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ON ANALYTIC PROPERTIES AND CHARACTER ANALOGS OF
HARDY SUMS

Yilmaz Simsek

Abstract. The aim of this paper is to define Y (h, k) sum which is related to
the Hardy’s sums s5(h, k). On the semi-group G, matrix operation of this sum
is defined. Substituting mediants of Farey fractions into the matrix operation,
Y (h, k) sum is generalized. By using contour integration, the reciprocity
theorem of the Y (h, k) sum is proved. Moreover, by using L(1, χ) function
and Gauss sums, generalized character analogs of the Hardy sums are found.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

In [9], Iwasawa gave fundamental properties of the Dirichlet L-function, Dirich-
let character and generalized Bernoulli numbers. In [23], Srivastava and Choi gave
fundamental properties of the zeta functions, L-functions and Bernoulli numbers.
Zhang [22] studied on the asymptotic behavior of the mean value of Dedekind
sums, and gave the relation between Dedekind sums and L(1, χ). In [6], Berndt
and Goldberg studied analytic properties of Hardy sums. They proved the relations
between Hardy sums and finite trigonometric sums. In [12, 14, 15, 17, 18], the
author studied on Hardy sums. He gave relations between these sums, generalized
Bernoulli numbers, Hurwitz zeta function and L-function.

We summarize our work as follows:
In Section 2, we give analytic properties of the Hardy’s sums s5(h, k) and define

new sum Y (h, k) and matrix operation of this sums. We prove Reciprocity Theorem
of the Y (h, k).

In section 3, we construct infinite series representations for Y (h, k). We also
prove the relation between Y (h, k), L(1, χ), G(n, χ)( Gauss sum),and B1,χ.

The Dedekind sum s(h, k), arising in the theory of the Dedekind-eta function,
is defined by
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s(h, k) =
∑

j modk

((
j

k
))((

hj

k
)),

where

((x)) =


 x − [x]− 1

2
, x is not an integer,

0 otherwise.

and h is an integer and k is a positive integer and (h, k) = 1 cf. ([1, 16, 18, 19]).
Asai [4] definedD(h, k) sum which is related to the Hardy’s sums s(h, k). He also
defined matrix operation of this sum. He gave some properties of this sum.

The most important property of Dedekind sums is the following reciprocity
theorem.

If h and k are positive integers with (h, k) = 1, then

(1.1) s(h, k) + s(k, h) = −1
4

+
1
12

(
h

k
+

k

h
+

1
hk

).

Proofs of (1.1) were given by Apostol [1] and the author [18] see also cf. ([6, 20]).
In 1905, Hardy [8], by using contour integration, proved some reciprocity the-

orems and started eleven more reciprocity theorems for some similar arithmetical
sums. In recent years, five of Hardy’s reciprocity theorems were studied by Berndt
[5]. Goldberg [7] proved these reciprocity theorems from Berndt’s transformation
formula [5], which are related to the logarithms of the classical theta functions (cf.
[21], Chapter 21). Berndt and Goldberg [6] studied on theta functions and Hardy
sums. They proved reciprocity theorems of these sums. They also evaluated certain
non-absolutely convergent-double series in terms of these sums. In recent years,
proof of Hardy’s reciprocity theorems which do not depend on Berndt’s transfor-
mations formulae have been given by Apostol and Vu [3], Bernd and Goldberg [6],
Sitaramachandraro [20] and by the author ([12, 14, 18]).

Hardy sums (Hardy-Berndt sums) are defined by (cf. [6, 7, 20, 3, 14, 17, 18, 15]):
Let h and k be integers with (h, k) = 1.

(1.2)

S(h, k) =
∑

amod k

(−1)a+1+[ ah
k

],

s1(h, k) =
∑

amod k

(−1)[
ah
k

]((
a

k
)),

s2(h, k) =
∑

amod k

(−1)a((
a

k
))((

ah

k
)),

s3(h, k) =
∑

amod k

(−1)a((
ah

k
)),

s4(h, k) =
∑

amod k

(−1)[
ah
k

],

s5(h, k) =
k∑

j=1

(−1)j+[ hj
k

]((
j

k
)).



On Analytic Properties and Character Analogs of Hardy Sums 255

The reciprocity theorem of the s5(h, k) sum is given by the following theorem:

Theorem 1. Let h and k be integers with (h, k) = 1.
If h and k are odd, then

(1.3) s5(h, k) + s5(k, h) =
1
2
− 1

2hk
.

