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SOME GENERALIZED KY FAN’S INEQUALITIES

Gu-Sheng Tang1, Cao-Zong Cheng and Bor-Luh Lin2

Abstract. In this paper, we generalize Ky Fan’s minimax inequality to vector-
valued function with values in a topological vector space acting on the product
of two other topological vector spaces which are connected by another function.
In these results, the concavity or convexity on a function is transferred to
another function. And a sufficient condition for the existence of solution for
a variational inclusion is given.

1. INTRODUCTION

Let X and Y be nonempty sets and f : X × Y −→ R be a function. The
minimax theorem implies that the equality

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y)

holds under certain conditions.
The minimax inequalities are special forms of minimax theorem. In 1972, Ky

Fan [1] proved the following minimax inequality and discussed its geometrical form
and applications to fixed point theory.

Ky Fan’s Inequality

Let X be a compact convex subset in a topological vector space E and let
f : X × X −→ R be a function such that

(1) f(x, ·) is lower semicontinuous on X for every x ∈ X ;
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(2) f(·, y) is quasiconcave for every y ∈ X . Then

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x).

By relaxing the compactness, the closedness or the convexity, many general-
izations of Ky Fan’s Inequality were given ([2]-[6]) and numerous applications of
this inequality were obtained. Also, by introducing varieties of characterization on
the convexity of the set-valued mappings ([7]-[11], [13]), many minimax theorems
involving scalar functions have been extended to minimax theorems for set-valued
mappings ([8]-[12]).

Inspired and motivated by these works, in this paper, we give new generalizations
of Ky Fan’s minimax inequality for set-valued mappings from the following aspects:
(1) the set-valued mappings act on the product spaceX×Y of two topological vector
spaces X and Y connected by a mapping ϕ; (2) the concavity or convexity on a
mapping is transferred to another function; (3) the range of the set-valued mapping
is extended from normed space to topological vector space. Finally, we give a
sufficient condition on the existence of solution for a variational inclusion .

2. PRELIMINARIES

Definition 2.1. Let X and Y be topological spaces, S : Y −→ 2X be a
set-valued mapping with nonempty values. Then S is said to be

(i) upper semicontinuous (usc) at y ∈ Y if for any neighborhood U of S(y),
there exists a neighborhood V of y such that we have S(y′) ⊂ U for every
y′ ∈ V .

(ii) lower semicontinuous (lsc) at y ∈ Y if for any x ∈ S(y) and for any sequence
of elements {yn} in Y converging to y, there exists a sequence of elements
xn ∈ S(yn) converging to x.

(iii) upper(resp. lower) semicontinuous on Y if S is upper(resp. lower) semicon-
tinuous at every point y ∈ Y .

Proposition 2.1. [13, Proposition 1.4.4] Let X and Y be topological spaces,
and let S : Y −→ 2X be a set-valued mapping with nonempty values. Then

(1) S is upper semicontinuous on Y if and only if for any closed subset M of
X , the inverse image of M

S−1(M) = {y ∈ Y |S(y) ∩ M �= ∅}

is closed;



Some Generalized Ky Fan’s Inequalities 241

(2) S is lower semicontinuous on Y if and only if for any closed subset M of
X , the core of M

S+1(M) = {y ∈ Y |S(y) ⊂ M}

is closed.

Definition 2.2. [13, pp. 57] Let Y be a convex subset of a vector spaces G

and let S:Y → 2G be a set-valued mapping. S is said to be convex on Y (resp.
concave on Y ) if for all y1, y2 ∈ Y and λ ∈ [0, 1],

λS(y1) + (1 − λ)S(x2) ⊂ (resp.,⊃)S(λy1 + (1 − λ)y2).

Proposition 2.2. Let Y be a convex subset of a vector spaces G and let
S : Y −→ 2G be a set-valued mapping. Then S is convex on Y (resp., concave on
Y ) if and only if for all n ≥ 2 and for all λ 1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1

and for all y1, y2, . . . , yn ∈ Y ,

n∑

i=1

λiS(yi) ⊂ (resp.,⊃)S(
n∑

i=1

λiyi).

Definition 2.3. Let Y be a convex subset of a vector space and let X be a
convex subset of a vector space with an order relation ≤. A mapping ϕ : Y −→ X

is said to be convex (resp., concave) if for any λ ∈ [0, 1] and y1, y2 ∈ Y ,

ϕ(λy1 + (1− λ)y2) ≤ (resp.,≥)λϕ(y1) + (1 − λ)ϕ(y2).

