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Abstract. In this paper we use the penalty approach in order to study two con-
strained minimization problems in Banach spaces. A penalty function is said
to have the generalized exact penalty property if there is a penalty coefficient
for which approximate solutions of the unconstrained penalized problem are
close enough to approximate solutions of the corresponding constrained prob-
lem. In this paper we show that the generalized exact penalty property holds
and is stable under perturbations of objective functions, constraint functions
and the right-hand side of constraints.

1. INTRODUCTION

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [2-5, 7-10, 12, 13, 15, 17-19] and the references mentioned there.

The notion of exact penalization was introduced by Eremin [7] and Zangwill
[15] for use in the development of algorithms for nonlinear constrained optimization.
Since that time exact penalty functions have continued to play a key role in the theory
of mathematical programming. For discussions and various applications of exact
penalization to various constrained optimization problems see [2, 3, 5, 9, 11].

In this paper we use the penalty approach in order to study constrained mini-
mization problems with locally Lipschitzian constraints in Banach spaces. A penalty
function is said to have the exact penalty property [2, 3, 5, 9] if there is a penalty co-
efficient for which a solution of an unconstrained penalized problem is a solution of
the corresponding constrained problem. We study two constrained nonconvex min-
imization problems with Lipschitzian (on bounded sets) objective functions. The
first problem is an equality-constrained problem in a Banach space with a locally
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Lipschitzian constraint function and the second problem is an inequality-constrained
problem in a Banach space with a locally Lipschitzian constraint function.

In [17] we considered these two problems and established a very simple suffi-
cient condition for the exact penalty property. In particular, the problem f(x) → min
subject to g(x) = c possesses the exact penalty if the real number c is not a critical
value of the function g. In other words the set g−1(c) does not contain a critical
point of the function g. Usually the exact penalty property is related to calmness
of the perturbed constraint function. In [17] and here we use the assumption of the
different nature which is not difficult to verify.

Note that in [17] we used the following notion of a critical point of a Lipschitzian
function introduced in [16]:

A point z is a critical point of the function g if 0 ∈ ∂g(z) where ∂g(z) is
Clarke’s generalized gradient of g at z [4].

More precisely, in [17] we considered the following constrained minimization
problems:

(P (f,g)
c,e ) f(x) → min subject to x ∈ g−1(c)

and

(P (f,g)
c,i ) f(x) → min subject to x ∈ g−1((−∞, c]),

where g is a locally Lipschitzian function defined on a Banach spaceX , f : X → R1

is a function which is Lipschitzian on all bounded subsets of X and which satisfies
a growth condition common in the literature and c is a real number such that the
set g−1(c) is nonempty.

We associate with these two problems the corresponding families of uncon-
strained minimization problems

(P (f,g)
λ,c,e ) f(x) + λ|g(x)− c| → min, x ∈ X

and

(P (f,g)
λ,c,i ) f(x) + λmax{g(x)− c, 0} → min, x ∈ X,

where λ > 0.
The main result of [17, Theorem 1.1] implies that if the space X is finite-

dimensional, c is not a critical value of g and if λ is sufficiently large, then any
solution of problem (P (f,g)

λ,c,e ) is a solution of problem (P (f,g)
c,e ) and any solution of

problem (P (f,g)
λ,c,i ) is a solution of problem (P (f,g)

c,i ). Thus if the the space X is
finite-dimensional, then problems (P (f,g)

c,e ) and (P (f,g)
c,i ) possess the classical exact

penalty property.
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If the spaceX is infinite-dimensional, then the existence of solutions of problems
(P (f,g)

λ,c,e ) and (P (f,g)
λ,c,i ) is not guaranteed and in this situation we consider approximate

solutions which always exist.
Consider a minimization problem h(z) → min, z ∈ X where h : X → R1 is a

bounded from below function. We say that x ∈ X is a δ-approximate solution of
the problem h(z) → min, z ∈ X , where δ > 0, if h(x) ≤ inf{h(z) : z ∈ X}+ δ.

Since in [17-19] and in this paper we consider minimization problems in a
general Banach space the existence of their solutions is not guaranteed. Therefore
we are interested in approximate solutions of the unconstrained penalized problems
and in approximate solutions of the corresponding constrained problems. Theorem
1.1 of [17] establishes the existence of a penalty coefficient for which approximate
solutions of the unconstrained penalized problem are close enough to approximate
solutions of the corresponding constrained problem. This is a novel approach in the
penalty type methods.