Different proofs of the above theorem were given by cf. ([6, 7, 20, 3, 14, 17,
18]).

Noted that by using (1.1), Sitaramachandraro [20] proved Theorem 1. He also
expressed each of the Hardy sums in terms of Dedekind sums. He proved the
following theorem:

Theorem 2. Let h and k be coprime positive integers. If h + k is even, then

(1.4) s5(h, k) = −10s(h, k) + 4s(2h, k) + 4s(h, 2k).

and if h + k is odd, then

(1.5) s5(h, k) = 0.

Farey fractions are defined as follows cf. (see for detail [1] and [13]):
The set of Farey fractions of order n, denoted by Fn, is the set of reduced

fractions in the closed interval [0, 1] with denominators ≤ n, listed in increasing
order of magnitude.

If h/k < H/K are adjacent Farey fractions, then it is known that hK − kH =
−1. The mediant of adjacent Farey fractions h/k < H/K is (h + H)/(k + K). It
satisfies the inequality h/k < (h+ H)/(k + K) < H/K . The following inequality
can be obtained by repeating the calculation of mediants n-times successively [13]:

(1.6)
h

k
<

h + H

k + K
< ... <

h + nH

k + nK
<

H

K
.

We give arithmetic properties of the s(h, k) and s5(h, k) as follows:
Dedekind sums have the following properties cf. ([1], [12]) :
Since ((−x)) = −((x)), we have

s(−h, k) = −s(h, k)

and
s(h,−k) = s(h, k).

If hh
′ ≡ 1( modk), then

s(h
′
, k) = s(h, k).
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If h/k < H/K are adjacent Farey fractions, then hK − kH = −1. Thus, we have

(1.7) hK ≡ −1( modk), and Hk ≡ 1( modK),

and also that
H

K
− h

k
=

1
kK

.

By using the above relations, we have

s(h, k) = −s(K, k),

s(H, K) = s(k, K).

Observe that by using (1.6) and the above relations, generalized Dedekind sums are
defined cf. [13].

By using arithmetic properties of the Dedekind sums and Theorem 2, we obtain
similar relations for s5(h, k) as follows cf. [12]:

By using (1.7), we have

s5(h, k) = −s5(K, k),

and
s5(H, K) = s5(k, K).

By substituting the above relations into (1.3), we have

s5(h, k)− s5(H, K) = −1
2

+
1

2kK

cf. [12]. By using above relations, we obtained the following theorem:

Theorem 3. ([12]). If h/k < H/K are adjacent Farey fractions, then we have

(1.8) s5(h + H, k + K) =
s5(h, k) + s5(H, K)

2
+

k − K

4kK(k + K)
.

For each pair (h, k) of relatively prime integers with positive k, or equivalently,
for each reduced fraction h/k, we define new sum, Y (h, k) as follows:

Y (h, k) = 4ks5(h, k),

where s5(h, k) is the Hardy’s sums.
Berndt and Goldberg[6] represented Hardy sums by the finite trigonometric

sums. By using these representations, we define Y (h, k) sum by the finite trigono-
metric sum as follows:

(1.9) Y (h, k) = 2
k∑

j = 1
j �=k+1

2

tan(
πh(2j − 1)

2k
) cot(

π(2j − 1)
2k

)
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By using arithmetic properties of the s(h, k) and s5(h, k) sums, we obtain arithmetic
properties of the Y (h, k) sums as follows:

(1.10) Y (−h, k) = −Y (h, k),

if hK ≡ −1( modk), then

(1.11) Y (K, k) = −Y (h, k),

if Hk ≡ 1( modK), then

(1.12) Y (k, K) = Y (H, K).

2. MAIN THEOREMS ON Y (h, k)

Here, we can use notations of the Asai[4] and Salie[11].
Let G denote the semi-group consisting of all two-by-two matrices with non-

negative integers coefficients and determinant one. If
[

h H
k K

]
is an element of

G, then h/k andH/K are both non-negative reduced fractions, the former of which
may happen to be ∞ = 1/0, then these, h/k, H/K are so-called adjacent Farey
fractions, and vice-versa cf. [4].

The reciprocity theorem of the Y (h, k) sums is given as follows:

Theorem 4. If h and k are positive odd integers and (h, k) = 1, then we have

(2.1) hY (h, k) + kY (k, h) = 2hk − 2.

Proof. We shall give just a brief sketch as the details are similar to those in cf.
([6, 18]).