Definition 2.4. Let (Y,≤) be an ordered topological vector space and let X

be a nonempty set. A set-valued mapping S : Y −→ 2X is said to be monotone
increasing (resp., decreasing) if for any y1 ≤ y2,

S(y1) ⊂ (resp.,⊃)S(y2).

3. THE MAIN RESULTS

The following lemma is one of the most fundamental result in nonlinear analysis.

Ky Fan Lemma

Let Y be a nonempty subset of a Hausdorff topological vector space G. If
S : Y −→ 2G is a set-valued mapping with closed values, and has the following
properties:
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(i) there exists y0 ∈ Y such that S(y0) is compact;
(ii) S is a KKM set-valued map (i.e., for each finite set {y1, y2, . . . , yn} in Y ,

the convex hull of {y1, y2, . . . , yn}, conv{y1, y2, . . . , yn} ⊂ ∪n
i=1S(yi)), then

∩y∈Y S(y) �= ∅.
As a generalization of Ky Fan Lemma, Cheng [14] gave the following result.

Lemma 3.1. ([14]). Let E, G be Hausdorff topological vector spaces. If Y ⊂
G, ϕ : Y −→ E is a mapping, and S : Y −→ 2E is a nonempty closed-valued
mapping such that

(i) there exists y0 ∈ Y such that S(y0) is compact;
(ii) conv{ϕ(y1), ϕ(y2), . . . , ϕ(yn)} ⊂ ∪n

i=1S(yi) for each finite set {y1, y2, . . . , yn}
in Y , then

∩y∈Y S(y) �= ∅.
Our main results can be formulated as follows.

Theorem 3.1. Let E, G, Z be Hausdorff topological vector spaces where E

is endowed with an order relation ≤. Assume X is a nonempty compact convex
subset of E , Y is a convex subset of G and M is a nonempty closed subset of Z
with Z\M is convex. Let ϕ:Y → X be a convex (resp. concave) mapping and let
F :X × Y → 2Z be a set-valued mapping with the following properties:

(i) F (·, y) is lower semicontinuous on X for all y in Y .
(ii) there exists a set-valued mapping H:X × Y → 2Z such that

(a) H (ϕ (y) , y) ⊂ M for all y ∈ Y ,
(b) H (x, y) ⊂ M implies that F (x, y) ⊂ M for all x ∈ X and y ∈ Y ,
(c) H (x, ·) is convex on Y for all x ∈ X ,
(d) H (·, y) is monotone decreasing (resp. increasing) on X for all y ∈ Y .

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Proof. For all y ∈ Y , let S(y) = {x ∈ X : F (x, y) ⊂ M}.By (a) and (b) in
(ii), for all y ∈ Y , S (y) �= ∅, since ϕ (y) ∈ S (y) . By (i) and Proposition 2.1, for
all y ∈ Y, S(y) is closed in X , therefore, S(y) is compact. It remains to prove that
(ii) in Lemma 3.1 holds.

Suppose no. Then there exists {y1, y2, . . . , yn} and {λ1, λ2, . . . , λn} ⊂ R,
λi ≥ 0(i = 1, 2, . . . , n),

∑n
i=1 λi = 1 such that

n∑

i=1

λiϕ(yi) /∈ S(yj), j = 1, 2, . . . , n.
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That is

F (
n∑

i=1

λiϕ(yi), yj) �⊂ M, j = 1, 2, . . . , n.

By (ii)(b),

H(
n∑

i=1

λiϕ(yi), yj) �⊂ M, j = 1, 2, . . . , n.

Hence

H(
n∑

i=1

λiϕ(yi), yj) ∩ (Z \ M) �= ∅, ∀j = 1, 2, . . . , n.

Since Z\M is convex set and H(x, ·) is convex on Y , by Proposition 2.2, it follows
that

(1)

∅ �=
n∑

i=1

λiH(
n∑

i=1

λiϕ(yi), yi) ∩ (Z \ M)

⊂ H(
n∑

i=1

λiϕ(yi),
n∑

i=1

λiyi) ∩ (Z \ M).

Since ϕ is convex (resp., concave) and H(·, y) is monotone decreasing (resp.,
increasing) on X , we have

(2) H(
n∑

i=1

λiϕ(yi),
n∑

i=1

λiyi) ⊂ H(ϕ(
n∑

i=1

λiyi),
n∑

i=1

λiyi).