More precisely, if c is not a critical value of g, then Theorem 1.1 of [17]
establishes the following property which will be called here as the generalized exact
penalty property:

For each ε > 0 there exists δ(ε) > 0, which depends only on ε, such that if
λ ≥ λ̄ and x is a δ-approximate solution of (P (f,g)

λ,c,e ) ((P (f,g)
λ,c,i ) respectively), then

there exists a (λ̄ε)-approximate solution of (P (f,g)
c,e ) ((P (f,g)

c,i ) respectively) such that
||y − x|| ≤ ε.

Here λ̄ is a positive constant which does not depend on ε.
It is not difficult to see that the generalized exact penalty property implies that

any exact solution of the unconstrained penalized problem whose penalty coefficient
is larger than λ̄, is an exact solution of the corresponding constrained problem. It
should be mentioned that even if the space X is finite-dimensional the generalized
exact penalty property is of interest. Since computational algorithms in general
produce only approximate solutions of minimization problems it is important to
know that approximate solutions of unconstrained penalized problems with large
penalty coefficients are close enough to approximate solutions of the corresponding
constrained problem.

In [18] we study the stability of the generalized exact penalty property under
perturbations of the functions f and g and of the parameter c. The stability of
the generalized exact penalty property is crucial in practice. One reason is that in
practice we deal with a problem which consists a perturbation of the problem we
wish to consider. Another reason is that the computations introduce numerical errors.
In [18] we show that the generalized exact penalty property is stable if c is not a
critical value of g. In the present paper our goal is to show that the generalized exact
penalty property is stable under assumptions which are essentially weaker than the
assumptions of [18]. In particular, we show that if the equality constrained problem
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possesses a solution, then the assumption of [18] can be substituted by the following
assumption:

The set of solutions of the problem does not contained a critical point of g.
The paper is organized as follows. The main results are stated in Section 2.

Section 3 contains auxiliary results. The main results are proved in Section 4.

2. THE MAIN RESULTS

Let (X, || · ||) be a Banach space, (X∗, || · ||∗) its dual space and let f : X → R1

be a locally Lipschitzian function.
For each x ∈ X let

f0(x, h) = lim sup
t→0+, y→x

[f(y + th) − f(y)]/t, h ∈ X,

be the Clarke generalized directional derivative of f at the point x [4], let

∂f(x) = {l ∈ X∗ : f0(x, h) ≥ l(h) for all h ∈ X}
be Clarke’s generalized gradient of f at x, [4] and set

(2.1) Ξf (x) = inf{f0(x, h) : h ∈ X and ||h|| ≤ 1}
[16].

A point x ∈ X is called a critical point of f if 0 ∈ ∂f(x) [16]. It is not difficult
to see that x ∈ X is a critical point of f if and only if Ξf (x) = 0.

A real number c ∈ R1 is called a critical value of f if there is a critical point
x of f such that f(x) = c.

It is known [4, Chapter 2, Section 2.3] that ∂(−f)(x) = −∂f(x) for any x ∈ X .
This equality implies that x ∈ X is a critical point of f if and only if x is a critical
point of −f and c ∈ R1 is a critical value of f if and only if −c is a critical value
of −f .

For each function h : X → R1 set inf(h) = inf{h(z) : z ∈ X}.
For each x ∈ X and each nonempty set B ⊂ X put

d(x, B) = inf{||x− y|| : y ∈ B}.
We say that a locally Lipschitz function f : X → R1 satisfies Palais-Smale

(P-S) condition on a set A ⊂ X if for any sequence {xi}∞i=1 ⊂ A for which
the sequence {f(xi)}∞i=1 is bounded and limi→∞ Ξf (xi) = 0 there exists a norm
convergent subsequence in X [1, 16, 17].

Remark 2.1. In [17] instead of the function Ξf we introduced a function Ξ̃f :
X → R1 defined by

Ξ̃f (x) = inf{f0(x, h) : h ∈ X and ||h|| = 1}, x ∈ X.



Stability of Exact Penalty 1497

Clearly for all x ∈ X we have Ξf (x) ≤ Ξ̃f (x) and Ξ̃f (x) ≥ 0 if and only if
Ξf (x) = 0. It is not difficult to see that for each sequence {xi}∞i=1 ⊂ X

lim
i→∞

Ξf (xi) = 0 if and only if lim inf
i→∞

Ξ̃f (xi) ≥ 0.

