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A VERSION OF HILBERT’S 13TH PROBLEM FOR ENTIRE FUNCTIONS

Shigeo Akashi
Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. It is famous that Hilbert proved that, for any positive integer n, there
exists an entire function fn(·, ·, ·) of three complex variables which cannot
be represented as any n-time nested superposition constructed from several
entire fuctions of two complex variables. In this paper, a finer classification
of the 13th problem formulated by Hilbert is given. This classification is
applied to the theorem showing that there exists an entire function f(·, ·, ·)
of three complex variables which cannot be represented as any finite-time
nested superposition constructed from several entire functions of two complex
variables. The original result proved by Hilbert can be derived from this
theorem.

1. CLASSIFICATION OF HILBERT’S 13TH PROBLEM

Let C (resp. R) be the set of all complex numbers (resp. real numbers) and let
f(·, ·, ·) be the function of three variable defined as

f(x, y, z) = xy + yz + zx, x, y, z ∈ C.

Then, we can easily prove that there do not exist any three entire functions of two
variables g(·, ·), u(·, ·) and v(·, ·) satisfying the following equality:

f(x, y, z) = g(u(x, y), v(x, z)), x, y, z ∈ C.

This result shows us that f cannot be represented any one-time nested superposi-
tion constructed from several entire functions of two variables. But the following
equality:

f(x, y, z) = x(y + z) + yz, x, y, z ∈ C.
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shows that f can be represented as a two-time nested superposition constructed from
addition and multiplication.
In 1957, Kolmogorov and Arnold solved Hilbert’s 13th problem asking if all con-
tinuous functions of several real variables can be represented as appropriate super-
positions constructed from several continuous functions of fewer real variables. If
their original result is applied to the set of all contiuous functions of three real
variables, for any continuous function f of three real variables, we can choose a
family of seven continuous functions of one real variable {gf

i ; 0 ≤ i ≤ 6} which
is dependent on f , and a family of twenty one continuous functions of one real
variable {φij ; 0 ≤ i ≤ 6, 1 ≤ j ≤ 3} which is independent of f , satisfying

f(x1, x2, x3) =
6∑

i=0

gf
i


 3∑

j=1

φij(xj)


 , x1, x2, x3 ∈ R.

This result, which is called Kolmogorov-Arnold representation theorem [3], immedi-
ately implies that any continuous function of three real variables can be represented
as a 7-time nested superposition of continuous functions of two real variables, be-
cause the following equality holds:

f(z1, z2, z3) =
(((((

gf
0

(
(φ01(z1) + φ02(z2)) + φ03(z3)

)
+gf

1

(
(φ11(z1) + φ12(z2)) + φ13(z3)

))
+gf

2

(
(φ21(z1) + φ22(z2)) + φ23(z3)

))
+g

f
3

(
(φ31(z1) + φ32(z2)) + φ33(z3)

))
+gf

4

(
(φ41(z1) + φ42(z2)) + φ43(z3)

))
+gf

5

(
(φ51(z1) + φ52(z2)) + φ53(z3)

))
+gf

6

(
(φ61(z1) + φ62(z2)) + φ63(z3)

)
, x1, x2, x3 ∈ R.

Let A3 (resp. A2) be a set of functions of three variables (resp. two variables)
such as the set of all continuous functions of three variables (resp. two variables)
or the set of all analytic functions of three variables (resp. two variables). Then,
the superposition representation proposition can be classified into the following two
propositions:

Proposition I. There exists a certain positive integer k such that, for any
element f of A3, f can be represented as a certain k-time nested superposition
constructed from several elements of A2.
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Proposition II. For any function f of A3, there exists a positive integer kf

such that f can be represented as a kf -time nested superposition constructed from
several elements of A2.

Here, Proposition I is called the strong superposition representation proposition
and Proposition II is called the weak superposition representation proposition. It is
clear that Proposition II holds necessarily if Proposition I holds. By the same way
as above, the superposition irrepresentation propositions can be classified into the
following two propositions:

Proposition III. There exists a certain element f of A3 which cannot be rep-
resented as any finite-time nested superposition constructed from several elements
of A2.

Proposition IV. For any positive integer k, there exists an element f k of A3

which cannot be represented as any k-time nested superposition constructed from
several elements of A2.