We define F (z) = cotπz tanπhz tanπkz. Denote by R the contour obtained
from the rectangle of vertices ±iB, 1/2 ± iB. The function F (z) has pole z = 0
and z = 1/2 on this contour; therefore, if we want to integrate F (z), we have to
modify the contour by indentations at this points. We take as indentations identical
small semicircles leaving z = 0 inside, z = 1/2 outside. Clearly, F (z +1) = F (z),
so that the integrals along the vertical sides (including the indentations) cancel each
other. Also, limB→+∞ cot(x+iB) = −i and limB→+∞ tan(x+iB) = i uniformly
for 0 ≤ x ≤ 1/2, so that limB→+∞ F (x+ iB) = i, and similarly limB→−∞ F (x+
iB) = −i, both uniformly for 0 ≤ x ≤ 1/2. Observe that F (z) = F (x + iy) is
holomorphic on R, t follows that

∫
RF (z)dz is independent of B, consequently,∫

RF (z)dz = limB→+∞
∫
RF (z)dz = 2i, and by the Residue Theorem, we have

(2.2)
1

2πi

∫
R

F (z)dz =
1
π

= I,
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where I stands for the sum of the residues of F (z) at its singularities inside R.
Next, we calculate I by the use of the Residue Theorem. The integrand has sim-

ple poles at z1 = (2n−1)/(2h), (n = 1, 2, ..., h−1) and z2 = (2m−1)/(2k), (m =
1, 2, ..., k− 1). The poles at z �= 0 are indeed all simple, because (2n− 1)/(2h) =
(2m − 1)/(2k) is ruled out by (h, k) = 1. F (z) has a double pole at z3 = 1/2.

We now pass to computation of the residues (Res(F (z), zk)(k = 1, 2, 3) denote
the residue of the integrand of I ). The residues at the z1, z2, and z3 are

Re s(F (z), z1) =
1
hπ

tan(
kπ(2n− 1)

2h
) cot(

π(2n− 1)
2h

),

Re s(F (z), z2) =
1
kπ

tan(
hπ(2m− 1)

2k
) cot(

π(2m− 1)
2k

), Res(F (z), z3) =
1

hkπ
,

respectively. Now, by using Residue Theorem,

(2.3)

I =
1
kπ

k∑
m = 1

m �=k+1
2

tan(
hπ(2m− 1)

2k
) cot(

π(2m− 1)
2k

)

+
1

hπ

h∑
n = 1

n �=h+1
2

tan(
kπ(2n− 1)

2h
) cot(

π(2n− 1)
2h

) +
1

hkπ
.

Now, for (h, k) = 1, by using (1.9) in (2.3) we have

I =
1

2kπ
Y (h, k) +

1
2hπ

Y (k, h) +
1

2khπ
.

Combine the above with (2.2), we obtain (2.1). Thus we arrive at the desired
result.

Observe that by using the definition of Y (h, k) and (1.3), we arrive at the
another proof of the above theorem.

Lemma 1. If H/K < h/k are both non-negative adjacent Farey fractions,
then we have

(2.4) Y (h + H, k + K) = Y (h, k) + Y (H, K) + k − K.

Proof. We multiply both sides of (1.8) by 4(k + K), we have

(2.5) Y (h + H, k + K) =
Y (h, k) + Y (H, K)

2
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+2Ks5(h, k) + 2ks5(H, K) +
k − K

kK
.

By using arithmetic properties of s5(h, k) in (1.3), we obtain

(2.6) −2s5(K, k)− 2s5(k, K) + 1 =
1

kK
.

By substituting (2.6) into (2.5) and after some elementary calculations, then we
arrive at (2.4).

Theorem 5. If A =
[

a b

c d

]
is an element of G and h/k is a non-negative

reduced fraction, then we have

Y (ah + bk, ch + dk) = hY (a, c) + kY (b, d) + dY (h, k)− cY (k, h)− dh + ck.

Proof. The proof of this theorem is similar to that of Asai [4]. Let A = T+ =[
1 1
0 1

]
or T− =

[
1 0
1 1

]
. Since the two elements T+ and T− generate the

semi-group G, the general formula is obtained by mathematical induction method.
In fact we deduce the formula of the case T+A or T−A from one of the cases A,

where it must be noticed that the element
[

d c

b a

]
can be obtained by exchanging

T+, and T− for each other in the word expression of A by then. The proof is
completed.