By (ii)(a) and (1),(2), we obtain

∅ �=
n∑

i=1

λiH(
n∑

i=1

λiϕ(yi), yi) ∩ (Z \ M)

⊂ H(ϕ(
n∑

i=1

λiyi),
n∑

i=1

λiyi) ∩ (Z \ M) ⊂ M ∩ (Z \ M) = ∅.

This contradiction shows that (ii) of Lemma 3.1 holds. Therefore
⋂

y∈Y S(y) �= ∅,
i.e., there exists an element x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Corollary 3.1. Let E, G, Z be Hausdorff topological vector spaces where E is
endowed with an order relation ≤. Assume that X is a nonempty compact convex
subset of E , Y is a convex subset of G, and M is a nonempty closed subset of Z
with Z\M is convex. Let ϕ : Y −→ X be a convex (resp., concave) mapping, and
F : X × Y −→ 2Z be a set-valued mapping with the following properties:

(i) F (·, y) is lower semi-continuous on X for all y ∈ Y ,
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(ii) F (x, ·) is convex on Y for all x ∈ X ,
(iii) F (·, y) is monotone decreasing (resp., monotone increasing) on X for all

y ∈ Y ,
(iv) F (ϕ(y), y) ⊂ M for all y ∈ Y.

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Remark 3.1. From the proof of Theorem 3.1, if the mapping ϕ is linear on
convexity coefficient (that means ϕ(λy1 + (1−λ)y2) = λϕ(y1) + (1−λ)ϕ(y2) for
all y1, y2 ∈ Y and λ ∈ [0, 1]), then the monotonicity of H and the order structure
on E are not needed in Theorem 3.1 and Corollary 3.1.

Theorem 3.2. Let E, G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty compact convex subset of E , Y is a convex subset of G, and
M is a nonempty closed subset of Z with Z\M is convex. Let ϕ : Y → X be a
linear mapping on convexity coefficient and let F : X ×Y −→ 2 Z be a set-valued
mapping with the following properties:

(i) F (·, y) is lower semi-continuous on X for all y ∈ Y ,
(ii) F (x, ·) is convex on Y for all x ∈ X,

(iii) F (ϕ(y), y) ⊂ M for all y ∈ Y.

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Theorem 3.3. Let E, G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty convex compact subset of E , Y is a subset of G and M is a
nonempty closed subset of Z. Let ϕ : Y → X be a mapping and let F : X×Y −→
2Z be a set-valued mapping with the following properties:

(i) F (·, y) is lower semicontinuous on X for all y ∈ Y,

(ii) for any finite set {y1, y2, . . . , yn} in Y , conv{ϕ(y1), ϕ(y2), . . . , ϕ(yn)} ⊂⋃n
i=1{x ∈ X : F (x, yi) ⊂ M}.

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Proof. Define the set-valued mapping S : Y −→ 2X by

S(y) = {x ∈ X : F (x, y) ⊂ M}, y ∈ Y.

It follows that S(y) �= ∅ for all y ∈ Y , since F (ϕ(y), y) ⊂ M by (ii). Taking into
account thatM is closed and the assumption(i), it follows from Proposition 2.1 that
S has closed values. Since X is a compact set, S(y) is compact for every y ∈ Y .
It is easy to see that the above assumption (ii) implies condition (ii) in Lemma 3.1.
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Consequently, the set-valued mapping S defined above meets with conditions in
Lemma 3.1, and hence ∩y∈XS(y) �= ∅ and this implies the conclusion.

Remark 3.2. When weakening slightly the condition (i) in Theorem 3.2 and
Theorem 3.3 to:

(i) S(y) = {x ∈ X : F (x, y) ⊂ M} is a closed-valued mapping for all y ∈ Y,

Theorem 3.2 and Theorem 3.3 still hold.

From Theorem 3.3, we obtain the following generalization of Ky Fan’s minimax
inequality.

Corollary 3.2. Let X, Y be nonempty compact convex subset of Hausdorff
topological vector spaces E and G respectively. If ϕ : Y −→ X is a linear
mapping on convexity coefficient, and f : X × Y −→ R is a mapping satisfying:

(i) f(·, y) is lower semicontinuous on X for all y ∈ Y,

(ii) f(x, ·) is concave on Y for all x ∈ X,

then there exists x0 ∈ X such that

sup
y∈Y

f(x0, y) ≤ sup
y∈Y

f(ϕ(y), y).