Here, Proposition III is called the strong superposition irrepresentation proposi-
tion and Proposition IV is called the weak superposition irrepresentation proposi-
tion. It is clear that Proposition IV holds necessarily if Proposition III holds. Since
Proposition IV is the negative proposition of Proposition I and Proposition III is the
negative proposition of Proposition II, only one of the following three cases, namely,
the case that Proposition I holds, the case that both Proposition II and Proposition
IV hold and the case that Proposition III holds, can be proved exclusively. In other
words, if one of these three cases can be proved affirmatively, then the other two
cases can be proved negatively.

Remark 1. If we take the set of all continuous functions of three real variables
(resp. two real variables) as an example of A3 (resp. A2), then Kolmogorov-Arnold
theorem assures that only Proposition I holds. If we take the set of all polynomials
of three complex variables (resp. two complex variables) as an example of A3 (resp.
A2), then both Proposition II and Proposition IV holds. If we take the set of all
finite-time continuously differentiable functions of three real variables (resp. two
real variables) as an example of A3 (resp. A2), then Vituskin theorem [6] assures
that only Proposition IV holds.

2. ε-ENTROPY OF ANALYTIC FUNCTION SPACES

Let N be the set of all positive integers. Let U be the closed unit disc of C

and, for any positive number s that is greater than or equal to one. Then, sU is
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defined as {sz; z ∈ U}. For any positive integer n, En denotes the set of all entire
functions of n variables and ‖ · ‖n,s denotes the norm defined as

‖f |(sU )n‖n,s = sup
z1,··· ,zn∈sU

|f(z1, · · · , zn)|, f ∈ En.

Especially, for any positive number M , En(s, M) denotes the subset of En defined
as

En(s, M) =
{
f ∈ En; ‖f |(sU )n‖n,s ≤ M

}
.

Moreover, dn(·, ·) denotes the metric on En defined as

dn(f, g) =
∞∑

k=1

‖f − g‖n,k

2k(1 + ‖f − g‖n,k)
, f, g ∈ En.

Then, it is easy to prove that the metric space (En, dn) is complete and that En(s, M)
is a nonempty closed subset of En, and moreover, it is also proved that the topology
derived from this metric is exactly equal to the compact open topology over En.

Let X be a metric space. Then, for any positive number ε and for any relatively
compact subset F of X , the ε-entropy of F , which is denoted by S(F , ε), is defined
as the base-2 logarithm of the minimum of the cardinal numbers corresponding to
all ε-nets of F , and the ε-capacity of F , which is denoted by C(F , ε), is defined
as the base-2 logarithm of the maximum of the cardinal numbers corresponding to
all 2ε-separated sets of F .

For any positive integer n and for any positive number s that is greater than 1, let
An(s) be the set of all complex valued functions of n variables which are continuous
on (sU)n and analytic on the interior of (sU)n. It is known that (An(s), ‖ · ‖n,s)
is a Banach space [5]. Then, K. I. Babenko [1] and V. D. Erohin [2] had proved
that, for any positive number M , the following equality:

lim
ε→0

S({f |U2; f ∈ A2(s); ‖f |U2‖2,1 ≤ M}, ε)(
log 1

ε

)3 =
2

3!(logs)2

holds. After the above equality had been proved, A. G. Vitushkin [6] gave the
following generalization:

lim
ε→0

S({f |Un; f ∈ An(s); ‖f |Un‖n,1 ≤ M}, ε)(
log 1

ε

)n+1
=

2
(n + 1)!(logs)n

, n ≥ 2.

Here we have the following:

Lemma 1. For any positive integer n that is greater than one and for any two
positive numbers r and s, if the inequalities 1 < r < s hold, then the following
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equalities:

lim
ε→0

S
(
{f |(rU )n; f ∈ En(s, M)}‖·‖n,r

, ε
)

(
log 1

ε

)n+1
= lim

ε→0

S
({f |(rU )n; f ∈ En(s, M)}, ε)(

log 1
ε

)n+1

=
2

(n + 1)!(log s
r )n

holds.

Proof. Without loss of generality, we can assume that r is equal to 1. Since
the following inclusion:

{f |Un ; f ∈ En(s, M)} ⊂ {f |Un ; f ∈ An(s), ‖f |Un‖n,1 ≤ M}
and Babenko-Erohin-Vituskin theorem shows that the following inequality holds:

lim
ε→0

S
(
{f |Un ; f ∈ En(s, M)}‖·‖n,1

, ε
)

(
log 1

ε

)n+1
≤ 2

(n + 1)!(logs)n
.