Remark 1. Lemma 1 is special case of Theorem 5, namely, h/k = 1/1 and[
a b
c d

]
is replaced by

[
h H
k K

]
.

We define a matrix operation of the Y (h, k) sum. This matrix operation is
similar to that of Asai [4].

For each element A =

[
a b

c d

]
of G let us put

Y (A) =

[
Y (a, c) Y (b, d)

Y (c, a) Y (d, b)

]
,

and
C(A) =

[
1 0
0 1

]
(Y (A)A−1 − I)

where I denotes the identity matrix and A−1 denotes inverse of a matrix A.
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Let A and B be elements of G. We give C(AB) operation by the following
lemma.

Lemma 2. If A and B are elements of G, then we have

C(AB) = C(A) + AC(B)A−1.

Proof. Here, the proof of this lemma is similar to that of Asai [4]. Let

A =
[

a b

c d

]
, B =

[
h H

k K

]
and AB =

[
u v

x y

]
, from Theorem 5, we have

Y (u, x) = (d,−c)
(

Y (h, k)
Y (k, h)

)
+ (Y (a, c), Y (b, d))

(
h

k

)
− (d,−c)

(
h

k

)
.

Thus, we have

Y (x, u) = (−b, a)
(

Y (h, k)
Y (k, h)

)
+ (Y (c, a), Y (d, b))

(
h

k

)
− (−b, a)

(
h

k

)
,

since
[

a b

c d

] (
k

h

)
=

(
u

x

)
. If we replace h and k with H and K, respectively

in these right-hand sides, then u and x are replaced by v and y respectively. Hence,
we get

(2.7) Y (AB) = Y (A)B + (A−1)tY (B) − (A−1)tB,

where At denotes transpose of a matrix A, since[
0 1
−1 0

]
(A−1)t = A

[
0 1
−1 0

]
.

By using (2.7), we obtain the following relations:

Theorem 6. If A =
[

a b

c d

]
is an element of G, h/k and H/K are non-

negative reduced adjacent fractions, then we have

(2.8)
Y (ah + bk, ch + dk)
= hY (a, c) + kY (b, d) + dY (h, k)− cY (k, h)− dh + ck,

(2.9)
Y (ch + dk, ah + bk)
= hY (c, a) + kY (d, b)− bY (h, k) + aY (k, h)− ak + bh,

(2.10)
Y (aH + bK, cH + dK)
= HY (a, c) + KY (b, d)+ dY (H, K)− cY (K, H)− dH + cK,
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(2.11)
Y (cH + dK, aH + bK)
= HY (a, c) + KY (d, b)− bY (H, K) + aY (K, H)− aK + bH.

Proof. By applying Theorem 3 and arithmetic properties of Y (h, k), after some
elementary calculations, thus we arrive at (2.8)-(2.11).

Observe that by substituting (2.7) and A =
[

a b

c d

]
∈ G, B =

[
h H

k K

]
∈ G

into the definitions of Y (A) and Y (AB), we obtain the another proof of the above
theorem.

Remark 2. If we replace h/k and
[

a b

c d

]
with 1/1 and

[
h H

k K

]
, respec-

tively, in (2.8), thus we obtain (2.4).

Theorem 7.
If h/k < ((n−1)h+H)/((n−1)k+K) are both non-negative adjacent Farey

fractions, then we have

(2.12)
Y (nh + H, nk + K) = nY (h, k) + Y ((n − 1)h + H, (n− 1)k + K)

+(2 − n)k − K,

or

(2.13)
Y (nh + H, nk + K) = nY (h, k) + Y (H, K)− nK +

n(3 − n)k
2

,

Y (nk + K, nh + H) = Y (k, h) + Y ((n − 1)k + K, (n− 1)h + H)

+H + (n − 2)h.

Proof. For the proof, we use (2.7).

Let A =
[

a b

c d

]
and B =

[
h (n − 1)h + H

k (n − 1)k + K

]
be elements of G. From

the definitions of Y (A) and (2.7), we have

(2.14)

Y (a((n−1)h+H)+b((n−1)k+K), c((n−1)h+H)+d((n−1)k+K))

= ((n−1)h+H)Y (a, c)+((n−1)k+K)Y (b, d)+dY ((n−1)h

+H, (n−1)k+K)−cY ((n−1)k+K, (n−1)h+H)−d((n−1)h+H)

+c((n−1)k+K),

(2.15)

Y (c((n−1)h+H+d((n−1)k+K), a((n−1)h+H)+b((n−1)k+K)

= ((n−1)h+H)Y (c, a)+((n−1)k+K)Y (d, b)−bY ((n−1)h

+H, (n−1)k+K)+aY ((n−1)k+K, (n−1)h+H)

+b((n−1)h+H)−a((n−1)k+K.
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Thus, by replacing h/k and
[

a b

c d

]
with 1/1 and

[
h (n − 1)h + H

k (n − 1)k + K

]
respec-

tively in (2.8) and (2.9) then we have (2.12) and (2.13). Thus we arrive at the
desired result.

