(u) :=
1
p

(
‖u′‖p

Lp + γ‖u‖p
Lp

)
for all u ∈W 1,p.

Note, that ϕγ is convex and ϕγ ∈ C1(W 1,p; R) with

〈ϕ′
γ(u), v〉 =

T∫
0

(hp(u′), v′)dt+ γ

T∫
0

(hp(u), v)dt for all u, v ∈W 1,p.

We define the function J : W 1,p →] −∞,+∞] by

J(u) = j(u(0), u(T )) for all u ∈W 1,p.



1098 Hannelore Lisei, Gheorghe Moroşanu and Csaba Varga

J is a proper, convex and l.s.c. function. Note, that

D(J) = {u ∈W 1,p : (u(0), u(T )) ∈ D(j)}.

We introduce the constant γ1 = γ1(p, γ)> 0 by setting

γ1 = inf
{‖u′‖p

Lp + γ‖u‖p
Lp

‖u‖p
Lp

: u ∈W 1,p \ {0}, u ∈ D(J)
}
.

By computation one has

2−1/p‖u‖γ1 ≤ (‖u′‖p
Lp + γ‖u‖p

Lp)1/p ≤ ‖u‖γ1 for all u ∈ D(J). (2.1)

We consider the functional F̂ : C → R defined by

F̂(v) = −
T∫

0

F (t, v)dt+

T∫
0

F (t, 0)dt for all v ∈ C

and F : W 1,p → R defined by F = F̂
∣∣∣
W 1,p

. The functional F is sequentially
weakly continuous, since the embedding W 1,p ↪→ C is compact.

Note that for 1 ≤ r < p and p < q < p∗ the embeddingsLp ↪→ Lr, W 1,p ↪→ Lq,
W 1,p ↪→ C are continuous, hence there exist constants Cr,p, Ĉq,p, ĉ > 0 such that

‖u‖Lr ≤ Cr,p‖u‖Lp, ‖u‖Lq ≤ Ĉq,p‖u‖W 1,p , ‖u‖C ≤ ĉ‖u‖W 1,p for all u ∈W 1,p.

Let E : [0,∞)× [0,∞)×W 1,p →] −∞,∞] be defined by

E(λ, µ, u) = ϕγ(u) + λF (u) + µJ(u).

The functional E is of Motreanu-Panagiotopoulos type.

Proposition 2.1. [6, Proposition 3.2]. Assume that F : [0, T ] × RN → R

satisfies (F1) and (F2) and j : R
N ×R

N →]−∞,+∞] satisfies (J1) and (J2). If
u ∈ W 1,p is a critical point of E(λ, µ, ·) (in the sense of Definition 5.1), then u is
a solution of (Pλ,µ).

Remark 2.1. Let ε > 0 be arbitrary. From (F1), (F2) and (F3) it follows that
there exists δ1 > 0 (depending on ε) such that

F (t, x) − F (t, 0) ≤ ε|x|p + αδ1(t)δ1 for all x ∈ R
N , a.e. t ∈ [0, T ].

Then
F (u) ≥ −ε‖u‖p

Lp − δ1‖αδ1‖L1(0,T ) for all u ∈W 1,p. (2.2)
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Proposition 2.2. Assume that F : [0, T ] × RN → R satisfies (F1), (F2) and
(F3) and that j : R

N × R
N →] − ∞,+∞] satisfies (J1) and (J2). Then the

following properties hold:

(1) E(λ, µ, ·) is weakly sequentially lower semicontinuous on W 1,p for each λ >
0, µ ≥ 0;

(2) lim
‖u‖γ1→+∞

E(λ, µ, u) = +∞ for each λ > 0, µ ≥ 0;

(3) E(λ, µ, ·) satisfies the (PS) condition for each λ, µ > 0.

Proof. (1) The function E(λ, µ, ·) is weakly sequentially l.s.c on W 1,p, because
F is weakly sequentially l.s.c., while ϕγ and J are convex and l.s.c., hence they
are also weakly sequentially l.s.c.

(2) First observe that

‖u‖p
Lp ≤ 1

γ1
‖u‖p

γ1
for all u ∈W 1,p.

In (2.2) we choose ε < γ1
2λp . Using that the embedding Lp ↪→ L1 is continuous and

that (2.1) holds, we have for all u ∈ D(J)

E(λ, µ, u) ≥ 1
p

(
‖u′‖p

Lp + γ‖u‖p
Lp

)
− λε‖u‖p

Lp − λδ1‖αδ1‖L1(0,T ) + µJ(u)

≥ γ1 − 2ελp
2γ1p

‖u‖p
γ1

− λδ1‖αδ1‖L1(0,T ) + µJ(u).