Therefore, we have only to prove the reverse inequality. Let N (ε) be the positive
integer defined as

N (ε) =
[
log

1
ε

+ 1
]

,

where [·] means Gaussian symbol. Moreover, let D(ε) be the subset of Zn
+ defined

as

D(ε) =

{
(k1, · · · , kn) ∈ Z

n
+;

n∑
i=1

ki ≤ N (ε)
log s

}
.

Let φ be a mapping defined on D(ε) with values in C satisfying
∣∣∣∣Re(φ(k1, · · · , kn))

2ε

∣∣∣∣∈Z+,

∣∣∣∣Re(φ(k1, · · · , kn))
2ε

∣∣∣∣ ≤
[

M/
√

2
2n+1ε

∏n
i=1(ki+1)2

n∏
i=1

(
1
s

)ki
]

,

∣∣∣∣Im(φ(k1, · · · , kn))
2ε

∣∣∣∣∈Z+,

∣∣∣∣Im(φ(k1, · · · , kn))
2ε

∣∣∣∣ ≤
[

M/
√

2
2n+1ε

∏n
i=1(ki+1)2

n∏
i=1

(
1
s

)ki
]

,

where (k1, · · · , kn) is an element of D(ε), and let Φ(ε) be the set of all mappings
satisfying the above conditions. For any φ ∈ Φ(ε), gφ(·) denotes the polynomial of
n complex variables which is defined as

gφ(z1, · · · , zn) =
∑

(k1,··· ,kn)∈D(ε)

φ(k1, · · · , kn)
n∏

i=1

zki
i , z1, · · · , zn ∈ C.
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If (z1, · · · , zn) ∈ sU holds, then we have

|gφ(z1, · · · , zn)| ≤
∑

(k1,··· ,kn)∈D(ε)

|φ(k1, · · · , kn)|
n∏

i=1

ski

≤
∑

(k1,··· ,kn)∈D(ε)

M

2n
∏n

i=1(ki + 1)2

≤ M

2n

(
1 +

∞∑
k=1

1
k(k + 1)

)n

≤ M.

Therefore, gφ is an element of En(s, M). Let φ1 and φ2 be two elements belonging
to Φ(ε). Then, there exists an element (k1, · · · , kn) ∈ D(ε) satisfying

|φ1(k1, · · · , kn)− φ2(k1, · · · , kn)| ≥ 2ε.

This inequality implies that

‖gφ1|Un − gφ2|Un‖n,1 ≥ 2ε

holds, and {gφ|Un ; φ ∈ Φ(ε)} is a 2ε-separated set of {f |Un; f ∈ En(s, M)}. Let
∆(ε) be the subset of Rn

+ defined as

∆(ε) =

{
(x1, · · · , xn) ∈ R

n
+;

n∑
i=1

xi ≤ N (ε)
log s

}
.

If (k1, · · · , kn) is an element belonging to D(ε), then, for any sufficiently small ε,
we obtain the following inequalities:

n∏
i=1

(ki + 1)2 ≤
(

2
log s

)2n

N (ε)2n,

card(D(ε)) ≥
∫

· · ·
∫

∆(ε)
dx1 · · ·dxn

=
N (ε)n

n!(log s)n

and ∑
(k1,··· ,kn)∈D(ε)

log

(
n∏

i=1

1
ski

)
= −

∑
(k1,··· ,kn)∈D(ε)

log s

n∑
i=1

ki

≥ −
∫

· · ·
∫

∆( ε
2)

log s

n∑
i=1

(xi + 1) dx1 · · ·dxn
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≥ −nN
(

ε
2

)n+1

(n + 1)!(logs)n
+ O (N (ε)n) .

Therefore, a lower bound of C({f |Un ; f ∈ En(s, M)}, ε) can be estimated as
follows:

C({f |Un; f ∈ En(s, M)} , ε)

≥ log card(Φ(ε))

≥ log
∏

(k1,··· ,kn)∈D(ε)

( √
2M

2n+1ε
∏n

i=1(ki + 1)2

n∏
i=1

1
ski

+ 1

)2

≥ 2N (ε)n

n!(logs)n
log

1
ε
− 2nN (ε)n+1

(n + 1)!(logs)n
+ O

((
log

1
ε

)n

log log
1
ε

)
.

