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A NOTE ON EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS

Yuwen Cheng and Feng-Kuo Huang

Abstract. Let R be a ring with unity. It is shown that the formal power series
ring R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer and every
countable subset of right semicentral idempotents has a generalized countable
join.

1. INTRODUCTION

Throughout this note, R denotes a ring with unity. Recall that R is called a
(quasi-)Baer ring if the right annihilator of every (right ideal) nonempty subset of R
is generated, as a right ideal, by an idempotent of R. Baer rings are introduced by
Kaplansky [18] to abstract various properties of AW *-algebras and von Neumann
algebras. Quasi-Baer rings, introduced by Clark [11], are used to characterize when
a finite dimensional algebra over an algebraically closed field is isomorphic to a
twisted matrix units semigroup algebra. The definition of a (quasi-) Baer ring is
left-right symmetric [11, 18].

In [9], Birkenmeier, Kim and Park initiated the study of right principally quasi-
Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-
Baer) if the right annihilator of a principal right ideal is generated, as a right ideal, by
an idempotent. Equivalently, R is right p.q.-Baer if R modulo the right annihilator
of any principal right ideal is projective. If R is both right and left p.q.-Baer, then
it is called p.q.-Baer. The class of p.q.-Baer rings include all biregular rings, all
quasi-Baer rings and all abelian PP rings. See [9] for more details.

Ore extensions or polynomial extensions of (quasi-)Baer rings and their gener-
alizations are extensively studied recently ([4-10] and [14-17]). It is proved in [8,
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Theorem 1.8] that a ring R is quasi-Baer if and only if R[[X]] is quasi-Baer, where
X is an arbitrary nonempty set of not necessarily commuting indeterminates. In
[7, Theorem 2.1], it is shown that R is right p.q.-Baer if and only if R[z] is right
p.q.-Baer. But it is not equivalent to that R[[x]] is right p.q.-Baer. In fact, there
exists a commutative von Neumann regular ring R (hence p.q.-Baer) such that the
ring R[[z]] is not p.q.-Baer [7, Example 2.6]. In [20, Theorem 3], a necessary and
sufficient condition for semiprime ring under which the ring R][[x]] is right p.q.-Baer
are given. It is shown that R|[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer
and any countable family of idempotents in R has a generalized join when all left
semicentral idempotents are central. Indeed, for a right p.q.-Baer ring, asking the
set of left semicentral idempotents Sy(R) equals to the set of central idempotents
B(R) is equivalent to assume R is semiprime [9, Proposition 1.17]. In this note,
the condition requiring all left semicentral idempotents being central is shown to
be redundant. We show that: The ring R[[x]] is right p.q.-Baer if and only if R is
p.q.-Baer and every countable subset of right semicentral idempotents has a gen-
eralized countable join. This theorem properly generalizes Fraser and Nicholson’s
result in the class of reduced PP rings [12, Theorem 3] and Liu’s result in the class
of semiprime p.q.-Baer rings [20, Theorem 3]. For simplicity of notations, denote
N =1{0,1,2,---} be the set of natural numbers.

2. ANNIHILATORS AND LLEFT SEMICENTRAL IDEMPOTENTS

Lemma 1. Let f(z) = Y.2°, fir!, g(z) = > 70 g;z? € R[[z]]. Then the
following are equivalent.
(1) f(z)R[[z]]g(z) = 0;
(2) f(z)Rg(x)=0;
(3) Xirj=r fiagj=0forallk €N, a € R

Proof. Let h(z) = Y50, hka® € R[[z]] and assume f(z)R[[z]]g(z) = 0.
Then 0 = f(z)h(z)g(z) = 3 poo(f(z)hig(z))2” and thus f(z)Rg(z) = 0 if and
only if f(z)R][[z]]g(x) = 0. Now, let a € R be arbitrary. Observe that

e}

f@ag@) =S| 3 fag, | "
k=0 \i+j=Fk

Thus (2) is equivalent to (3). |

Recall that an idempotent e € R is called left (resp. right) semicentral [3] if
re = ere (resp. er = ere) for all » € R. Equivalently, e = €? € R is left (resp.
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right) semicentral if e R (resp. Re) is an ideal of R. Since the right annihilator of a
right ideal is an ideal, we see that the right annihilator of a right ideal is generated
by a left semicentral idempotents in a right p.q.-Baer ring. The set of left (resp.
right) semicentral idempotents of R is denoted S¢(R) (resp. S,(R)). The following
result is used frequently later in this note.