Since J is convex and l.s.c. it is bounded from below by an affine functional and
then there exist constants c1, c2, c3 > 0 such that for all u ∈ D(J)

E(λ, µ, u) ≥ γ1 − 2ελp
2γ1p

‖u‖p
γ1

− λδ1‖αδ1‖L1(0,T ) − c1|u(0)| − c2|u(T )| − c3.

By the continuity of the embedding W1,p ↪→ C we have for all u ∈W1,p

E(λ, µ, u) ≥ c4‖u‖p
γ1

− c5‖u‖γ1 − c6,

where c4, c5, c6 > 0 are constants. Since, 1 < p it follows that E(λ, µ, ·) → +∞
when ‖u‖γ1 → +∞.

(3) Let {un} in W 1,p be a sequence satisfying E(λ, µ, un) → c and

λF 0(un; v−un)+ϕγ(v)−ϕγ(un)+µJ(v)−µJ(un) ≥ −εn‖v−un‖γ1, ∀v ∈W 1,p,

where {εn} ⊂ [0,∞) with εn → 0. We have a subsequence {un} ⊂ D(J) (we
just eliminate the finite number of elements of the sequence which do not belong
to D(J)), since µ > 0 and E(λ, µ, un) → c.
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But E(λ, µ, ·) is coercive, this implies that {un} is bounded in W 1,p. The
embedding W 1,p ↪→ C is compact, then we can find a subsequence, which we still
denote by {un}, which is weakly convergent to a point u ∈ W1,p and strongly in
C.

In the above inequality we take v = un + s(u − un), with s > 0, then divide
both sides of the inequality by s and let s↘ 0, to obtain

λF 0(un; u−un)+ϕ′
γ(un; u−un)+µJ ′(un; u−un) ≥ −εn‖u−un‖γ1, ∀n ∈ N.

By the upper semicontinuity of F̂ 0 (see [14], Chapter 1), it follows that

lim inf
n→∞

(
ϕ′

γ(un; u− un) + µJ ′(un; u− un)
)
≥ 0.

By Lemma 4.1 in [6] it follows that {un} converges strongly to u ∈W1,p.

Remark 2.2. From (F1), (F2), (F3) and (F4) it follows that for each ε > 0
there exist δε, δ̄ε > 0 such that

F (t, x) − F (t, 0) ≤ ε|x|p +
αδε(t)
δ̄r−1
ε

|x|r for all x ∈ R
N , a.e. t ∈ [0, T ],

where r ≥ 1. Then, by using the continuity of the embedding W1,p ↪→ C we get

F (u) ≥ −ε‖u‖p
Lp −

ĉr‖αδε‖L1(0,T )

δ̄r−1
ε

‖u‖r
γ for all u ∈W 1,p. (2.3)

Remark 2.3. If F : [0, T ]×R
N → R satisfies (F1) and (F4), then 0 ∈ ∂̄F (t, 0)

for a.e. t ∈ [0, T ]. In order to prove this property, let x ∈ R
N be fixed. From (F4)

it follows that there exists δ > 0 such that

F (t, z) − F (t, 0) ≤ |z|p for each |z| < δ and a.e. t ∈ [0, T ]. (2.4)

But
(−F )0(t, 0; x) = lim

ε↘0
sup

0<|w|<ε
0<s<ε

−F (t, w + sx) + F (t, w)
s

.

Let ε > 0 be fixed and let {wn} be a sequence in R
N such that |wn| ↘ 0 and

|wn| < ε for all n ∈ N. Then for 0 < s < ε and n ∈ N we have

−F (t, wn + sx) + F (t, wn)
s

≤ sup
0<|w|<ε
0<s<ε

−F (t, w + sx) + F (t, w)
s

.
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Since F (t, ·) is continuous (see (F1)), we get for n→ ∞
−F (t, sx) + F (t, 0)

s
≤ sup

0<|w|<ε
0<s<ε

−F (t, w + sx) + F (t, w)
s

,

when 0 < s < ε. By (2.4) it follows that

−sp−1|x|p ≤ sup
0<|w|<ε
0<s<ε

−F (t, w + sx) + F (t, w)
s

,

when s is small enough such that |sx| < δ. Finally we take ε↘ 0 and get

0 ≤ (−F )0(t, 0; x) = F 0(t, 0;−x) for all x ∈ R
N .