These results imply that the following inequality:

lim inf
ε→0

C({f |Un ; f ∈ En(s, M)} , ε)(
log 1

ε

)n+1 ≥ 2
(n + 1)!(logs)n

holds, and therefore, we can conclude the proof.

2. A REVISED VERSION OF THE PROOF PRESENTED BY HILBERT

For any two positive numbers s and L that are greater than one, E′2(s, L) de-
notes the intersection of E2(s, L) and E2(1, 1). Let Nε(E ′

2(s, L)) be a subset of
E ′

2(s, L) satisfying the condition that {f |U2; f ∈ Nε(E ′
2(s, L))} is an ε-net of

{f |U2; f ∈ E ′
2(s, L)}. For any positive integer n, In(E ′

2(s, L)) denotes the set
of all entire functions of three variables which can be represented as n-time nested
superposition representations of elements of E ′

2(s, L). Especially, I0(E ′
2(s, L)) is

defined as E ′
2(s, L). In(Nε(E ′

2(s, L))) can be defined by the same way as stated
above. Then, we can prove the following:

Lemma 2. For any fixed positive integer n, there exists a positive constant c n,
which is independent of ε, satisfying the condition that {f | U3; f ∈In(Nε(E ′

2(s, L)))}
is a cnε-net of {f |U3; f ∈ In(E ′

2(s, L))}‖·‖3,1 .

Proof. We prove this lemma inductively. It is easy to prove the case of n = 0,
because {f |U2; f ∈ E ′

2(s, L)} is a relatively compact subset of (A2(1), ‖ · ‖2,1).
Assume that {f |U3; f ∈ In(Nε(E ′

2(s, L)))} is a cnε-net and let g be an element
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of {f |U3; f ∈ In(E ′
2(s, L))})‖·‖3,1 . Then, there exist three functions f ∈ E ′

2(s, L),
u ∈ In(E ′

2(s, L)) and v ∈ In(E ′
2(s, L)) satisfying

‖g − f(u, v)|U3‖3,1 < ε.

Moreover, there exist three functions f′ ∈ Nε(E ′
2(s, L)), u′ ∈ In(Nε(E ′

2(s, L))) and
v′ ∈ In(Nε(E ′

2(s, L))) satisfying

‖f |U2 − f ′|U2‖2,1 < ε,

‖u|U3 − u′|U3‖3,1 < cnε,

‖v|U3 − v′|U3‖3,1 < cnε.

Therefore, we have

‖g − f ′(u′, v′)|U3‖3,1 ≤ ‖g − f(u, v)|U3‖3,1 + ‖f(u, v)|U3 − f ′(u′, v′)|U3‖3,1

≤ ‖g − f(u, v)|U3‖3,1 + ‖f(u, v)|U3 − f(u′, v)|U3‖3,1

+‖f(u′, v)|U3 − f(u′, v′)|U3‖3,1

+‖f(u′, v′)|U3 − f ′(u′, v′)|U3‖3,1

<

(
2cnL

s − 1
+ 2
)

ε,

because the following inequalities:

sup
{∣∣∣∣ ∂f

∂z1
(z1, z2)

∣∣∣∣ ; (z1, z2) ∈ U2

}
≤ L

s − 1

and
sup

{∣∣∣∣ ∂f

∂z2
(z1, z2)

∣∣∣∣ ; (z1, z2) ∈ U2

}
≤ L

s − 1

hold. Therefore, {f |U3; f ∈ In+1(Nε(E ′
2(s, L)))} is a ((2cnL)/(s− 1) + 2)ε-net

of {f |U3; f ∈ In(E ′
2(s, L))}‖·‖3,1 .

Let In(E2(1, 1)) be the set of all entire functions of three variables that are
represented as n-time nested superpositions of elements of E2(1, 1). Then, we can
prove the following:

Theorem 3. There exists an element of E3(1, 1) which does not belong to
{mf ; m ∈ N, f ∈ ∪∞

n=1In(E2(1, 1))}.
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Proof. Since E3(1, 1) is a closed subset of the complete metric space (E3, d3)
and ∪∞

n=1In(E2(1, 1)) is also a subset of E3(1, 1), Baire’s category theorem assures
that it is sufficient to prove that ∪∞

n=1In(E2(1, 1)) is a subset of the first category.
Since we have

E2(1, 1) = ∪∞
k=1E ′

2

(
1 +

1
k

, 2
)

and
In (E2(1, 1)) = ∪∞

k=1In

(
E ′

2

(
1 +

1
k
, 2
))