Lemma 2. [9, Lemma 1.1] Let e be an idempotent in a ring R with unity.
Then the following conditions are equivalent.

(1) e € Se(R);

(2) 1—ee S (R);

(3) (1—e)Re=0;

(4) eR is an ideal of R;

(5) R(1—e) is an ideal of R.

To prove the main result, we first characterize the left semicentral idempotents
in R[[z]].

Proposition 3. Let e(z) = Y22 &;2' € R[[z]]. Then e(x) € Se(R|[z]]) if and
only if
(1) eg € Se(R);
(2) egre; =rej and esreg =0 forallr € R, i =1,2,--+;
(3) Y irj=k cirej =0 forallr € R and k > 2.
ij>1

Proof. Assume e(z) = Y % g;2% € Sy(R[[z]]) and r € R. Then e(x)re(z) =
re(z), or

o0 o0
Z Z EiTrey fI,'k :Zr€k$k.
k=0 \i+j=Fk k=0

By comparing the coefficient of each terms 2% in the above expansion, we have a
system of equations

E(k): Y eirej=reg, forall k> 0.
it+j=k
From E(0), we have
EQTey = TeEp
and thus ¢ € Sy(R) since R has unity. Consider E(1): gorey + €17e9 = re1, and

multiply E(1) by g from right yields

EQTELEQ T+ 517"53 = re1€0-
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Since g9 € Si(R), eore1e0 = rerep and consequently e17eg = e1re3 = 0. Thus
gorer = rep from E(1). Multiply E(2): ggreg + e17re1 + €areg = reg by &g from
right yields

EQTE2EQ + E1TE1EY + E27E) = TE2EY.
Since g € S¢(R), we have ggregey = regeq, and also thateyreieg = e17(g02180) =
(e1reg)ereg = 0. It follows that egreg = 0. Assume that g;7e9 = 0 for @ =
1,2, -,k — 1. Inductively, multiply E (k) by g from right yields

EQTEKED T E girejeg | +Ekreg = TELED.
i+i=k
0,321
Observe that egregeg = regep since €9 € Sy(R), and

eirejeg = gir(eogjen) = (gireg)ejco = 0

for 1 < ¢ < k — 1 by induction hypothesis. Consequently exreg = 0. Thus
gireg = 0 for all » € R, ¢ > 1 by induction.
Now the system of equations F(k) becomes

E'(k): eorex + Z gire; =rey, for k > 2.
i+j=k
i,j=>1
Multiply the equation E’(2) by &g from left yields
EQTEY + EQELTEL = EQTED,
and thus epe;re; = 0. Recall that egre; = rey from E(1). It follows that

eirer = e1(eore1) = (eoe180)re1 = €oe1(eorer) = goerrer = 0.

Consequently, egres = reg from E’(2). Again, multiply E'(3) by ¢ from left
yields
EQTeE3 + E0E1TEL + EQEQTEL = EQTES,

and thus egeqreg + ggeare; = 0. It follows that

g1reg + egre; = e1(egree) + e2(egrer)
= (eoe1€0)re2 + (08280)TE1
= eoe1(eorea) + epea(eorer)
= gp€1Te2 + £pEaTel
=0.
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Substitute this result back to the equation E'(3), we get ggres = res. Assume that
eore; =re; for i =1,2,--+  k — 1, and multiply E’(k) by ¢y from left yields

EQTEEL + €0 E EiTej | = €qrek.-
it+j=k
ij>1

A similar argument used above will show that )=k g;re; = 0 by induction
1

1,52

hypothesis and thus egreg, = rey, for k > 2.

