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CONNECTEDNESS AND PATH-CONNECTEDNESS
OF SOLUTION SETS TO SYMMETRIC VECTOR

EQUILIBRIUM PROBLEMS

Ren-you Zhong, Nan-jing Huang and Mu-Ming Wong*

Abstract. In this paper, we study the connectedness and path-connectedness of
the solution sets for symmetric vector equilibrium problems in locally convex
Hausdorff topological vector spaces under some suitable assumptions. The
results presented in this paper generalize some known results in [10, 14, 24,
32, 33].

1. INTRODUCTION

In 1980, vector variational inequality was first introduced and studied by Gian-
nessi [21]. Later on, vector variational inequality and its various extensions have
been studied by Chen and Cheng [11], Chen, Huang and Yang [12], Yang [36] and
other authors. Inspired by the study of vector variational inequalities, more general
equilibrium problems (see [7, 8]) have been extended to the case of vector-valued
bifunctions, known as vector equilibrium problems. The equilibrium problem con-
tains as special cases, for instance, optimization problem, Nash equilibria problem,
fixed point problem, variational inequalities, and complementarity problem (see, for
example, [1, 2, 9, 13, 22, 26, 27] and the references therein).

The system of vector equilibrium problems, i.e., a family of equilibrium problems
for vector-valued bifunctions defined on a product set were introduced by Ansari
et al. [3] with applications in vector optimization problems and Nash equilibrium
problem for vector-valued functions. The system of vector equilibrium problems
contain system of equilibrium problems, systems of vector variational inequalities,
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system of vector variational-like inequalities, system of optimization problems, fixed
point problems and several related topics as special cases (see, for example, [3, 4,
5, 15, 16, 28, 30, 31, 29, 34] and the references therein).

On the other hand, the symmetric vector equilibrium problem which is a gen-
eralization of the equilibrium problem has been studied by many authors. A main
topic of current research is to establish existence theorems (see, for example, [18,
19, 20, 23]). Another important topic is to study the topological properties of the
solution sets, as it provides the possibility of continuously moving from one solution
to any other solution.

Recently, Cheng [14] and Lee ea al. [32] studied the connectedness of weak
efficient solutions set for single-valued vector variational inequalities in finite di-
mensional Euclidean space. Lee and Bu [33] studied the connectedness of the
solution sets for affine vector variational inequalities with noncompact polyhedral
constraint sets and positive semidefinite (or monotone) matrices. Gong [24] studied
the connectedness and path-connectedness of various solution sets for single-valued
vector equilibrium problems in a real locally convex Hausdorff topological vector
space. Gong [25] studied the connectedness of the set of efficient solutions for
the generalized system with monotone bifunctions in real locally convex Hausdorff
topological vector spaces. Very recently, Chen et al. [10] studied the existence, con-
nectedness, and the compactness of the weak efficient solutions set for set-valued
vector equilibrium problems and the set-valued vector Hartman-Stampacchia varia-
tional inequalities in normed linear spaces. However, to the best of our knowledge,
there is no paper dealing with the connectedness and path-connectedness of the
solution set for the symmetric vector equilibrium problem.

Inspired and motivated by the works mentioned above, in this paper, we study the
connectedness and path-connectedness properties of the solution set to the symmetric
vector equilibrium problem in locally convex Hausdorff topological vector spaces.
The results presented in this paper generalize some corresponding results in the
literature [10, 14, 24, 32, 33].

2. PRELIMINARIES

Throughout this paper, let X ,Y , E and Z be real locally convex Hausdorff
topological vector spaces. Let A ⊂ X and B ⊂ E be nonempty closed convex
subsets, F : A × B × A → 2Y and G : A × B × B → 2Z be two set-valued
mappings. Let C ⊂ Y and P ⊂ Z be two closed convex pointed cones with
intC �= ∅ and intP �= ∅. Let Y ∗ and Z∗ be the topological dual spaces of Y and
Z, respectively. Let C∗ and P ∗ be the dual cones of C and P , respectively, that is,

C∗ = {f ∈ Y ∗ : 〈f, y〉 ≥ 0, for all y ∈ C}
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and
P ∗ = {g ∈ Y ∗ : 〈g, y〉 ≥ 0, for all y ∈ P}.