, n ∈ N,

we have only to prove that In(E ′
2(1 + (1/k), 2)) is nowhere dense. Assume that,

for two positive integers n and k, In(E ′
2(1+(1/k), 2)) is not nowhere dense. Then,

there exists a certain positive number δ which satisfies the following inclusion:

In

(
E ′

2

(
1 +

1
k
, 2
))d3

⊃ {g ∈ E3; d3(0, g) < δ} + gδ,

where gδ is a certain element of E3. Since there exist a sufficiently large posi-
tive number s and a sufficiently small positive number L satisfying the following
inclusion:

{g ∈ E3; d3(0, g) < δ} ⊃ {g ∈ E3; ‖g|(sU )3‖3,s < L
}

,

we have

S

({
f |U3; f ∈ In

(
E ′

2

(
1 +

1
k
, 2
))d3

}
, ε

)
≥S ({g|U3; g∈E3(s, L)} , ε) , ε>0.

It is clear that {f |U3; f ∈ In (E ′
2 (1 + 1/k, 2))

d3} is a subset of
{f |U3; f ∈ In (E ′

2 (1 + 1/k, 2))}‖·‖3,1 . Therefore, Lemma 1 implies that, for any
sufficiently small number α, there exists a certain positive number εα satisfying the
following two inequalities:

S

({
f |U3; f ∈ In

(E ′
2

(
1 + 1

k , 2
))d3

}
, ε

)

≤
(

2
3!(logs)2

+ α

)(
log

1
cnε

)3

, 0 < ε < εα

and

S ({g|U3; g ∈ E3(s, L)} , ε) ≥
(

2
4!(logs)3

− α

)(
log

1
ε

)4

, 0 < ε < εα.
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Since these two inequalities contradict each other, In (En (1 + 1/k, 2)) is nowhere
dense. Therefore, we can conclude the proof.

Here, Theorem 3 can lead us to the following:

Theorem 4. There exists an entire function of three variables which cannot be
represented as any finite-time nested superposition constructed from several entire
functions of two variables.

Proof. Let f ∗ be a function which does not belong to {mf ; m ∈ N, f ∈ ∪∞
n=1In

(E2(1, 1))}. Then, it is sufficient to prove that f ∗ cannot be represented as any
finite-time nested superposition constructed from several entire functions of two
variables. For a certain positive integer n, assume that f∗ can be represented as a
certain n-time nested superposition constructed from several entire functions of two
variables. Then, we have only to prove the fact that there exists a positive integer
M satisfying

f∗(·, ·, ·)
M

∈
n⋃

k=1

Ik(E2(1, 1)).

It is easy to prove the case of n = 1. If n ≥ 2 holds, mathematical induction assures
that there exists a positive integerM satisfying the inclusion which is stated above.
Since f is assumed to be represented as n-time nested superposition constructed
from several entire functions of two variables, there exist one entire function of two
variables g(·, ·) and two entire functions of three variables u(·, ·, ·) and v(·, ·, ·),
which are n − 1-time nested superpositions satisfying the following equality:

f∗(x, y, z) = g(u(x, y, z), v(x, y, z)), x, y, z ∈ C.

Since the assumption, which is based on the mathematical induction, assures that
there exists a sufficiently large constant L satisfying

u(·, ·, ·)
L

∈
n−1⋃
k=1

Ik(E2(1, 1))

and
v(·, ·, ·)

L
∈

n−1⋃
k=1

Ik(E2(1, 1)),

Therefore, M can be defined as the following:

M = sup
z1,z2∈U

|g(Lz1, Lz2)|,
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and we can obtain

g
(
L
(

u(·,·,·)
L

)
, L
(

v(·,·,·)
L

))
M

∈
n⋃

k=1

Ik(E2(1, 1)).

Actually, Theorem 3 assures that f∗(·, ·, ·)/M does not belong to ∪∞
k=1Ik(E2(1, 1)),

because f does not belong to {mf ; m ∈ N, f ∈ ∪∞
k=1Ik(E2(1, 1))} either. There-

fore, we have a contradiction.

Remark 2. By the same way as above, it can be proved that, for any posi-
tive integer n, there exists an element of En+1(1, 1) which cannot be represented
as any finite-time nested superposition constructed from several elements of En(1, 1).
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