Proof. Let m = supy∈Y f(ϕ(y), y). If m = +∞, take any x0. Consider
m < +∞. Let Z = R, F = f andM = (−∞, m]. Then f (·, y) is lsc on X for all
y ∈ Y implies that f has closed lower level sets. Hence S(y) = {x ∈ X : F (x, y) ⊂
M} is closed-valued for all y ∈ Y . It remains to prove that (ii) in Theorem 3.3
holds. Suppose no. Then there exists a finite set {y1, y2, . . . , yn} ⊂ Y and x0 ∈
conv{ϕ(y1), ϕ(y2), . . . , ϕ(yn)} such that for every i = 1, 2, · · · , n, f(x0, yi) > m
where x0 =

∑n
i=1 αiϕ(yi), αi are positive numbers with

∑n
i=1 αi = 1. Let y0 =∑n

i=1 αiyi. Then x0 = ϕ(y0). Since f(x, ·) is concave for every x ∈ X , we have
f(ϕ(y0), y0) > m and this is a contradiction.

Theorem 3.4. Let E, G, Z be Hausdorff topological vector spaces where E

is endowed with an order relation ≤. Assume that X is a nonempty compact
convex subset of E , Y is a convex subset of G, and M is a nonempty convex open
subset of Z. Let ϕ : Y −→ X be a convex (resp., concave) mapping, and let
F : X × Y −→ 2Z be a set-valued mapping with the following properties:

(i) F (·, y) is upper semi-continuous on X for all y ∈ Y ;
(ii) there exists a set-valued mapping H : X × Y −→ 2Z such that
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(a) H(ϕ(y), y)∩ (Z \ M) �= ∅ for all y ∈ Y ;
(b) for all x ∈ X and y ∈ Y , H(x, y) �⊂ M implies that F (x, y) �⊂ M ,
(c) H(x, ·) is concave on Y for all x ∈ X;
(d) H(·, y) is monotone increasing (resp., decreasing) on X for all y ∈ Y .

Then there exists x0 ∈ X such that F (x0, y) ∩ (Z \ M) �= ∅ for all y ∈ Y .

Proof. For all y ∈ Y , let S(y) = {x ∈ X : F (x, y) ∩ (Z \ M) �= ∅}.From
(a) and (b) in (ii), it follows that S(y) �= ∅ since ϕ(y) ∈ S(y). From (i) and
proposition 2.1, for all y ∈ Y , S(y) is a closed subset of X hence is compact
by the compactness of X . Therefore, (i) of Lemma 3.1 is satisfied. It remains to
prove that (ii) in Lemma 3.1 is true. Suppose that there exist y1, y2, . . . , yn and
λ1, λ2, . . . , λn ≥ 0,

∑n
i=1 λi = 1 such that

n∑

i=1

λiϕ(yi) /∈ S(yj), j = 1, 2, . . . , n.

By the definition of S(y)

F (
n∑

i=1

λiϕ(yi), yj) ⊂ M, j = 1, 2, . . . , n.

By (ii) (b),

(3) H(
n∑

i=1

λiϕ(yi), yj) ⊂ M, j = 1, 2, . . . , n.

From (3) and the convexity of M , it follows that

(4)
n∑

j=1

λjH(
n∑

i=1

λiϕ(yi), yi) ⊂ M.

Since H(x, ·) is concave on Y , ϕ : Y −→ X is convex (resp., concave), and
H(·, y) is monotone increasing (resp., monotone decreasing) on X , we have

H(ϕ(
∑n

i=1 λiyi),
∑n

j=1 λjyj) ⊂ H(
n∑

i=1

λiϕ(yi),
n∑

j=1

λjyj)

⊂
n∑

j=1

λjH(
n∑

i=1

λiϕ(yi), yj) ⊂ M,

which contradicts to (ii)(a). This completes the proof.



Some Generalized Ky Fan’s Inequalities 247

Corollary 3.3. Let E, G, Z be Hausdorff topological vector spaces where E is
endowed with an order relation ≤. Assume that X is a nonempty compact convex
subset of E , Y is a convex subset of G, andM is a nonempty open convex subset of
Z. Let ϕ : Y −→ X be a convex (resp., concave) mapping and F : X ×Y −→ 2Z

be a set-valued mapping satisfying:

(i) F (·, y) is upper semicontinuous on X for all y ∈ Y ;
(ii) F (x, ·) is concave on Y for all x ∈ X;
(iii) F (·, y) is monotone increasing (resp., monotone decreasing) on X for all

y ∈ y;
(iv) F (ϕ(y), y)∩ (Z \M) �= ∅ for all y ∈ Y .