Conversely, let e(x) = > 22" € R[[x]] such that conditions (1), (2), (3)
hold. To show e(z) € Sy(R][z]]), it suffices to show that (¢(z) — 1)re(z) = 0 or
g(z)re(x) = re(zx) for all r € R by Lemma 2 and Lemma 1. Observe that

Z €;TE; = €0Trek + Z girej | +exreg = reg, for k> 1,

iti=k 4=k
,]2
and thus
o o
e(z)re(x) = Z Z eirej | aF = Zr&thk =re(z).
k=0 \i+j=k k=0
Consequently, e(x) € Sy(R][z]])- ]

Corollary 4. [4, Proposition 2.4(iv)] Let R be a ring with unity and e(x) =
Yizoeir' € Su(R[[z]]). Then e(x)R[[z]] = eo R[[z]].

Proof. Observe that

s . s .
go-e(z) = Z&?o&?ix’ = Z&?Zw’ =¢(x) and
=0 =0

e .
e(x) g9 = Z&?i&tox’ = g9,
=0

by Proposition 3. Thus e(z) f(z) = eo(e(z) f(z)) and eo f(z) = e(x)eo f(x) for all
f(z) € R][[z]]. Consequently, £(z)R|[[x]] = eo R[[x]]. |

3. GENERALIZED COUNTABLE JOIN

Let R be a ring with unity and £ = {eg, e1,e2,---} a countable subset of
S,(R). We say E has a generalized countable join e if, given a € R, there exists
e € S;(R) such that
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(1) eije =¢; for all i € N;
(2) if e;a = ¢; for all i € N, then ea = e.

Note that if there exists an element e € R satisfies conditions (1) and (2) above,
then e € S, (R). Indeed, the condition (1): e;e = e; for all i € N implies ee = e
by (2) and so e is an idempotent. Further, let a € R be arbitrary. Then the element
d = e — ea + eae is an idempotent in R and e;d = ¢; for all © € N. Thus ed = e
by (2). Note that ed = e(e — ea + eae) = d. Consequently, e = d = e — ea + eae
or ea = eae. Thus e € S, (R).

Note that a generalized countable join e, if it exists, is indeed a join if S,(R) is
a lattice. Recall that when R is an abelian ring (i.e., every idempotent is central),
then the set B(R) = S,(R) of all idempotents in R is a Boolean algebra where
e < d means ed = e. Let e be a join of E = {eg, e1,e2,---} in B(R) where
R is a reduced PP ring. That is e satisfies (1) e;e = e; for all i € N; (2/) if
e;d = e; for all i € N and any d € B(R), then ed = e. Given an arbitrary a € R,
then 1 — a = pu for some central idempotent p € R and some u € R such that
rAnng(u) = 0 = ¢Anng(u) [12, Proposition 2]. Observe that if e;a = e; for all
i € N, then e;(1 — a) = e;pu = 0. It follows that e;p = 0 for all i € N since
¢Anng(u) = 0. Thus ep = 0 or (1 — a) = epu = 0. Therefore ea = e and e is a
generalized countable join of E. In other words, a generalized countable join is a
join and vice versa in the class of reduced PP rings.

Be aware that (S, (R), <) is not partially ordered by defining d < e when de = d
in an arbitrary ring K. This relation is reflexive, transitive but not antisymmetric.
However, let a,b € S,(R) and define a ~ b if a = ab and b = ba. Then ~ is an
equivalence relation on S,(R) and (S,(R)/ ~, <) is a partially ordered set. In the
case when (S,(R)/ ~, <) is a complete lattice, then a generalized countable join
exists for any subset of S,(R). In particular when R is a Boolean ring or a reduced
PP ring, then the generalized countable join is indeed a join in R.