The symmetric vector equilibrium problem (SV EP ) is the problem of finding
(x, y) ∈ A × B such that{

F (x, y, u) ∩ (−intC) = ∅, ∀u ∈ A,

G(x, y, v)∩ (−intP ) = ∅, ∀v ∈ B.
(2.1)

Remark 2.1. (i) If C = P , f : A × B → Y and g : A × B → Z are two
single-valued mappings,

F (x, y, u) = f(u, y)− f(x, y), ∀(x, y, u) ∈ A × B × A

and
G(x, y, v) = g(x, v)− g(x, y), ∀(x, y, v) ∈ A × B × B,

then (2.1) reduces to a single-valued symmetric vector equilibrium problem consid-
ered by Fu [18]; (ii) If G ≡ 0, F (x, y, u) = f(x, u) for any (x, y, u) ∈ A×B ×A,
then (2.1) is the equilibrium problem which was considered and studied by many
authors (see, for example, [1, 2, 9, 13, 22, 26, 27] and the references therein); (iii)
If G ≡ 0, T is a mapping from A to L(X, Y ) where L(X, Y ) denotes the space
of all continuous linear operators from X to Y, and F (x, y, u) = 〈Tx, u − x〉 for
any (x, y, u) ∈ A × B × A, then (2.1) is the classic vector variational inequality
problem which was introduced by Giannessi [21].

For any (f, g) ∈ (C∗\{0}) × (P ∗\{0}), we also consider the following scalar
symmetric equilibrium problem (SSEP )f,g: finding (x, y) ∈ A × B, such that{

f(F (x, y, u)) ≥ 0, ∀u ∈ A,

g(G(x, y, v)) ≥ 0, ∀v ∈ B.

We denote the solution sets of (SV EP ) and (SSEP )f,g by S(F, G) and
S(f, g), respectively.

Definition 2.1. A set-valued mapping T : X → 2Y is said to be
(i) closed if GraphT = {(x, y) ∈ X × Y : y ∈ T (x)} is closed in X × Y ;
(ii) upper semicontinuous if, for every x ∈ X and every open set V satisfying

T (x) ⊂ V, there exists a neighborhood U of x such that T (U) ⊂ V ;
(iii) lower semicontinuous if, for any x ∈ X , y ∈ T (x) and any neighborhood

N (y) of y, there exists a neighborhood N (x) of x such that T (x)
⋂N (y) �= ∅

for all x ∈ N (x).



824 Ren-you Zhong, Nan-jing Huang and Mu-Ming Wong

Note that T : X → 2Y is lower semicontinuous at x ∈ X if and only if, for
any sequence xn → x and y ∈ T (x), there exists a sequence yn ∈ T (xn) such that
yn → y.

Definition 2.2. Let T : A × B × D → 2Y be a set-valued mapping. For any
fixed (x, y) ∈ A × B, T (x, y, ·) is said to be

(i) C-convex if, for every z1, z2 ∈ D and t ∈ [0, 1],

tT (x, y, z1) + (1 − t)T (x, y, z2) ⊂ T (x, y, tz1 + (1− t)z2) + C;

(ii) C-quasiconvex if, for every z1, z2 ∈ D and t ∈ [0, 1], either

T (x, y, z1) ⊂ T (x, y, tz1 + (1− t)z2) + C

or
T (x, y, z2) ⊂ T (x, y, tz1 + (1 − t)z2) + C.

Definition 2.3. Let T : A × B × D → 2Y be a set-valued mapping. For
each fixed z ∈ D, T (·, ·, z) is said to be C-concave on A × B if, for any
(x1, y1), (x2, y2) ∈ A × B and t ∈ [0, 1], we have

T (tx1 + (1− t)x2, ty1 + (1− t)y2, z) ⊂ tT (x1, y1, z) + (1 − t)T (x2, y2, z) + C.