For each x ∈ X and each r > 0 set

B(x, r) = {z ∈ X : ||x− z|| ≤ r}, B0(x, r) = {z ∈ X : ||x− z|| < r}.
We assume that the infimum over an empty set is infinity.

For each c ∈ R1 and each pair of functions f, g : X → R1 set

(2.2) inf(f, c, g) = inf{f(z) : z ∈ g−1(c)},
inf(f, (−∞, c], g) = inf{f(z) : z ∈ g−1((−∞, c])}.

Let φ : [0,∞) → R1 be an increasing function such that

(2.3) lim
t→∞φ(t) = ∞.

LetM0,M1,M2 be positive numbers and let h : X → R1 be a continuous function.
Now we define a family of functions which are close to the function h. This family
is determined by the parameters M0,M1,M2.

Denote by U(h,M0,M1,M2) the set of all continuous functions g : X → R1

such that

(2.4) |g(x)− h(x)| ≤M1 for all x ∈ B(0,M0),

(2.5) |h(x)− g(x)− (h(y)− g(y))| ≤M2||x− y|| for all x, y ∈ B(0,M0)

and denote by Uφ(h,M0,M1,M2) the set of all g ∈ U(h,M0,M1,M2) such that

(2.6) g(x) ≥ φ(||x||) for all x ∈ X.

Let f0 : X → R1 be a locally Lipschitzian function which satisfies

(2.7) f0(x) ≥ φ(||x||) for all x ∈ X,

g0 : X → R1 be a locally Lipschitzian function and let

(2.8) a0 < c0 < b0.

We assume that

(2.9) g−1
0 (c0) �= ∅
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and consider the following constrained minimization problems

(Pe) f0(x) → min subject to x ∈ g−1
0 (c0)

and

(Pi) f0(x) → min subject to x ∈ g−1
0 ((−∞, c0]).

We suppose that there exists θ ∈ X such that the following assumption holds:
(A0) In the case of the problem (Pe)

θ ∈ g−1
0 (c0) and 0 �∈ ∂g0(θ);

in the case of the problem (Pi)

θ ∈ g−1
0 ((−∞, c0]) and if θ ∈ g−1

0 (c0), then 0 �∈ ∂g0(θ).

Assume that

(2.10) f : X → R1, g : X → R1, c ∈ R1.

If g−1(c) �= ∅, then we consider the equality-constraint problem

(P (f,g)
c,e ) f(x) → min subject to x ∈ g−1(c)

and if g−1((−∞, c]) �= ∅, then we consider the inequality-constraint problem

(P (f,g)
c,i ) f(x) → min subject to x ∈ g−1(−∞, c]).

We associate with these two problems the corresponding families of uncon-
strained minimization problems

(P (f,g)
λ,c,e ) f(x) + λ|g(x)− c| → min, x ∈ X,

(P (f,g)
λ,c,i ) f(x) + λmax{g(x)− c, 0} → min, x ∈ X

where λ > 0.
By (2.3) there is a positive number M̄ such that

(2.11) M̄ > ||θ|| + 4 and φ(M̄ − 4) > f0(θ) + 4.

In this paper we use the following assumptions:

(A1) f0 is Lipschitz on B(0, M̄);
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(A2) for each ε > 0 there exists xε ∈ g−1
0 (c0) such that f0(xε) ≤ inf(f,c0, g0) + ε

and 0 �∈ ∂g0(xε);
(A3) for each ε > 0 there exists xε ∈ g−1

0 ((−∞, c0]) such that

f0(xε) ≤ inf(f0, (−∞, c0], g0) + ε

and if xε ∈ g−1
0 (c0), then 0 �∈ ∂g0(xε);

(A4) if y ∈ g−1
0 (c0) satisfies f0(y) = inf(f0, c0, g0), then 0 �∈ ∂g0(y);

(A5) if y ∈ g−1
0 (c0) satisfies f0(y) = inf(f0; (−∞, c0]; g0), then 0 �∈ ∂g0(y);

(A6) each sequence {yk}∞k=1 ⊂ {z ∈ B0(0, M̄) : g0(z) ∈ [a0, b0]} which satisfies
lim infk→∞ Ξg0(yk) = 0 possesses a norm convergent subsequence;

(A7) each sequence

{yk}∞k=1 ⊂ {z ∈ B0(0, M̄) : g0(z) ∈ [c0, b0]}
which satisfies lim infk→∞ Ξg0(yk) = 0 possesses a norm convergent subse-
quence.

Remark 2.1. If (A1) holds, then by (2.7) and (2.11) f0 is bounded from below
on X .