In [20, Definition 2], Liu defined the notion of generalized join for a countable
set of idempotents. Explicitely, let {eq, e1, - - - } be a countable family of idempotents
of R. The set {eg, ey, - - - } is said to have a generalized join e if there exists e = e
such that

(i) e;R(1—e) = 0;
(ii) if d is an idempotent and e; R(1 — d) = 0 then eR(1 — d) = 0.
Observe that
eir(l—e) =eire;(1 —e) = eir(e; — ee),

when e; € S,(R). Thus e; = e;e if and only if e;7(1 —e) = 0 for all » € R
when e; € S, (R) for all i € N. Now, let E = {eg,e1,e2,---} C S, (R) and e a
generalized countable join of E. To show e is a generalized join (in the sense of



Extensions of Principally Quasi-Baer Rings 1727

Liu), it remains to show condition (ii) holds. Let f be an idempotent in R such that
e;R(1—f) = 0. Then, in particular, e;(1— f) =0 foralli € N. Thuse(1—f) =0
by hypothesis. It follows that er(1 — f) = ere(1 — f) = 0 and thus eR(1 — f) = 0.
Therefore, e is a generalized join of E. Thus, in the content of right semicentral
idempotents, a generalized countable join is a generalized join in the sense of Liu.
Conversely, let e € S, (R) be a generalized join (in the sense of Liu) of the set
E ={eg,e1,€e2,---} CS-(R). Observe that condition (ii) is equivalent to
(#4') if d is an idempotent and e;d = e; then ed = e.
Let a € R be arbitrary such that e;a = e; for all ¢« € N. Then condition (ii’) and
a similar argument used in the case of reduced PP rings implies that ea = e. Thus
e is a generalized countable join. Therefore, in the content of right semicentral
idempotents, Liu’s generalized join is equivalent to generalized countable join.

4. MAIN RESULT

If X is a nonempty subset of R, then denote the right annihilator of X in R as
rAnng(X) = {a € R | Xa = 0} and the left annihilator fAnng(X) = {a € R |
aX = 0}. In the proof of next result, it is often to deal with the right annihilator
in the ring R or in the ring R[[]]. To simplify the notation, r Annpgj,);(X) will be
denoted rAnn(X) and the subscript R will be kept for rAnn r(X).

Theorem 5. Let R be a ring with unity. Then R][x]] is right p.q.-Baer if and
only if R is right p.q.-Baer and every countable subset of S ,(R) has a generalized
countable join.

Proof. 1f R|[[z]] is right p.q.-Baer then R is right p.q.-Baer by [7, Proposition
2.5]. It remains to show that every countable subset of S,(R) has a generalized
countable join.

Let E = {eg,e1,e2, -} C S(R) and e(z) = Y2 e;xz° € R[[z]]. Since
R[[x]] is right p.q.-Baer, there exists n(z) = >_72, nizt € Se(R[[x]]) such that

rAnn(e(z) R[[z]]) = n(x) R[[z]] = no R[]

by Corollary 4. Since rAnn(e(z)R[[z]]) = rAnn(e(x)R) by Lemma 1, we have

o
0=c¢e(x)rny = Z(eirno)xi, for any r € R.
i=0
Thus e;rng = 0 for all © € N, » € R. We will show that 1 — ng is a generalized

countable join for E. Since n(x) € S;(R][x]]), it follows that 1 — 79 € S,(R) by
Proposition 3 and Lemma 2. Furthermore, e¢;rng = 0 for all ¢ € N, r € R implies
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that e;no = 0 or e;(1 — ng) = e; for all © € N. Now let a € R such that e;a = e;
for all i € N. Then ¢;(1 — a) = 0 for all « € N. Since ¢; € S,(R), it follows that

eir(l—a)=erei(l—a)=0

and so e(z)r(1—a) =0 for all » € R. Thus 1 —a € rAnn(e(z)R) = noR[[z]]. In
particular 79(1 — a) = 1 — a. Consequently, (1 —ng)a =1 —1n9. Thus 1 — 1 is a
generalized countable join of E.