Remark 2.2. Clearly, for each fixed z ∈ D, if T (·, ·, z) is C-concave on A×B,
then T is C-concave with respect to its first and second arguments, respectively.

Example 2.1. Let C ⊂ Y be closed convex pointed cone, T : A×B×D → 2Y

is defined by
T (x, y, z) = f(x) + g(y) + h(z)

where f is C-concave on A and g is C-concave on B. Then, for any z ∈ D,
T (·, ·, z) is C-concave on A×B. Indeed, for any z ∈ D, (x1, y1), (x2, y2) ∈ A×B
and t ∈ [0, 1],

T (tx1 + (1− t)x2, ty1 + (1− t)y2, z)

= f(tx1 + (1− t)x2) + g(ty1 + (1− t)y2) + h(z)

⊂ tf(x1) + (1 − t)f(x2) + C + tg(y1) + (1 − t)g(y2) + C + h(z)

⊂ t(f(x1) + g(y1) + h(z)) + (1 − t)(f(x2) + g(y2) + h(z)) + C

= tT (x1, y1, z) + (1− t)T (x2, y2, z) + C.

This implies that T (·, ·, z) is C-concave on A × B.



Connectedness and Path-connectedness of Solution Sets to SVEP 825

Definition 2.4. A topological space X is said to be

(i) connected if, there exist no open subsets Vi ⊂ X with Vi �= ∅ for i = 1, 2
such that V1 ∪ V2 = X and V1 ∩ V2 = ∅;

(ii) path-connected if, for each pair of points x and y in X , there exists a contin-
uous mapping φ : [0, 1] → X such that φ(0) = x and φ(1) = y.

Lemma 2.1. Suppose that intC �= ∅ and intP �= ∅. If F (x, y, A) + C and
G(x, y, B) + P are convex sets for each (x, y) ∈ A × B, then

S(F, G) =
⋃

(f,g)∈(C∗\{0})×(P∗\{0})
S(f, g).

Proof. It is clear that

S(F, G) ⊃
⋃

(f,g)∈(C∗\{0})×(P∗\{0})
S(f, g). (2.2)

So we only need to show that the converse inclusion of (2.2) holds. For each
(x, y) ∈ S(F, G), we have{

F (x, y, u) ∩ (−intC) = ∅, ∀u ∈ A,

G(x, y, v)∩ (−intP ) = ∅, ∀v ∈ B

and so {
F (x, y, A) ∩ (−intC) = ∅,
G(x, y, B) ∩ (−intP ) = ∅.

Now, since C and P are convex pointed cones with{
(F (x, y, A) + C) ∩ (−intC) = ∅,
(G(x, y, B)+ P ) ∩ (−intP ) = ∅.

and F (x, y, A)+ C and G(x, y, B)+ P are convex sets, by the separation theorem
of convex sets, there exists a (f, g) ∈ (Y ∗\{0})× (Z∗\{0}) such that

inf{f(F (x, y, u) + c) : u ∈ A, c ∈ C} ≥ sup{f(−c) : c ∈ C} (2.3)

and

inf{g(G(x, y, v)+ p) : v ∈ B, p ∈ P} ≥ sup{f(−p) : p ∈ P}. (2.4)



826 Ren-you Zhong, Nan-jing Huang and Mu-Ming Wong

From (2.3), we get that f ∈ C∗\{0} and

f(F (x, y, u)) ≥ 0, for all u ∈ A.

Also, by (2.4), we see that g ∈ P∗\{0} and

g(G(x, y, v)) ≥ 0, for all v ∈ B.

It follows that (x, y) ∈ S(f, g) and so the converse inclusion of (2.2) holds. This
completes the proof.