Remark 2.2. Assumption (A6) ((A7) respectively) means that g0 satisfies (P-S)
condition on the set g−1

0 ([a0, b0])∩B0(0, M̄) (g−1
0 ([c0, b0])∩B0(0, M̄) respectively).

In this paper we prove the following two results.

Theorem 2.1. Suppose that (A1), (A2), (A4) and (A6) hold. Let M > 0. Then
there exist α > 0, λ0 > 0 such that for each ε > 0 there exists δ ∈ (0, ε) such that
the following assertion holds:

For each λ ≥ λ0, each c ∈ R1 satisfying |c− c0| ≤ α, each pair of functions
f : X → R1 and g : X → R1 which satisfy

f ∈ Uφ(f0, M̄ , α,M), g ∈ U(g0, M̄, α, α)

and each x ∈ X satisfying

f(x) + λ|g(x)− c| ≤ inf{f(z) + λ|g(z)− c| : z ∈ X}+ δ

there is y ∈ g−1(c) such that ||y − x|| ≤ ε and

f(y) ≤ f(x) + λ|g(x)− c| ≤ inf{f(z) + λ|g(z)− c| : z ∈ X}+ δ.

Theorem 2.2. Suppose that (A1), (A3), (A5) and (A7) hold. Let M > 0. Then
there exist α > 0, λ0 > 0 such that for each ε > 0 there exists δ ∈ (0, ε) such that
the following assertion holds:
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For each λ ≥ λ0, each c ∈ R1 satisfying |c− c0| ≤ α, each pair of functions
f : X → R1 and g : X → R1 which satisfy

f ∈ Uφ(f0, M̄, α,M), g ∈ U(g0, M̄, α, α)

and each x ∈ X which satisfies

f(x) + λmax{g(x)− c, 0} ≤ inf{f(z) + λmax{g(z)− c, 0} : z ∈ X}+ δ

there is y ∈ g−1((−∞, c]) such that ||y − x|| ≤ ε and

f(y) ≤ f(x) + λmax{g(x)− c, 0}≤ inf{f(z) + λmax{g(z)− c, 0} : z∈X}+ ε.

Theorems 2.1 and 2.2 will be proved in Section 4. They imply the following
result.

Theorem 2.3.

(1) Suppose that (A1), (A2), (A4) and (A6) hold. LetM > 0. Then there exist α >
0, λ0 > 0 such that for each f ∈ Uφ(f0, M̄, α,M), each g ∈ U(g0, M̄ , α, α),
each c ∈ [c0 − α, c0 + α], each λ ≥ λ0 and for each sequence {xi}∞i=1 ⊂ X
which satisfies

lim
i→∞

[f(xi) + λ|g(xi) − c|} = inf{f(z) + λ|g(z)− c| : z ∈ X}

there exists a sequence {yi}∞i=1 ⊂ g−1(c) such that

lim
i→∞

f(yi) = inf(f, c, g), lim
i→∞

||yi − xi|| = 0.

(2) Suppose that (A1), (A3), (A5) and (A7) hold. LetM > 0. Then there exist α >
0, λ0 > 0 such that for each f ∈ Uφ(f0, M̄, α,M), each g ∈ U(g0, M̄ , α, α),
each c ∈ [c0 − α, c0 + α], each λ ≥ λ0 and for each sequence {xi}∞i=1 ⊂ X

which satisfies

lim
i→∞

[f(xi)+λmax{g(xi)−c, 0}) = inf{f(z)+λmax{g(z)−c, 0} : z ∈ X}

there exists a sequence {yi}∞i=1 ⊂ g−1((−∞, c]) such that

lim
i→∞

f(yi) = inf(f ; (−∞, c], g), lim
i→∞

||yi − xi|| = 0.

Remark 2.3. Note that Theorems 2.1 and 2.2 are generalizations of the main
results of [18]. In [18] the assumptions (A2) and (A4) for the equality-constraint
problem and the assumptions (A3) and (A5) for the inequality-constraint problem
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were substituted by an essentially stronger assumption that c0 is not a critical value
of the function g0. In particular, for the equality-constraint problem the assumption
(A4) means that the problem does not possess solutions which are critical points of
g0 while (A2) follows from (A4) if the problem has a solution.