This implies, 0 ∈ ∂̄F (t, 0) for a.e. t ∈ [0, T ].

3. FIRST TYPE PROBLEM

In order to obtain the existence of at least two nontrivial solutions for (Pλ,µ) we
impose some further assumptions on the convex function j : RN×RN →]−∞,+∞]
which satisfies (J1) and (J2):

(J3) j(0, 0) = 0, j(x, y) ≥ 0 for all (x, y) ∈ RN × RN .

Theorem 3.1. Let F : [0, T ]× R
N → R be a function satisfying (F1) − (F5)

and let j : RN ×RN →]−∞,+∞] be a function satisfying (J1)− (J3). Then for
each fixed µ > 0, there exists an open interval Λµ ⊂]0,+∞[ such that for each
λ ∈ Λµ, the problem (Pλ,µ) has at least two nontrivial solutions.

Proof. Let µ > 0 be fixed. We define the function g :]0,+∞[→ R, by

g(t) = sup {−F (u) : ϕγ(u) + µJ(u) ≤ t } , for all t > 0.

Using (2.3) for r ∈]p, p∗[ it follows that for all u ∈W 1,p we have

−F (u) ≤ ε

γ
‖u‖p

γ +
ĉr‖αδε‖L1(0,T )

δ̄r−1
ε

‖u‖r
γ .

Since p < r, this implies

lim
t→0+

g(t)
t

= 0.

Using (F5) we define u0(t) = s0 for a.e. t ∈ [0, T ]. Then, u0 ∈ W 1,p \ {0} and
−F (u0) > 0. Due to the convergence relation above, it is possible to choose a real
number t0 such that 0 < t0 < ϕγ(u0) + µJ(u0) and

g(t0)
t0

< [ϕγ(u0) + µJ(u0)]
−1 · (−F (u0)).
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We choose ρ0 > 0 such that

g(t0) < ρ0 < [ϕγ(u0) + µJ(u0)]
−1 · (−F (u0))t0. (3.1)

We apply Theorem 5.2 to the space W1,p, the interval Λ =]0,+∞[ and the
functions G,H : W 1,p → R, h : Λ → R defined by

G(u) = ϕγ(u), ψ(u) = µJ(u),H(u) = F (u), h(λ) = ρ0λ.

By Proposition 2.2 the assumption (a) from Theorem 5.2 is fulfilled.
We prove now the minimax inequality

sup
λ∈Λ

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
< inf

u∈W 1,p
sup
λ∈Λ

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
.

The function
λ �→ inf

u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
is upper semicontinuous on Λ. Since

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
≤ ϕγ(u0) + µJ(u0) + λF (u0) + ρ0λ

and ρ0 < −F (u0), it follows that

lim
λ→+∞

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
= −∞.

Thus we can find λ ∈ Λ such that

β1 : = sup
λ∈Λ

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
= inf

u∈W 1,p

(
ϕγ(u) + µJ(u) + λF (u) + ρ0λ

)
.

In order to prove that β1 < t0, we distinguish two cases:

I. If 0 ≤ λ < t0
ρ0

, we have

β1 ≤ ϕγ(0) + µJ(0) + λF (0) + ρ0λ = λρ0 < t0.

II. If λ ≥ t0
ρ0

, then we use ρ0 < −F (u0) and the inequality (3.1) to get

η1 ≤ ϕγ(u0)+µJ(u0)+λF (u0)+ρ0λ ≤ ϕγ(u0)+µJ(u0)+
t0
ρ0

(ρ0+F (u0)) < t0.
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From g(t0) < ρ0 it follows that for all u ∈ W 1,p with ϕγ(u) + µJ(u) ≤ t0 we
have −F (u) < ρ0. Hence

t0 ≤ inf {ϕγ(u) + µJ(u) : −F (u) ≥ ρ0} .
On the other hand,

β2 = inf
u∈W 1,p

sup
λ∈Λ

(ϕγ(u) + µJ(u) + λF (u) + ρ0λ)

= inf {ϕγ(u) + µJ(u) : −F (u) ≥ ρ0} .
We conclude that

β1 < t0 ≤ β2.

Hence, assumption (b) from Theorem 5.2 holds. Then, by Theorem 5.2 it follws that
there exists an open interval Λµ ⊆]0,∞) such that for each λ ∈ Λµ the function
ϕγ + µJ + λF has at least three critical points in W 1,p. By Proposition 2.1 it
follows that these critical points are solutions of (Pλ,µ). Since 0 ∈ ∂̄F (t, 0) for a.e.
t ∈ [0, T ], we get that at least two of the above solutions are nontrivial.