Lemma 2.2. [17]. Let {Xi}i∈I be a family of nonempty convex subsets where
each Xi is contained in a Hausdorff topological vector space E i. For each i ∈ I ,
let Pi : X → 2Xi be a set-valued mapping such that

(i) for each i ∈ I , Pi(x) is convex;
(ii) for each x ∈ X , xi /∈ Pi(x);

(iii) for each yi ∈ Xi, P−1
i (yi) is open in X ;

(iv) for each i ∈ I , there exist a nonempty compact subset N of X and a nonempty
compact convex subset Bi of Xi such that for each x ∈ X\N , there is a
i ∈ I satisfying Pi(x) ∩ Bi �= ∅.

Then there exists x ∈ X such that Pi(x) = ∅ for all i ∈ I.

Lemma 2.3. Let A ⊂ X and B ⊂ E be nonempty convex subsets, let C ⊂ Y
and P ⊂ Z be closed convex pointed cone with intC �= ∅ and intP �= ∅. Suppose
F : A × B × A → 2Y and G : A × B × B → 2Z are two set-valued mappings
which satisfy conditions:

(i) for each (x, y) ∈ A × B, F (x, y, x) ⊂ C, F (x, y, y) ⊂ P ;
(ii) for each (x, y) ∈ A×B, F (x, y, ·) is C-quasiconvex on A; for each (x, y) ∈

A × B, G(x, y, ·) is P -quasiconvex on B;
(iii) for each u ∈ A, F (·, ·, u) is lower semicontinuous on A×B; for each v ∈ B,

G(·, ·, v) is lower semicontinuous on A × B;
(iv) there exists nonempty compact convex sets D1 ⊂ A and D2 ⊂ B, with each

(x, y) ∈ A×B\(D1×D2), there exist x′ ∈ D1 such that F (x, y, x′)∩−intC
�= ∅ or a y′ ∈ D2 such that G(x, y, y ′) ∩−intP �= ∅.

Then S(f, g) �= ∅ for all (f, g) ∈ (C∗\{0})× (P ∗\{0}).

Proof. Define P1 : A × B → 2A and P2 : A × B → 2B, respectively, as
follows:

P1(x, y) = {u ∈ A : f(F (x, y, u)) �⊂ R1
+}
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and

P2(x, y) = {v ∈ B : g(G(x, y, v)) �⊂ R1
+}.

We prove that P1 and P2 satisfy all the conditions of Lemma 2.2.
First, we show that P1(x, y) is convex for any (x, y) ∈ K. Suppose that P1(x, y)

is not convex. Then there exist t1, t2 ∈ [0, 1] with t1 + t2 = 1, u1 ∈ P1(x, y) and
u2 ∈ P1(x, y) such that f(F (x, y, t1u1 + t2u2)) ⊂ R1

+. Since F (x, y, ·) is C-
quasiconvex on A, by Definition 2.2 (ii), either

F (x, y, u1) ⊂ F (x, y, t1u1 + t2u2) + C

or
F (x, y, u2) ⊂ F (x, y, t1u1 + t2u2) + C.

It follows that

either f(F (x, y, u1)) ⊂ R1
+ or f(F (x, y, u2)) ⊂ R1

+,

which is a contradiction with u1 ∈ P1(x, y) and u2 ∈ P1(x, y). Thus, P1(x, y) is
convex for any (x, y) ∈ A×B. Similarly, we can prove that P2(x, y) is convex for
any (x, y) ∈ A × B.

Second, by condition (i), it is easy to see that x /∈ P1(x, y) and y /∈ P2(x, y)
for any (x, y) ∈ A × B.

Third, we show that P−1
1 (u) and P−1

2 (v) are open in A × B for any (u, v) ∈
A × B. It is equivalently to show the We only need to prove that the complement
sets of P−1

1 (u) and P−2
1 (v) are closed. In fact,

[P−1
1 (u)]c = {(x, y) : f(F (x, y, u)) ⊂ R1

+}.
Let {(xn, yn)} ∈ [P−1

1 (u)]c with (xn, yn) → (x0, y0). For each w0 ∈ F (x0, y0, u),
from the lower semicontinuity of F (·, ·, u), there exists wn ∈ F (xn, yn, u) such that
wn → w0. Since {(xn, yn)} ∈ [P−1