Remark 2.4. We prove Theorems 2.1 and 2.2 simultaneously but if one reads
carefully the proof it is not difficult to see that the equality-constraint case is more
complicated than the inequality-constraint case. For example, in the proof of The-
orem 2.2 we do not need Proposition 3.1 which plays a crucial role in the proof of
Theorem 2.1. Actually we present here Theorem 2.2 for the completeness of our
presentation because the proof of Theorem 2.1 also works for Theorem 2.2. Note
that in [19] we obtain a generalization of Theorem 2.2 for an inequality-constraint
problem with a number of constraints.

3. AUXILIARY RESULTS

In this section we use the notation and definitions introduced in Section 2.
Let (Y, || · ||) and (Z, || · ||) be Banach spaces, A ⊂ Y , B ⊂ Z. We say that

h : A → B is an L-mapping if for each x ∈ A there exists r > 0 such that the
restriction h : A ∩B(x, r) → B is Lipschitzian.

Assume that g : X → R1 is a locally Lipschitz function. In the sequel we use
the following auxiliary result of [16, Lemma 1].

Lemma 3.1. Let δ be a positive number and let A ⊂ X be a nonempty closed
subset of X such that Ξg(x) < −δ for all x ∈ A. Then there exists an L-mapping
V : X → X such that

||V x|| ≤ 2 for all x ∈ X, g0(x, V x) ≤ 0 for all x ∈ X,

g0(x, V x) ≤ −δ for all x ∈ A.

Lemma 3.2. Let x0 ∈ X , δ > 0 and let Ξg(x0) < −δ. Then there exist r > 0
and an L-mapping V : X → X such that

||V x|| ≤ 2 for all x ∈ X, g0(x, V x) ≤ 0 for all x ∈ X,

g0(x, V x) ≤ −δ for all x ∈ B(x0, r).

Proof. By upper semicontinuity of the Clarke generalized directional derivative
g0(ξ, η) with respect to ξ there exists r > 0 such that Ξg(x) < −δ for all x ∈
B(x0, r). Now Lemma 3.2 follows from Lemma 3.1.
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Proposition 3.1. Let

(3.1) x0 ∈ B0(0, M̄) ∩ g−1
0 (c0),

(3.2) 0 �∈ ∂g0(x0)

and let ε0 be a positive number. Then there exists δ0 ∈ (0, ε0) such that for each
function g : X → R1 which satisfies

(3.3) |g(z)− g0(z)| ≤ δ0, z ∈ B0(0, M̄),

(3.4) |(g − g0)(z1) − (g − g0)(z2)| ≤ δ0||z1 − z2|| for all z1, z2 ∈ B0(0, M̄)

and each c ∈ R1 satisfying

(3.5) |c− c0| ≤ δ0

there is x ∈ B0(0, M̄) such that

(3.6) ||x− x0|| < ε0, g(x) = c.

Proof. By (2.1) and (3.2),

Ξg0(x0) < 0.

Choose δ > 0 such that

(3.7) Ξg0(x0) < −δ.

By Lemma 3.2 there exist r > 0 and an L-mapping V : X → X such that

(3.8) r < ε0, B(x0, r) ⊂ B0(0, M̄),

(3.9) ||V x|| ≤ 2 for all x ∈ X, g0
0(x, V x) ≤ 0 for all x ∈ X,

(3.10) g0
0(x, V x) ≤ −δ for all x ∈ B(x0, r).

It is clear that there exist t0 > 0 and a differentiable function φ : [−t0, t0] → X
such that

(3.11) φ′(t) = V φ(t), t ∈ [−t0, t0],

(3.12) φ(0) = x0,
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(3.13) φ(t) ∈ B0(x0, r), t ∈ [−t0, t0].
It follows from the properties of the Clarke generalized directional derivative [4]
that for each t1, t2 ∈ [−t0, t0] satisfying t1 < t2,

g0(φ(t2)) − g0(φ(t1)) = l(φ′(s))(t2 − t1),

where s ∈ [t1, t2] and l ∈ ∂g0(φ(s)), and in view of (3.10), (3.11), (3.13) and the
definition of Clarke’s generalized gradient

g0(φ(t2))−g0(φ(t1))=(t2−t1)l(V (φ(s)))≤(t2−t1)g0
0(φ(s), V (φ(s)))≤−δ(t2−t1).

Thus

(3.14)
g0(φ(t2)) − g0(φ(t1)) ≤ −δ(t2 − t1)

for each t1, t2 ∈ [−t0, t0] such that t1 < t2.