Remark 3.1. The two conditions from (J3) can be replaced by

(J ′
3) j(x, y) ≥ j(0, 0) for all (x, y) ∈ R

N × R
N .

Then, all the proofs above can be adapted by considering

J(u) = j(u(0), u(T ))− j(0, 0).

Corollary 3.1. Let F : [0, T ]× R
N → R be a function satisfying (F1)− (F5)

and let b : RN ×RN → R be a positive, convex and Gâteaux differentiable function
with b(0, 0) = 0. Assume that S ⊂ R

N × R
N is a nonempty closed convex cone

with S �= {(0, 0)}, whose normal cone we denote by NS . Then for each fixed
γ, µ > 0, there exists an open interval Λ0 ⊂]0,+∞[ such that for each λ ∈ Λ0,
the following problem

(P̂λ,µ)




−[hp(u′)]′ + γhp(u) ∈ λ∂̄F (t, u) a.e. t ∈ [0, T ],

(u(0), u(T )) ∈ S,(
hp(u′)(0),−hp(u′)(T )

)
∈ µ∇b(u(0), u(T ))+ µNS(u(0), u(T )),

has at least two nontrivial solutions.

Proof. The statement follows by applying Theorem 3.1 to the function F and
the convex function j : R

N × R
N →] −∞,+∞] defined by

j(x, y) = b(x, y) + IS(x, y), for all (x, y) ∈ R
N × R

N ,
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where

IS(x, y) =

{
0, if (x, y) ∈ S

+∞, if (x, y) ∈ R
N × R

N \ S,
is the indicator function of the cone S.

Note, that in this case D(j) = S and j satisfies the conditions (J1) − (J3).
Moreover,

∂j(x, y) = ∇b(x, y)+ ∂IS(x, y) = ∇b(x, y)+NS(x, y) for all (x, y) ∈ S.

Example 3.1. We give an example of a function F that satisfies the assumptions
(F1) to (F5): Let F : [0, T ]× R

N → R be defined by

F (t, x) = f(t) − min{|x|p+α, |x|p−β + 1} for all t ∈ [0, T ], x ∈ R
N ,

where α > 0, β ∈]0, p[, f ∈ L1(0, T ).
Various possible choices of b and S from Corollary 3.1 recover some classical

boundary conditions. For instance:

(a) b = 0 and S = {(x, x) : x ∈ R
N} we get periodic boundary conditions

u(0) = u(T ), u′(0) = u′(T );
(b) b = 0 and S = R

N ×RN we get Neumann type boundary conditions u′(0) =
u′(T ) = 0;

(c) b(z) = 1
2 (Az, z)R2N , z ∈ R

2N , where A is a symmetric, positive 2N × 2N
real valued matrix, and S = R

N ×R
N ; we get the following mixed boundary

conditions (
hp(u′)(0)

−hp(u′)(T )

)
= A

(
u(0)

u(T )

)
.

For these choices of F , b and S it follows by Corollary 3.1 that for each fixed
γ, µ > 0, there exists an open interval Λ0 ⊂]0,+∞[ such that for each λ ∈ Λ0 the
problem (P̂λ,µ) has at least two nontrivial solutions.

4. SECOND TYPE PROBLEM

Theorem 4.1. Let F : [0, T ]× R
N → R be a function satisfying (F1) − (F5)

and let j : RN ×RN → R be a convex function. Then, there exist a non-degenerate
compact interval [a, b] ⊂]0,+∞[ and a number σ0 > 0 such that for every λ ∈ [a, b]
there exists µ0 > 0 such that for each µ ∈]0, µ0[, the problem (Pλ,µ) has at least
three solutions with norms less than σ 0. Moreover, if 0 /∈ ∂j(0, 0), then these
solutions are nontrivial.
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Proof. We define the function g :]0,+∞[→ R, by

g(t) = sup {−F (u) : ϕγ(u) ≤ t } , for all t > 0.

Using (2.3) for r ∈]p, p∗[ it follows that for all u ∈W 1,p we have

−F (u) ≤ ε

γ
‖u‖p

γ +
ĉr‖αδε‖L1(0,T )

δ̄r−1
ε

‖u‖r
γ .

Since p < r, this implies

lim
t→0+

g(t)
t

= 0.