Then there exists x0 ∈ X such that F (x0, y) ∩ (Z \ M) �= ∅ for all y ∈ Y .

Remark 3.3. Similar to Remark 3.1, the conclusions of Theorem 3.4 and
Corollary 3.3 hold if ϕ : Y −→ X is a linear mapping on convexity coefficient and
the monotonicity of H and the order structure of E are not needed.

Theorem 3.5. Let E, G, Z be Hausdorff topological vector spaces. Assume
that X is a nonempty compact convex subset of E , Y is a convex subset of G,
and M is an open convex subset of Z. If ϕ : Y −→ X is a linear mapping on
convexity coefficient and F : X × Y −→ 2Z is a set-valued mapping satisfying:

(i) F (·, y) is upper semicontinuous on X for all y ∈ Y ;
(ii) F (x, ·) is concave on Y for all x ∈ X;
(iii) F (ϕ(y), y)∩ (Z \M) �= ∅ for all y ∈ Y ,

then there exists x0 ∈ X such that F (x0, y) ∩ (Z \ M) �= ∅ for all y ∈ Y .

In the studies of minimax theory, it is an important topic that how to weaken
the compactness, linearity of the spaces and convexity of functions. By weakening
slightly the compactness of X in Theorem 3.1, we have the following conclusion.

Theorem 3.6. Let E, G, Z be Hausdorff topological vector spaces where E
is endowed with an order relation ≤. Assume that X is a convex subset of E , Y
is a convex subset of G, and M is a nonempty closed subset of Z with Z \ M is
convex. Let ϕ : Y −→ X be a convex (resp., concave) continuous mapping, and
F : X × Y −→ 2Z be a set-valued mapping satisfying:

(i) F (·, y) is lower semicontinuous on X for all y ∈ Y ;
(ii) there exists a set-valued mapping H : X × Y −→ 2Z such that

(a) H(ϕ(y), y) ⊂ M for all y ∈ Y ;
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(b) For all x ∈ X and y ∈ Y , H(x, y) ⊂ M implies F (x, y) ⊂ M ;
(c) H(x, ·) is convex on Y for all x ∈ X;
(d) H(·, y) is monotone decreasing (resp., monotone increasing) on X for

all y ∈ Y ;.
(iii) there exists a compact subset Y0 of Y and an element y0 ∈ Y0 such that

F (x, y0) ∩ (Z \ M) �= ∅ for all x ∈ X \ ϕ(Y0).

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Proof. Let S(y) = {x ∈ X : F (x, y) ⊂ M} for all y ∈ Y . Then S(y) �= ∅.
We claim that S(y0) ⊂ ϕ(Y0). In fact, supposing there exists an element x ∈ S(y0)
such that x /∈ ϕ(Y0). Then F (x, y0) ⊂ M that contradicts to (iii). Now, ϕ(Y0) is
compact since Y0 is compact and ϕ is continuous. Hence S(y0) is compact. The
rest of the proof is the same as the proof of Theorem 3.1.

Remark 3.4. Different from Theorem 3.1 and 3.4, the mapping ϕ in Theorem
3.6 must be continuous.

Corollary 3.4. Let E, G, Z be Hausdorff topological vector spaces where E
is endowed with an order relation ≤. Assume that X is a convex subset of E , Y
is a convex subset of G, and M is a nonempty closed subset of Z with Z \ M is
convex. Let ϕ : Y −→ X be convex (resp., concave) continuous mapping, and
F : X × Y −→ 2Z be a set-valued mapping satisfying

(i) F (·, y) is lower semicontinuous on X for all y ∈ Y ;
(ii) F (x, ·) is convex on Y for all x ∈ X;
(iii) F (·, y) is monotone decreasing (resp., monotone increasing) on X for all

y ∈ Y ;
(iv) F (ϕ(y), y) ⊂ M for all y ∈ Y ;
(v) there exist a compact subset Y0 of Y and an element y0 ∈ Y0 such that

F (x, y0) ∩ (Z \ M) �= ∅ for all x ∈ X \ ϕ(Y0).