Choose a positive number δ0 such that

(3.15) δ0 < min{ε0, δt0/8}.
Assume that g : X → R1 satisfies (3.4) and c ∈ R1 satisfies (3.5). Relations

(3.8) and (3.13) imply that for all t ∈ [−t0, t0],
(3.16) φ(t) ∈ B0(x0, r) ⊂ B0(0, M̄) ∩B0(x0, ε0).

In view of (3.1), (3.12) and (3.14),

(3.17) g0(φ(t0/2)) ≤ g0(φ(0))− δt0/2 = g0(x0) − δt0/2 = c0 − δt0/2,

(3.18) g0(φ(−t0/2)) ≥ g0(φ(0)) + δt0/2 = g0(x0) + δt0/2 = c0 + δt0/2.

By (3.4), (3.8) and (3.13),

(3.19) |(g − g0)(φ(t0/2))|, |(g − g0)(φ(−t0/2))| ≤ δ0.

By (3.19), (3.17), (3.5), (3.15) and (3.18)

g(φ(t0/2)) ≤ g0(φ(t0/2)) + δ0 ≤ c0 − δt0/2 + δ0 ≤ c− δt0/2 + 2δ0 ≤ c− 2δ0

and

g(φ(−t0/2)) ≥ g0(φ(−t0/2))− δ0 = c0 + δt0/2− δ0 ≥ c+ δ0/2− 2δ0 ≥ c+ 2δ0.

These inequalities imply that there is s ∈ (−t0/2, t02) such that
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g(φ(s)) = c.

It follows from (3.13) and (3.16) that

φ(s) ∈ B0(0, M̄), ||φ(s)− x0|| < ε0.

This completes the proof of Proposition 3.1.

4. PROOF OF THEOREMS 2.1 AND 2.2

We prove Theorems 2.1 and 2.2 simultaneously. For each c ∈ R1 and each
function g : X → R1 set

(4.1) Ag,c = g−1(c) in the case of Theorem 2.1,

Ag,c = g−1((−∞, c]) in the case of Theorem 2.2.

For each λ > 0, each c ∈ R1 and each pair of functions f, g : X → R1 define a
function ψ(f,g)

λ,c : X → R1 as follow:

(4.2) ψ
(f,g)
λ,c (z) = f(z) + λ|g(z)− c|, z ∈ X

in the case of Theorem 2.1 and

(4.3) ψ
(f,g)
λ,c (z) = f(z) + λmax{g(z)− c, 0}, z ∈ X

in the case of Theorem 2.2.
Let M > 0. We assume that Theorem 2.1 (Theorem 2.2 respectively) does not

hold. Then for each natural number k there exist

εk ∈ (0, 1), λk ≥ k, ck ∈ R1

satisfying

(4.4) |ck − c0| ≤ k−1,

a pair of functions fk, gk : X → R1 which satisfy

(4.5) fk ∈ Uφ(f0, M̄, k−1,M), gk ∈ U(g0, M̄, k−1, k−1)

and xk ∈ X satisfying

(4.6) ψ
(fk,gk)
λk,ck

(xk) ≤ inf(ψ(fk,gk)
λk,ck

) + εk2−1k−2,

(4.7) {y ∈ Agk,ck
∩B(xk, εk) : ψ(fk,gk)

λk,ck
(y) ≤ ψ

(fk,gk)
λk,ck

(xk)} = ∅.
Set
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(4.8) φ(k) = ψ
(fk,gk)
λk,ck

, k = 1, 2, . . .

Let k be a natural number. By Ekeland’s variational principle [6], (4.2), (4.3),
(4.5), (4.6) and (4.8) there is yk ∈ X such that

(4.9) φ(k)(yk) ≤ φ(k)(xk),

(4.10) ||yk − xk|| ≤ (2k)−1εk,

(4.11) φ(k)(yk) ≤ φ(k)(z) + k−1||z − yk|| for all z ∈ X.

By (4.7), (4.8), (4.9) and (4.10),

(4.12) yk �∈ Agk,ck
.

In the case of Theorem 2.2 we obtain that

(4.13) gk(yk) > ck.

In the case of Theorem 2.1 we obtain that either gk(yk) > ck or gk(yk) < ck. In the
case of Theorem 2.1 extracting a subsequence, re-indexing and replacing g0 by −g0,
gk by −gk, c0 by −c0 and ck by −ck, we may assume without loss of generality
that an both cases

(4.14) gk(yk) > ck for all natural numbes k.

In view of (A1) there exists a number L0 > 0 such that

(4.15) |f0(z1)− f0(z2)| ≤ L0||z1 − z2|| for all z1, z2 ∈ B(0, M̄).