Conversely, assume the ring R is right p.q.-Baer and every countable subset of
S, (R) has a generalized countable join. Let f(z) = > 2, fiz® € R[[z]]. Since R is
right p.q.-Baer, there exists e; € Sy(R) for all ¢ € N such that rAnng(f;R) = e;R.
Thus 1 — e; € S;(R) by Lemma 2. By hypothesis, the set {1 —¢; | i € N} has a
generalized countable join e € S,.(R). It follows that

(I1—e)e=1—¢; or ¢(l—e)=1—c¢ forall i €N.
Let a € R be arbitrary. Then
s .
f(z)a(l—e) = Zfia(l —e)x’.
i=0
Since 1 — e =¢;(1 —e) € Sy(R) for all i € N, the coefficient of each terms in the
expansion of f(z)a(1l — e) becomes
fia(l —e) = fiae;(1 —e) € fiRe;R = 0.

Thus f(z)a(1—e) = 0 foralla € R. Consequently, (1—e) R[[z]] CrAnn(f(z)R[[x]])
by Lemma 1.

On the other hand, let g(x) = > 22 g;z? € rAnn(f(z)R[[]]). Then f(x)Rg(z)
= 0 for all » € R. Thus we have a system of equations

E(k): Y firg;=0 forallkeN,reR
i+j=k

by Lemma 1. From equation E(0): fyrgo = 0, it follows that gg € rAnng(foR) =
eoR and thus eggg = go. Since r is arbitrary, we may replace r as sey for arbitrary
s € R into the equation E(1): forg: + firgo = 0 and get

foseog1 + fiseogo = 0.

Observe that fpseggr € foRegR = 0 and thus fisgg = fiseggo = 0. It follows
that g9 € rAnng(fiR) = e;R. Consequently, e;go = go and forgs = 0 from
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equation E(1). Thus g1 € rAnng(foR) = epR and epg; = g1. Inductively, assume
e;g; = gj for 0 < i+ j < k — 1. Observe that

fiseoer - - -ex—19; = fisejeper - - -ex—19; € fiRe;R =0
for 0 <7 <k —1 and that

frseoer - -ex—190 = frsgo

by induction hypothesis. If we replace r by sepe; - - -ex—1 in E(k) for arbitrary
s € R, then
0= > fiseoer--ex_19; = fusgo-
i+j=k
Thus g9 € rAnng(frzR) = erR or exgo = go. Consequently, the equation E(k)

becomes
k—1

E'(k): Zfirgk_j =0 forallk e N,r € R.
=0

Replace 7 as sege; - - - eg—o into E'(k), we get

k-1
0= fiseoer - er_2gk—j = fr-1501.
i=0

Therefore g1 € rAnng(fx—1R) = ex_1R or ex_191 = ¢g1. Continue this process,
we get e;g; = g; when ¢ + j = k. Thus e;g; = g; for i + j € N by induction.
Consequently, (1 —e;)g; = 0 or (1 —¢;)(1 —gj) =1—¢; foralli,j € N.
Thus e(1 — gj) = e or (1 —e)g; = g;, for all j € N by hypothesis. It follows
that g(x) = > 272, gja’7 = 322 (1 —e)gja? = (1 —e)g(z) € (1 — e)R[[z]]. Thus
rAnn(f(x)R[[z]]) C (1 — e)R][[z]], and R[[x]] is right p.q.-Baer. |

Since Liu’s generalized join is equivalent to generalized countable join in the set
of right semicentral idempotents S, (R). The following result is immediated from
Theorem 5.

Corollary 6. [20, Theorem 3]. Let R be a ring such that S¢(R) C B(R). Then
R|[[z]] is right p.q.-Baer if and only if R is right p.q.-Baer and any countable family
of idempotents in R has a generalized join.

Corollary 7. [12, Theorem 3]. If R is a ring then R|[x]] is a reduced PP ring
if and only if R is a reduced PP ring and any countable family of idempotents in
R has a join in B(R).
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Proof. Since R is a reduced PP ring if and only if R is a reduced p.q.-Baer ring
[9, Proposition 1.14(iii)] and a join in B(R) is equivalent to a generalized countable

join

in B(R) when R is a reduced PP ring, the assertion follows immediately from

Theorem 5. u
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