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

Theorem 3.7. Let E, G, Z be Hausdorff topological vector spaces. Assume
that X is a convex subset of E , Y is a convex subset of G, and M is a closed
subset of Z with Z \ M is convex. Let the mapping ϕ : Y −→ X be continuous
and linear on convexity coefficient, and let F : X × Y −→ 2Z be a set-valued
mapping satisfying:

(i) F (·, y) is lower semicontinuous on X for all y ∈ Y ;
(ii) F (x, ·) is convex on Y for all x ∈ X;
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(iii) F (ϕ(y), y) ⊂ M for all y ∈ Y ;
(iv) there exist a compact subset Y0 of Y and y0 ∈ Y0 such that F (x, y0) ∩ (Z \

M) �= ∅ for all x ∈ X \ ϕ(Y0).

Then there exists x0 ∈ X such that F (x0, y) ⊂ M for all y ∈ Y .

4. AN APPLICATION

In this section, we prove the existence of solution for a variational inclusion.

Theorem 4.1. Let E, G, Z be real normed spaces and let B denote the space
of all bounded linear operators from E to Z. AssumeX is a compact convex subset
of E , and M is an open convex subset of Z with 0 �∈ M . Let ϕ : G → E be
a continuous linear mapping, Y = ϕ−1(X), and let T : X → 2B be an upper
semi-continuous set-valued mapping with card T (x) < +∞ for all x ∈ X . For
x, u ∈ X , let T (x) (u) =

⋃
A∈T (x) A (u). Then there exists x0 ∈ X such that

T (x0) (x0 − ϕ (y)) ∩ (Z \ M) �= ∅
for all y ∈ Y .

Proof. Define F : X × Y −→ 2Z by F (x, y) = T (x)(x − ϕ(y)) for (x, y) ∈
X × Y .We verify the hypotheses of Theorem 3.5 hold.

In order to verify (i), fixed x ∈ X and y ∈ Y , let U be a neighborhood of
F (x, y). Since card T (x) < +∞, there exists ε > 0 such that for all A ∈ T (x)

(5) OZ(A(x − ϕ(y)), ε) ⊂ U,

where OZ(A(x−ϕ(y)), ε) is the open ball in Z with center A(x−ϕ(y)) and radius
ε. Let

ε1 = min(
ε

3(‖ϕ(y)‖+ 1)
,

ε

3(‖x‖+ 1)
).

Since T is upper semicontinuous on X , for ∪A∈T (x)OB(A, ε1) ( a neighborhood of
T (x) in B) , there exists r∗ > 0 such that for all w ∈ OX (x, r∗)

(6) T (w) ⊂ ∪A∈T (x)OB(A, ε1).

Since card T (x) < +∞, C � sup {‖A‖ : A ∈ T (x)} < +∞. Let

r = min(
ε

3(C + 1)
, r∗, 1).

We claim that for all x′ ∈ OX(x, r), F (x′, y) ⊂ U which implies that F (·, y) is usc
on X . Let x′ ∈ OX(x, r) and let A1 ∈ T (x′). From (6) and the fact that r ≤ r∗,
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we have T (x′) ⊂ ⋃
A∈T (x) OB(A, ε1).Therefore, there exists A0 ∈ T (x) such that

A1 ∈ OB(A0, ε1). It is easy to check that

‖A1(x′ − ϕ(y))− A0(x − ϕ(y))‖ < ε.

Therefore A1(x′−ϕ(y)) ∈ ∪A∈T (x)OZ(A(x−ϕ(y)), ε) for all A1 ∈ T (x′). Hence
F (x′, y) ⊂ U by (5).

In order to verify (ii), let A ∈ T (x), y1, y2 ∈ Y , and λ ∈ [0, 1]. Since A is
linear,

A(x − λϕ(y1) − (1 − λ)ϕ(y2)) = λA(x− ϕ(y1))

+(1 − λ)A(x− ϕ(y2)) ∈ λT (x)(x− ϕ(y1)) + (1− λ)T (x)(x− ϕ(y2)).

From this and linearity of ϕ, F (x, λy1+(1−λ)y2) ⊂ λF (x, y1)+(1−λ)F (x, y2).
Hence F (x, ·) is concave on X . Finally, since 0 ∈ Z \ M and

F (ϕ(y), y) = T (ϕ(y))(ϕ(y)− ϕ(y)) = T (ϕ(y))(0) = ∪A∈T (ϕ(y))A(0) = 0,

the condition (iii) is satisfied.
Therefore, applying Theorem 3.5, we can see that there exists x0 ∈ X such that

F (x0, y) ∩ (Z \ M) �= ∅ for all y ∈ Y,which is exactly the desired conclusion.
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