1 (u)]c, we have f(F (xn, yn, u)) ⊂ R1
+ and so

f(wn) ≥ 0. Now the continuity of f implies that f(w0) ≥ 0. The arbitrariness of
w0 shows that f(F (x0, y0, u)) ⊂ R1

+. Thus, (x0, y0) ∈ [P−1
1 (u)]c and [P−1

1 (u)]c

is closed. Similarly, we can prove that [P−1
2 (v)]c is closed. Therefore, P−1

1 (u) and
P−1

2 (v) are open in A × B.
Finally, from condition (iv), there exists a nonempty compact set D1×D2 ⊂ A×

B such that, for any (x, y) ∈ K\D, either P1(x, y)∩D1 �= ∅ or P2(x, y)∩D2 �= ∅.
Thus, we see that P1 and P2 satisfy all the conditions of Lemma 2.2 and so

there exists (x, y) ∈ A × B such that Pi(x, y) = ∅, i.e.,{
f(F (x, y, u)) ≥ 0, ∀u ∈ A,

g(G(x, y, v)) ≥ 0, ∀v ∈ B.

Thus, S(f, g) �= ∅. This completes the proof.
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Remark 2.3. Lemma 2.1 is a generalization of Theorem 4.1 in [10] from vector
equilibrium problem to symmetric vector equilibrium problem.

Lemma 2.4. Let A ⊂ X and B ⊂ E be nonempty closed convex subsets,
letC ⊂ Y and P ⊂ Z be closed convex pointed cones. Let F : A × B × A → 2Y

and G : A × B × B → 2Z be set-valued mappings. Suppose that F (x, y, ·) is
C-convex and G(x, y, ·) is P -convex for any (x, y) ∈ A× B, then F (x, y, A)+ C
and F (x, y, B) + P are convex.

Proof. For t1, t2 ∈ [0, 1] with t1 + t2 = 1, y1, y2 ∈ F (x, y, A) and c1, c2 ∈ C,
there exist u1, u2 ∈ A such that y1 ∈ F (x, y, u1) and y2 ∈ F (x, y, u2). Since A is
convex and F (x, y, ·) is C-convex, we have

t1(y1 + c1) + t2(y2 + c2) = (t1y1 + t2y2) + (t1c1 + t2c2)

⊂ t1F (x, y, u1) + t2F (x, y, u2) + C

⊂ F (x, y, t1u1 + t2u2) + C + C

⊂ F (x, y, A) + C

and so F (x, y, A) + C is convex. Similarly, we can show that G(x, y, B) + P is
convex. This completes the proof.

Lemma 2.5. [35]. Suppose that the topological space X is connected and the
set-valued mapping T : X → 2Y is upper semicontinuous. If for every x ∈ X, the
set T (x) is nonempty and connected, then the set T (X) is connected.

We also need the following lemma.

Lemma 2.6. Suppose that X is path-connected and the mapping T : X → Y
is continuous, then the set T (X) is path-connected.

Proof. For each pair of points y1 and y2 in T (X), there exist some x1 ∈ X and
x2 ∈ X such that T (x1) = y1 and T (x2) = y2. Since X is path-connected, there
exists a continuous mapping φ : [0, 1] → X such that φ(0) = x1 and φ(1) = x2.
Define a mapping Ψ : [0, 1] → T (X) by Ψ(t) = T (Φ(t)) for all t ∈ [0, 1]. By
the continuity of T and φ, we know that Ψ(t) is continuous. Moreover, we have
Ψ(0) = T (Φ(0)) = T (x1) = y1 and Ψ(1) = T (Φ(1)) = T (x2) = y1. Since y1

and y2 in T (X) are arbitrary, it follows that the set T (X) is path-connected. This
completes the proof.

Lemma 2.7. [6]. Let X, Y be two topological spaces and T : X → 2 Y be a set-
valued mapping. If Y is compact and T is closed, then T is upper semicontinuous.