As in the proof of Theorem 3.1, by (F5) there exists u0 ∈ W 1,p \ {0} such that
−F (u0) > 0. Due to the convergence relation above, it is possible to choose a real
number t0 such that 0 < t0 < ϕγ(u0) and

g(t0)
t0

< [ϕγ(u0)]
−1 · (−F (u0)).

We choose ρ0 > 0 such that

g(t0) < ρ0 < [ϕγ(u0)]
−1 · (−F (u0))t0.

We apply Theorem 5.3 to the space W1,p, the interval I =]0,+∞[ and the
function Ψ : W 1,p × I → R defined by

Ψ(u, λ) = ϕγ(u) + λ (ρ0 + F (u)) , for all (u, λ) ∈W 1,p × I

and Φ : W 1,p → R by

Φ(u) = J(u) for all u ∈W 1,p.

Clearly, by Proposition 2.2 Ψ(·, λ) and Φ are sequentially weakly l.s.c. for all
u ∈ W 1,p. Moreover, Ψ(·, λ) is continuous (the norm ϕγ and F are continuous
functions), coercive (by Proposition 2.2), and obviously Ψ(u, ·) is concave for all
u ∈W 1,p.

By the same technique as in the proof of Theorem 3.1 we prove the minimax
inequality

sup
λ∈I

inf
u∈W 1,p

Ψ(u, λ) < inf
u∈W 1,p

sup
λ∈I

Ψ(u, λ).

Note, that the role of the function ϕγ + J + λF + ρ0λ from Theorem 3.1 is now
replaced by Ψ(·, λ).

We can apply Theorem 5.3. Fix δ > η1, and for every λ ∈ I denote

Sλ =
{
u ∈W 1,p : Ψ(u, λ) < δ

}
.
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There exists a non-empty open set I0 ⊂]0,+∞[ with the following property: for
every λ ∈ I0 there exists λ0 > 0, such that for each µ ∈]0, µ0[, the functional

u→ Ψ(u, λ) + µΦ(u)

has at least two local minima lying in the set Sλ. Let [a, b] ⊂ I0 be a non-degenerate
compact interval.

We prove now the assertion of our theorem: Let λ ∈ [a, b] be a real number.
From what stated above, there exists µ0 > 0 such that for all µ ∈]0, µ0[ the func-
tional E(λ, µ, ·) admits at least two local minima u1

λ,µ, u
2
λ,µ ∈ Sλ, therefore by

Proposition 5.1 (for G(u) = λF (u), ψ(u) = ϕγ(u) + µJ(u), u ∈ W 1,p) these are
critical points of E(λ, µ, ·).

Observe that
S :=

⋃
λ∈[a,b]

Sλ ⊆ Sa ∪ Sb.

Since Ψ(·, λ) is coercive (see Proposition 2.2 applied for E(λ, 0, ·)), the latter sets
are bounded, hence S is bounded as well. By choosing σ0 > sup

u∈S
‖u‖γ1 , we get

‖u1
λ,µ‖γ1, ‖u2

λ,µ‖γ1 < σ0.

To prove the existence of a third critical point for E(λ, µ, ·), we apply Proposition
5.2 (for G(u) = λF (u) + ϕγ(u) + µJ(u), ψ(u) = 0, u ∈ W 1,p; note that, since J
is convex and continuous, it is then also locally Lipschitz), since the (PS) condition
holds by Proposition 2.2. Finally, by Proposition 2.1 it follows that these critical
points are solutions of (Pλ,µ).

Obviously, if 0 /∈ ∂j(0, 0), then each solution is nontrivial.

Example 4.1. We give an example of functions F and j that satisfy the as-
sumptions of Theorem 4.1: Let F : [0, T ]× R

N → R be defined by

F (t, x) = −f(t) ·min{|x|p+α, |x|p−β + 1} for all t ∈ [0, T ], x∈ R
N ,

where α > 0, β ∈]0, p[, f ∈ L1(0, T ; R+)\{0}, and let j : R
N ×R

N → R be given
by

j(x, y) = max{|(x, y)−(1, 1)|a+1, |(x, y)−(1, 1)|b+1} for all (x, y) ∈ R
N×R

N ,

where a > b ≥ 1 and (1, 1) ∈ R
N × R

N denotes the vector with all coordinates
1. By Theorem 4.1 it follows that in this case there exist at least three nontrivial
solutions for the eigenvalue problem (Pλ,µ).