Remark 3. The above theorem also can be proved by mathematical induction.

We also note that by replacing ((n−1)h+H)/((n−1)k+K) < H/K and
[

a b
c d

]

with 1/1 and
[

h (n − 1)h + H
k (n − 1)k + K

]
in (2.14) and (2.15) then we obtain (2.12) and

(2.13).

Corollary 1. If (h+(n−1)H)/(k+(n−1)K) < H/K are both non-negative
adjacent Farey fractions, then

Y (h+nH, k+nK) = Y (H, K)+Y (h+(n−1)H, k+(n−1)K)+k+(n−2)K,

Y (k+nK, h+nH) = Y (K, H)+Y (k+(n−1)K, h+(n−1)H)−h+(2−n)H.

The proof of this Corollary is similar to that of Theorem 7.

3. CHARACTER ANALOGS OF THE HARDY SUMS

In this section, we give relations generalized bernoulli numbers, Dirichlet L-
functions and Gauss sums. We use the notations of cf. ([2, 9, 22, 23]). Here, we
prove the following Theorems:

Theorem 8. Let h and k be positive integers with (h, k) = 1. Let χ be any
Dirichlet character with conductor 2k and χ(−1) = −1. If h and k are odd, then

Y (h, k)=
16k

πiφ(2k)

∞∑
j = 1

2j − 1 �≡0 (modk)

1
2j − 1

∑
χ(−1)=−1
χ(mod 2k)

B1,χG(h(2j−1)−k, χ),

where φ(x) denotes Euler function.

Theorem 9. Let h and k be positive integers with (h, k) = 1. Let χ be
Dirichlet character with conductor 2k and χ(−1) = −1. If h + k is odd, then

S(h, k) =
8

πiφ(2k)

∞∑
j=1

1
2j − 1

∑
χ(−1) = −1
χ(mod2k)

B1,χG(h(2j − 1) − k, χ),
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if h is even and k is odd, then

s1(h, k) =
4

πiφ(2k)

∞∑
j=1

2j−1 �≡0( modk)

1
2j−1

∑
χ(−1)=−1
χ( mod 2k)

B1,χG(h(2j − 1), χ),

if h is odd and k is even, then

s2(h, k) =
i

πφ(2k)

∞∑
j=1

1
j

∑
χ(−1) = −1
χ( mod 2k)

B1,χG(2hj − k, χ),

if k is odd, then

s3(h, k) =
2

πiφ(2k)

∞∑
j=1

1
j

∑
χ(−1) = −1
χ( mod 2k)

B1,χG(2hj − k, χ),

if h is odd, then

s4(h, k) =
8i

πφ(2k)

∞∑
j=1

1
2j − 1

∑
χ(−1) = −1
χ( mod2k)

B1,χG(h(2j − 1), χ),

and if h and k are odd, then

s5(h, k)=
4

πiφ(2k)

∞∑
j=1

2j−1 �≡0(modk)

1
2j − 1

∑
χ(−1)=−1
χ(mod 2k)

B1,χG(h(2j−1)−k, χ).

We need the following properties of Dirichlet L-function, Gauss sums, G(n, χ)
and generalized Bernoulli number, B1,χ.

Let χ be a primitive Dirichlet character with conductor k. The Gauss sums
define as follows:

G(z, χ) =
k−1∑
m=1

χ(h)e
2πimz

k .

Put G(χ) = G(1, χ) cf. [9].
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Theorem 10. ([2, Theorem 8.9]). Let (n, k) = 1.

(3.1) G(n, χ) = χ(n)G(χ).

Dirichlet L-function is defined by (cf. [9], [23], [24])

L(s, χ) =
∞∑

n=1

χ(n)n−s, Re(s) > 1.