It is easy to see that for all natural numbers k, φ(k) is locally Lipschitz on B(0, M̄).
We continue the proof with four steps.

Step 1. We show that ||yk|| ≤ M̄ − 4 for all sufficiently large natural numbers
k. It follows from (1.11), (A0), Proposition 3.1, (4.1), (4.4) and (4.5) that there is
a natural number k0 such that for each integer k ≥ k0 there exists

(4.16) θk ∈ B0(0, M̄) ∩Agkck

such that

(4.17) lim
k→∞

||θk − θ|| = 0.

It follows from (1.11), (4.2), (4.3), (4.5), (4.6), (4.8), (4.9), (4.15) and (4.16) that
for each integer k ≥ k0
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(4.18)

fk(yk) ≤ φ(k)(yk) ≤ φ(k)(xk) ≤ inf(φ(k)) + 2−1k−2

≤ φ(k)(θk) + 2−1k−2 = fk(θk) + 2−1k−2

= f0(θk) + [fk(θk) − f0(θk)] + 2−1k−2

≤ f0(θk) + k−1 + k−2 = f0(θ) + [f0(θk) − f0(θ)] + k−1 + k−2

≤ f0(θ) + L0||θk − θ|| + 2k−1.

Since limk→∞ ||θk−θ|| = 0 it follows from (4.18) that there exists a natural number
k1 ≥ k0 such that for all integers k ≥ k1,

fk(yk) ≤ f0(θ) + 2−1.

Together with (1.6), (1.11) and (4.5) this implies that

(4.19) ||yk|| ≤ M̄ − 4 for all integers k ≥ k1.

Step 2. We show that limk→∞ Ξg0(yk) = 0. Let k ≥ k1 be a natural number.
By (4.5) and (4.19) for each z ∈ B(yk, 3/2),

(4.20) |[gk(z)− g0(z)] − [gk(yk) − g0(yk)]| ≤ k−1||z − yk||,

(4.21) |[fk(z)− f0(z)]− [fk(yk) − f0(yk)]| ≤M ||z − yk||.
By (4.14) there exists a positive number rk ≤ 3/2 such that

(4.22) gk(z) > ck for all z ∈ B(yk, rk).

In view of (4.22), (4.11), (4.8), (4.2) and (4.3) for all z ∈ B(yk, rk),

(4.23) fk(yk) + λk(gk(yk)− ck) ≤ fk(z) + λk(gk(z) − ck) + k−1||z − yk||.
By (4.20), (4.21), (4.22) and (4.23) for all z ∈ B(yk, rk),

(4.24)

f0(yk) + λkg0(yk)

≤ fk(yk) + λkgk(yk) + [f0(yk)− fk(yk)] + λk[g0(yk) − gk(yk)]

≤ fk(z) + λkgk(z) + k−1||z − yk||+ [f0(yk)

−fk(yk)] + λk[g0(yk) − gk(yk)]

≤ f0(z) + λkg0(z) + (fk(z)− f0(z)) + λk[gk(z) − g0(z)]

+k−1||z − yk||+ [f0(yk) − fk(yk)] + λk[(g0(yk) − gk(yk)]

= f0(z) + λkg0(z) + k−1||z − yk||
+[(fk−f0)(z)−(fk − f0)(yk)]+λk[(gk−g0)(z)−(gk−g0)(yk)]

≤ f0(z) + λkg0(z) + k−1||z − yk|| +M ||z − yk||+ λkk
−1||z − yk||.
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In view of (4.24) for all z ∈ B(yk, zk)

g0(yk) + λ−1
k f0(yk) ≤ g0(z) + λ−1

k f0(z) + λ−1
k ||z − yk||(k−1 +M + k−1).

It follows from the inequality above and the properties of Clarke’s generalized
gradient [4, Chapter 2, Sect. 2.3] that

(4.25) 0 ∈ ∂g0(yk) + λ−1
k ∂f0(yk) + λ−1

k (2/k+M){l ∈ X∗ : ||l||∗ ≤ 1}.

By (4.15) and (4.19) for each natural number k ≥ k1,

∂f0(yk) ⊂ {l ∈ X∗ : ||l||∗ ≤ L0}.

Together with (4.25) this implies that for each natural k ≥ k1

0 ∈ ∂g0(yk) + λ−1
k (L0 + 2/k +M){l ∈ X∗ : ||l||∗ ≤ 1}

and

(4.26) lim
k→∞

Ξg0(yk) = 0.