Multiplicity Results for Double Eigenvalue Problems Involving the p-Laplacian 1107

5. APPENDIX - BASIC NOTIONS AND RESULTS

Let (X, ‖ · ‖) be a real Banach space and X∗ its topological dual. A function
G : X → R is called locally Lipschitz if each point u ∈ X possesses a neighborhood
Nu such that |G(u1) − G(u2)| ≤ L‖u1 − u2‖ for all u1, u2 ∈ Nu, for a constant
L > 0 depending on Nu. The generalized directional derivative of G at the point
u ∈ X in the direction z ∈ X is

G0(u; z) = lim sup
w→u,s→0+

G(w + sz) − G(w)
s

.

The generalized gradient (in the sense of Clarke [1]) of G at u ∈ X is defined by

∂̄G(u) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ G0(u; x), ∀x ∈ X},

where 〈·, ·〉 is the duality pairing between X ∗ and X .
Let G : X → R be a locally Lipschitz function, and let ψ : X →] − ∞,+∞]

be a convex, proper, l.s.c. function.

Definition 5.1. [14]. An element u ∈ X is said to be a critical point of
E = G + ψ, if

G0(u; v− u) + ψ(v)− ψ(u) ≥ 0, ∀v ∈ X.

In this case, E(u) is a critical value of E .
In the case of differentiable functions one gets the notion of critical point intro-

duced by A. Szulkin [18].

Definition 5.2. [14]. The functional E = G + ψ is said to satisfy the Palais-
Smale condition at level c ∈ R (shortly , (PS )c) if every sequence {un} in X

satisfying E(un) → c and

G0(un; v − un) + ψ(v)− ψ(un) ≥ −εn‖v − un‖, ∀v ∈ X,

for a sequence {εn} ⊂ [0,∞) with εn → 0, contains a convergent subsequence.
If (PS)c is verified for all c ∈ R, E is said to satisfy the Palais-Smale condition
(shortly , (PS)).

Proposition 5.1. [12, Proposition 2.1]. Each local minimum of E = G + ψ is
necessarily a critical point of E .

Theorem 5.2. [12, Theorem 3.1]. Assume that X is a separable and reflexive
Banach space, Λ is a real interval, G,H : X → R are locally Lipschitz functions
and ψ : X →] −∞,+∞] is a convex, proper, l.s.c. function, such that:
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(a) for every λ ∈ Λ the function G+ψ+λH fulfils the (PS) condition, together
with

lim
‖u‖→+∞

(
G(u) + ψ(u) + λH(u)

)
= +∞;

(b) there exists a continuous concave function h : Λ → R satisfying

sup
λ∈Λ

inf
u∈X

(
G(u) + ψ(u) + λH(u) + h(λ)

)
< inf

u∈X
sup
λ∈Λ

(
G(u) + ψ(u) + λH(u) + h(λ)

)
.

Then, there is an open interval Λ0 ⊆ Λ such that for each λ ∈ Λ0 the function
G + ψ + λH has at least three critical points in X .

The following result is proved by Marano and Motreanu and it generalizes results
of P. Pucci, J. Serrin [16]:

Proposition 5.2. [12, Corollary 2.1]. Let I = G+ψ satisfying the Palais-Smale
condition (PS). If E has two local minima u 0, u1 ∈ X , then it admits at least three
critical points.

The main tool in our investigations is the result of B. Ricceri [17, Theorem 4],
which we state for the reader’s convenience in a slightly modified form (adapted
for the weak topology), suitable for our purposes:

Theorem 5.3. Let X be a real, reflexive, separable Banach space, let I ⊆ R be
an interval, and let Ψ : X × I →]−∞,+∞] be a function satisfying the following
conditions:

(1) Ψ(x, ·) is concave in I for all x ∈ X;
(2) Ψ(·, ν) is upper semicontinous, coercive and sequentially weakly lower semi-

continuous in X for all ν ∈ I;
(3) η1 := sup

ν∈I
inf
x∈X

Ψ(x, ν) < inf
x∈X

sup
ν∈I

Ψ(x, ν) =: η2.

Then, for each δ > η1 there exists a non-empty open set I0 ⊂ I with the following
property: for every ν ∈ I0 and every sequentially weakly l.s.c. function Φ : X → R,
there exists τ0 > 0 such that, for each τ ∈]0, τ0[, the function Ψ(·, ν) + τΦ(·) has
at least two local minima lying in the set {x ∈ X : Ψ(x, ν) < δ}.
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