Connectedness and Path-connectedness of Solution Sets to SVEP 829

3. CONNECTEDNESS OF THE SOLUTION SET

In this section, we discuss the connectedness of the solution set for the set-valued
symmetric vector equilibrium problem. The following Theorem 3.1 establishes the
connectedness result of the solution set for the set-valued SV EP .

Theorem 3.1. Suppose that the following conditions are satisfied:
(i) for each (x, y) ∈ A × B, F (x, y, x) ⊂ C, F (x, y, y) ⊂ P ;

(ii) for each (x, y, u) ∈ A×B×A, F (·, ·, u) is C-concave on A×B, F (x, y, ·) is
C-convex and C-quasiconvex on A; for any (x, y, v) ∈ A×B ×B, G(·, ·, v)
is P -concave on A × B, F (x, y, ·) is P -convex and P -quasiconvex on B;

(iii) for each u ∈ A, F (·, ·, u) is lower semicontinuous on A×B; for any v ∈ B,
G(·, ·, v) is lower semicontinuous on A × B;

(iv) {F (x, y, u) : x ∈ A, y ∈ B, u ∈ A} is bounded and {G(x, y, v) : x ∈ A, y ∈
B, v ∈ A} is bounded;

(v) there exist nonempty compact convex sets D1 ⊂ A and D2 ⊂ B, for
each (x, y) ∈ A × B\(D1 × D2), there exist some x′ ∈ D1 such that
F (x, y, x′) ∩−intC �= ∅ or some y′ ∈ D2 such that G(x, y, y ′) ∩−intP �= ∅.

Then S(F, G) is nonempty connected compact.

Proof. From Lemma 2.3, for each (f, g) ∈ (C∗\{0}) × (P ∗\{0}), we have
S(f, g) �= ∅ and so S(F, G) �= ∅. Define a set-valued mapping H : (C∗\{0}) ×
(P ∗\{0}) → 2A×B by

H(f, g) = S(f, g), ∀(f, g) ∈ (C∗\{0})× (P ∗\{0}).

We first prove that H(f, g) is convex. In fact, for each (x1, y1), (x2, y2) ∈
H(f, g), the definition of H implies that

{
f(F (x1, y1, u)) ≥ 0, ∀u ∈ A,

g(G(x1, y1, v)) ≥ 0, ∀v ∈ B
(3.1)

and {
f(F (x2, y2, u)) ≥ 0, ∀u ∈ A,

g(G(x2, y2, v)) ≥ 0, ∀v ∈ B.
(3.2)

Since A and B are convex, we known that A × B is convex. Thus, for any
t1, t2 ∈ [0, 1] with t1 + t2 = 1, we have t1(x1, y1) + t2(x2, y2) ∈ A × B. From
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condition (ii), F (·, ·, u) is C-concave and G(·, ·, v) is P -concave on A × B and so


F (t1x1 + t2x2, t1y1 + t2y2, u) ⊂ t1F (x1, y1, u)
+t2F (x2, y2, u) + C, ∀u ∈ A,

G(t1x1 + t2x2, t1y1 + t2y2, v) ⊂ t1G(x1, y1, v)
+t2G(x2, y2, v) + P, ∀v ∈ B.

(3.3)

It follows from (3.1), (3.2) and (3.3) that{
f(F (t1x1 + t2x2, t1y1 + t2y2, u)) ≥ 0, ∀u ∈ A,

g(G(t1x1 + t2x2, t1y1 + t2y2, v)) ≥ 0, ∀v ∈ B.

This implies that H(f, g) is convex and hence H(f, g) is connected.
Next we prove that H(·, ·) is upper semicontinuous on (C∗\{0})× (P ∗\{0}).