Step 3. Let us show that limk→∞ g0(yk) = c0 and that {yj}∞j=1 possesses a
convergent subsequence. By (4.19), (4.5), (4.14), (4.8), (4.2), (4.3), (4.9), (4.6) and
(4.16) for all natural number k ≥ k1,

−M + λk(gk(yk) − ck) + f0(yk) ≤ fk(yk) + λk(gk(yk) − ck)

= φ(k)(yk) ≤ φ(k)(xk) ≤ inf(φ(k)) + 1 ≤ φ(k)(θk) + 1 ≤ fk(θk) + 1

= f0(θk) + 1 + fk(θk)− f0(θk) ≤ f0(θk) + 2

and

0 < gk(yk) − ck ≤ λ−1
k [sup{f0(z) : z ∈ B(0, M̄)} − inf(f0) + 2 +M ].

Thus limk→∞(gk(yk) − ck) = 0. Together with (4.4), (4.5) and (4.19) this implies
that

(4.27) lim
k→∞

g0(yk) = c0.

By (4.26), (4.27), (4.19), (A6), (A7), (1.8) and (4.13) there exists a strictly increasing
sequence of natural numbers {kj}∞j=1 such that {ykj}∞j=1 converges in the norm
topology of X to y∗ ∈ X . In view of (4.27)

(4.28) g0(y∗) = c0.
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Step 4. Let us show that f0(y∗) = inf(f0;Ag0,c0).
It follows from (4.26) and and upper semicontinuity of the Clarke generalized

directional derivative g0(ξ, η) with respect to ξ [4] that Ξg0(y∗) = 0 and

(4.29) 0 ∈ ∂g0(y∗).

In view of (4.15) and (4.19),

(4.30) f0(y∗) = lim
j→∞

f0(ykj ).

Let ∆ ∈ (0, 1). It follows from (A2) and (A3) that there exists

(4.31) x(∆) ∈ Ag0,c0

such that

(4.32) f0(x(∆)) ≤ inf(f0;A(g0, c0)) + ∆,

(4.33) 0 �∈ ∂g0(x(∆)) if g(x(∆)) = c0.

By (4.31) and (A0),

(4.34) f0(x(∆)) ≤ f0(θ) + 1.

It follows from (4.34), (1.7) and (1.11) that

(4.35) ||x(∆)||< M̄ − 4.

By (4.35), (4.31), (4.33), (4.4), (4.5) and Proposition 3.1 there is a natural number
k2 ≥ k1 such that for each integer k ≥ k2 there is

(4.36) xk(∆) ∈ B0(0, M̄) ∩Agk,ck

such that

(4.37) lim
k→∞

||xk(∆) − x(∆)|| = 0.

In view of (4.19), (4.5), (4.8), (4.2), (4.3), (4.9), (4.6), (4.36), (4.19) and (4.15) for
all integers k ≥ k2,

f0(yk) − k−1 ≤ fk(yk) ≤ φ(k)(yk) ≤ φ(k)(xk) ≤ inf(φ(k)) + 2−1k−2

≤ φ(k)(xk(∆)) + 2−1k−2

= fk(xk(∆)) + 2−1k−2 = f0(xk(∆)) + [fk(xk(∆))− f0(xk(∆))] + 2−1k−2

≤ f0(xk(∆)) + k−1 + 2−1k−2

= f0(x(∆)) + [f0(xk(∆))− f0(x(∆))] + 1/k + (2k2)−1

≤ f0(x(∆)) + L0||xk(∆)− x(∆)||+ 2k−1
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and combined with (4.32) this implies that

f0(yk) ≤ 3k−1 + L0||xk(∆)− x(∆)||+ inf(f0;Ag0,c0) + ∆.

Together with (4.37) this implies that

lim sup
k→∞

f0(yk) ≤ inf(f0;Ag0,c0) + ∆.

Since ∆ is an arbitrary number from the interval (0, 1) we conclude that

lim sup
k→∞

f0(yk) ≤ inf(f0;Ag0,c0).

Combined with (4.30) this implies that

f0(y∗) = lim
j→∞

f0(ykj ) ≤ inf(f0;Ag0,c0)

and in view of (4.28),

(4.38) f0(y∗) = inf(f0;Ag0,c0).

Relations (4.38), (4.28) and (4.29) contradict (A4) in the case of Theorem 2.1
and (A5) in the case of Theorem 2.2. The contradiction we have reached proves
Theorems 2.1 and 2.2
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