Theorem 11. ([9, p. 6]). If χ �≡ 1, then

L(1, χ) �= 0,∞
and its value is explicitly given as follows

L(1, χ) = −G(χ)
k

∑
a

χ(a) log(1− ζa)

if χ(−1) = 1,

L(1, χ) = −G(χ)
k

∑
a

χ(a) log |1 − ζa|

if χ(−1) = −1,

(3.2) L(1, χ) =
πiG(χ)

k2

∑
a

χ(a)a

where ζ = e
2πi
k , and the sum is taken over all integers a such that 1 ≤ a ≤ k,

(a, k) = 1.

The generalized Bernoulli polynomials and numbers are defined by (cf. [9],
[24])

Bn,χ(x) = kn−1
k∑

m=1

χ(m)Bn(
m− k + x

k
), n ≥ 0;

in particular (x = 0)

(3.3) Bn,χ = kn−1
k∑

m=1

χ(m)Bn(
m− k

k
), n ≥ 0.

Lemma 3. ([9]). If χ(−1) = −1, then

(3.4) B1,χ =
1
k

k∑
m=1

χ(m)m.
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Theorem 12. ([22]). Let k be an integer ≥ 3, and let χ be any Dirichlet
character with conductor k and χ(−1) = −1. Then we have

L(1, χ) =
π

2k

k∑
m=1

χ(m) cot(
πm

k
).

We note that
k∑

m=1

χ(m) cot(
πm

k
) = 0

if χ(−1) = 1. For (m, k) = 1, from Theorem 12, and the orthogonality of characters
with conductor k, we have the following equation

(3.5) cot(
πm

k
) =

2k

πφ(k)

∑
χ(−1) = −1
χ(mod k)

χ(m)L(1, χ).

Theorem 13. ([6, Theorem 1]). Let h and k be positive integers with (h, k) =
1. If h + k is odd, then

S(h, k) =
4
π

∞∑
j=1

1
2j − 1

tan
(

πh(2j − 1)
2k

)
,

if h is even and k is odd, then

s1(h, k) =
−2
π

∞∑
j = 1

2j − 1 �≡ 0(modk)

1
2j − 1

cot
(

πh(2j − 1)
2k

)
,

if h is odd and k is even, then

s2(h, k) = − 1
2π

∞∑
j = 1

2j �≡ 0 (mod k)

1
j

tan
(

πhj

k

)
,

if k is odd, then

s3(h, k) =
1
π

∞∑
j=1

1
j

tan
(

πhj

k

)
,
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if h is odd, then

s4(h, k) =
4
π

∞∑
j=1

1
2j − 1

cot
(

πh(2j − 1)
2k

)
,

and if h and k are odd, then

(3.6) s5(h, k) =
2
π

∞∑
j = 1

2j − 1 �≡ 0(modk)

1
2j − 1

tan
(

πh(2j − 1)
2k

)
.

By Using (3.1), (3.2), (3.4) and (3.5) Theorem 13 is represented by Dirichlet
character, Gauss sums and B1,χ which is given by Theorem 9.

Proof. [Proof of Theorem 8] By using (3.6) and definition of Y (h, k), we have

Y (h, k) =
8k

π

∞∑
j = 1

2j − 1 �≡ 0(mod k)

1
2j − 1

tan
(

πh(2j − 1)
2k

)
.

Substituting well-known equation

tanπx = − cot π(x− 1
2
)

in the above, we obtain

(3.7) Y (h, k) =
−8k

π

∞∑
j = 1

2j − 1 �≡ 0(modk)

1
2j − 1

cot
(

π(h(2j − 1)− k)
2k

)
.

Substituting (3.5) into (3.7), we have

(3.8)

Y (h, k) =
−32k2

π2φ(2k)

∞∑
j = 1

2j − 1 �≡ 0(mod k)
1

2j − 1

∑
χ(−1) = −1
χ (mod 2k)

χ(h(2j − 1)− k)L(1, χ).



On Analytic Properties and Character Analogs of Hardy Sums 267

By using (3.2) in (3.8), we have

Y (h, k) =
8

πiφ(2k)

∞∑
j = 1

2j − 1 �≡ 0(modk)

1
2j − 1

∑
χ(−1) = −1
χ( mod 2k)

χ(h(2j − 1) − k, χ)G(χ)
2k∑

m=1

mχ(m).

Using (3.1) and (3.4) in the above, thus we arrive at the desired result.

The proof of Theorem 9 follows precisely along the same lines as the proof of
Theorem 8, and so we omit it.
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