Since S(f, g) ⊂ S(F, G) ⊂ D1 × D2 and D1 × D2 is compact, we only need to
show that H is closed by Lemma 2.7. Let {(fn, gn), (xn, yn)} ⊂ Graph(H) with
(fn, gn) → (f0, g0) and (xn, yn) → (x0, y0). Then (x0, y0) ∈ D1 × D2 and{

fn(F (xn, yn, u)) ≥ 0, ∀u ∈ A,

gn(G(xn, yn, v)) ≥ 0, ∀v ∈ B.
(3.4)

For any u ∈ A, v ∈ B, w0 ∈ F (x0, y0, u) and z0 ∈ G(x0, y0, v), it follows from
condition (iii) that there exist wn ∈ F (xn, yn, u) and zn ∈ G(xn, yn, v) such that
wn → w0 and zn → z0. From (3.4), we have

fn(wn) ≥ 0, gn(zn) ≥ 0. (3.5)

Now the continuity of (f0, g0) implies that

f0(wn) → f0(w0), g0(zn) → g0(z0). (3.6)

Moreover, condition (iv) shows that {wn} and {zn} are bounded. It follows from
(3.6) that

lim
n→∞ fn(wn) = lim

n→∞(fn − f0)(wn) + lim
n→∞ f0(wn) = f0(w0)

and

lim
n→∞ gn(zn) = lim

n→∞(gn − g0)(zn) + lim
n→∞ g0(zn) = g0(z0).

By (3.5), we know that f0(w0) ≥ 0 and g0(z0) ≥ 0. Since w0 and z0 are arbitrary,{
f0(F (x0, y0, u)) ≥ 0, ∀u ∈ A,

g0(G(x0, y0, v)) ≥ 0, ∀v ∈ B.
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This implies that (x0, y0) ∈ H(f0, g0) and so H is closed. Therefore, H is upper
semicontinuous on (C∗\{0})×(P ∗\{0}). Moreover, from condition (ii) and Lemma
2.1 and 2.4, we have

S(F, G) =
⋃

(f,g)∈{C∗\{0}}×{P∗\{0}}
S(f, g),

and so Lemma 2.5 implies that S(F, G) is connected.
Finally, we show that S(F, G) is compact. Let (xn, yn) ∈ S(F, G) with

(xn, yn) → (x0, y0). We claim that (x0, y0) ∈ S(F, G). If (x0, y0) /∈ S(F, G),
then there exist some u0 ∈ A such that

F (x0, y0, u0) ∩−intC �= ∅ (3.7)

or some v0 ∈ B such that

G(x0, y0, v0) ∩−intP �= ∅. (3.8)

If (3.7) holds, then there exists some d0 ∈ F (x0, y0, u0) such that

d0 ∈ −intC. (3.9)

By the lower semicontinuity of F (·, ·, u0), there exists a sequence {dn} ∈ F (xn, yn, u0)
such that dn → d0. Since (xn, yn) ∈ S(F, G), we know that dn /∈ −intC and so
dn ∈ Y \{−intC}. Clearly, Y \{−intC} is closed. Since dn → d0, we have
d0 ∈ Y \{−intC} and so d0 /∈ −intC, which is a contradiction with (3.9). Thus,
(x0, y0) ∈ S(F, G). If (3.8) holds, by using the similar way, we can show that
(x0, y0) ∈ S(F, G). Therefore, S(F, G) is closed. Now the compactness of D1×D2

and S(F, G) ⊂ D1 ×D2 imply that S(F, G) is compact. This completes the proof.

Remark 3.1. (i) If A×B is compact in X×E , then condition (v) in Theorem 3.1
can be removed; (ii) Theorem 3.1 generalizes Theorem 4.5 of [24] from the single-
valued vector equilibrium problem to the set-valued symmetric vector equilibrium
problem; (iii) Theorem 3.1 generalizes Theorem 5.1 of [10] from the set-valued
vector equilibrium problem to the set-valued symmetric vector equilibrium problem;
(iv) Theorem 3.1 also generalizes the corresponding connectedness results in [14]
and [33].

We give the following example to illustrate Theorem 3.1.

Example 3.1. Let A = B = [0, 2] and C = P = R1
+. Let F (x, y, u) =

y + u2 − x2 for all (x, y, u) ∈ A × B × A and G ≡ 0. Then F and G satisfy all
the conditions of Theorem 3.1. Further, it is easy to see that

S(F, G) = {(x, y) : (x, y) ∈ [0, 2]× [0, 2], y ≥ x2}.
Clearly, S(F, G) is nonempty connected compact.
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4. PATH-CONNECTEDNESS OF THE SOLUTION SET

In this section, we establish a path-connectedness result of the solution set for
the symmetric vector equilibrium problem under some suitable assumptions.

Theorem 4.1. Suppose that all the conditions of Theorem 3.1 are satisfied.
Moreover, suppose that F and G satisfy the following monotonicity assumption
(Σ) : for any (x1, y1), (x2, y2) ∈ A × B with (x1, y1) �= (x2, y2),

(F (x1, y1, x2) ∩ (−intC))
⋃

(G(x1, y1, y2) ∩ (−intP )) = ∅

implies that

⇒ (F (x2, y2, x1) ∩ (−intC))
⋃

(G(x2, y2, y1) ∩ (−intP )) �= ∅.

Then S(F, G) is nonempty path-connected compact.

Proof. We first proof that for each (f, g) ∈ (C∗\{0})× (P ∗\{0}), S(f, g) has
exactly one solution in A × B. Let (x1, y1) ∈ S(f, g) and (x2, y2) ∈ S(f, g) with
(x1, y1) �= (x2, y2). Then{

f(F (x1, y1, u)) ≥ 0, ∀u ∈ A,

g(G(x1, y1, v)) ≥ 0, ∀v ∈ B
(4.1)

and {
f(F (x2, y2, u)) ≥ 0, ∀u ∈ A,

g(G(x2, y2, v)) ≥ 0, ∀v ∈ B.
(4.2)

Taking u = x2, v = y2 in (4.1) and u = x1, v = y1 in (4.2), respectively, we have{
f(F (x1, y1, x2)) ≥ 0,

g(G(x1, y1, y2)) ≥ 0
(4.3)

and {
f(F (x2, y2, x1)) ≥ 0,

g(G(x2, y2, y1)) ≥ 0.
(4.4)

It follows from (4.3) that{
F (x1, y1, x2) ∩ (−intC) = ∅,
G(x1, y1, y2) ∩ (−intP ) = ∅.

(4.5)
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By (4.5) and the monotonicity assumption (Σ), either F (x2, y2, x1)∩ (−intC) �= ∅
or G(x2, y2, y1)∩(−intP ) �= ∅. This is a contradiction with (4.4) and hence S(f, g)
is single-valued.

Moreover, from the proof of Theorem 3.1, we see that H(·, ·) = S(·, ·) is a
single-valued upper semicontinuous mapping on (C∗\{0})× (P ∗\{0}) and hence
continuous. Also, the convexity of (C∗\{0})× (P ∗\{0}) implies that it is a path-
connected set. It follows from Lemma 2.6 that S(F, G) = H((C∗\{0})×(P ∗\{0}))
is also path-connected. This completes the proof.

Remark 4.1. Theorem 4.1 generalizes Theorem 4.2 (i) of [32] from the single-
valued vector variational inequality to the set-valued symmetric vector equilibrium
problem.

The following Example 4.1 shows that assumption (Σ) can be satisfied.

Example 4.1. Let A = B = R, C = P = R1
+, F (x, y, u) = (y2 + 1)(u − x)

for all (x, y, u) ∈ A × B × A and G(x, y, v) = (x2 + 1)(v − y) for all (x, y, v) ∈
A × B × B. Then F and G satisfy the monotonicity assumption (Σ). Indeed, for
any (x1, y1), (x2, y2) ∈ A × B, (x1, y1) �= (x2, y2), if{

F (x1, y1, x2) = (y2
1 + 1)(x2 − x1) ≥ 0,

G(x1, y1, y2) = (x2
1 + 1)(y2 − y1) ≥ 0,

then we have x2 > x1 and y2 > y1. It follows that F (x2, y2, x1) = (y2
2 + 1)(x1 −

x2) < 0 and G(x2, y2, y1) = (x2
2 + 1)(y1 − y2) < 0. Therefore, F and G satisfy

the monotonicity assumption (Σ).
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