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Abstract. An m-coloring of a graph G is a mapping f : V(G) — {1,2,...,m}
such that f(z) # f(y) for any two adjacent vertices z and y in G. The
chromatic number x(G) of G is the minimum number m such that G is m-
colorable. An equitable m-coloring of a graph G is an m-coloring f such that
any two color classes differ in size by at most one. The equitable chromatic
number x_(G) of G is the minimum number m such that G is equitably
m-colorable. The equitable chromatic threshold x* (G) of G is the minimum
number m such that G is equitably r-colorable for all 7 > m. It is clear that
X(G) < x_(G) < x*(G). For n > 2k + 1, the Kneser graph KG(n, k) has
the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are
adjacent in KG(n, k) if they have empty intersection as subsets. The Kneser
graph KG(2k+1, k) is called the Odd graph, denoted by Oy. In this paper, we
study the equitable colorings of Kneser graphs KG(n, k). Mainly, we obtain
that x_(KG(n, k)) < x* (KG(n, k)) < n —k+1 and x(Or) = x_(Ox) =
X* (Or) = 3. We also show that x_(KG(n, k)) = x* (KG(n, k)) for k = 2
or 3 and obtain their exact values.

1. INTRODUCTION

An m-coloring of a graph G is a mapping f : V(G) — {1,2,...,m} such that
f(x) # f(y) for any two adjacent vertices = and y in G. A color class f~!(i)
under f is a subset of V' (G) in which every vertex is assigned the same color i. A
graph G is m-colorable if it admits an m-coloring. The chromatic number x(G) of
G is the minimum number m such that G is m-colorable. The well-known Brooks’
Theorem is stated as following.
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Theorem 1. ([2]). Suppose G is a graph different from a complete graph and
an odd cycle. Then x(G) < A(G).

An equitable m-coloring of a graph G is an m-coloring such that any two
color classes differ in size by at most one. A graph G is equitably m-colorable if it
admits an equitable m-coloring. The equitable chromatic number y_(G) of G is the
minimum number m such that G is equitably m-colorable. One can also consider
the minimum number m such that G is equitably r-colorable for all » > m. Such
a number m is called the equitable chromatic threshold of G, denoted by x* (G).
It is clear that x(G) < x_(G) < x* (G). Since x(G) < x_(G), Meyer then posed
the following conjecture which, if true, is stronger than the Brooks’ Theorem.

Conjecture 1. ([15]). Suppose G is a connected graph different from a complete
graph and an odd cycle. Then x_(G) < A(G).

One well-known result of Hajnal and Szemerédi, when rephrased in terms of
the equitable colorability, has already been shown as follows.

Theorem 2. ([6, 9]). A graph G, not necessary connected, is equitably m-
colorable if m > A(G) + 1.

Theorem 2 says that x_(G) < x* (G) < A(G) + 1 for all graphs G. Since the
graphs G that require at least A(G) + 1 colors to color the vertices equitably are
complete graphs and odd cycles, Chen, Lih and Wu put forth the following.

Conjecture 2. ([4]). Equitable A-Coloring Conjecture.

A connected graph G is equitably A(G)-colorable if and only if G is different
from the complete graph K, the odd cycle (5,11 and the complete bipartite graph
K2n+1,2n+1 for all n > 1.

They also verified this conjecture for a graph with A(G) > |V(G)|/2 or
A(G) < 3. Yap and Zhang [18] obtained a finer bound when |V (G)|/2 >
A(G) > (JV(G)|/3) + 1. Moreover, some particular cases have been studied, such
as trees [1, 3], bipartite graphs [13], d-degenerate graphs [11, 12] and planar graphs
[10, 16, 17]. However, Conjecture 1 and Conjecture 2 are still open in general.

For n > 2k + 1, the Kneser graph KG(n, k) has the vertex set consisting of all
k-subsets of an n-set. Two distinct vertices are adjacent in KG(n, k) if they have
empty intersection as subsets. The Odd graph Oy is the Kneser graph KG(2k+1, k).
The chromatic number of KG(n, k) was obtained by Lovasz.

Theorem 3. ([14]). x(KG(n, k)) =n — 2k + 2.
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In this paper, we study the equitable colorings of KG(n, k). Since KG(n, 1) =
K,, it is easy to see that x(KG(n,1)) = x_(KG(n,1)) = x* (KG(n,1)) = n.
Throughout this paper, we assume £ > 2. For convenience, we introduce some
notation. For integers ¢ < j, let [4, j] be the set of all integers 4,7+ 1,...,;j and
[n] = [1,n]. If X is a set, then the collection of all k-subsets of X is denoted by
(7). Hence, the vertex set V(KG(n, k)) is denoted by ([Z]) and |V (KG(n, k))| =

C(n,k) = (7). An i-flower F of (7) is a subcollection of (}) in which all k-

subsets have a common element ¢, i.e., 7 € ﬂ A. Tt is clear that every i-flower is

AeF
an independent set of KG(n, k). An independent set F of KG(n, k) is also called an

intersection family of ([Z]), i.e., ANB # () for all A and B in F. The independence
number a(KG(n, k)) of KG(n, k) was obtained by Erdds, Ko and Rado.

Theorem 4. ([5]). Suppose F is an intersection family of ([Z]). Then |F| <
C(n—1,k—1). Moreover, the equality holds if and only if F = {A € ([Z]) i€ A}
Sor some i € [n].

There are independent sets of KG(n, k) which are not flowers. Denote by
az(KG(n, k)), or simply by as(n, k), the maximum size of independent sets H of
KG(n, k) satisfying ﬂ A = (. The following result was obtained by Hilton and

_ AeH
Milner.

Theorem 5. ([8]). Suppose H is an intersection family of ([Z]) with ﬂ A=0.
AcH
Then |H| < C(n—1,k—1)—C(n—k—1,k— 1)+ 1. Moreover, the equality
holds if and only if H = {A e () :[An[,3]| > 2y or H={Ae (M) 1€
AJAN2,k+ 1) > 13 U{[2,k+ 1]}.

We also need the following to prove our main results.

Theorem 6. ([7]). A bipartite graph G = G(X,Y') with bipartition (X,Y) has
a matching that saturates every vertex in X if and only if |[N(S)| > |S| for all
S C X, where N(S) denotes the set of neighbors of vertices in S.

2. GENERAL BOUNDS

In this section, let n > 2k + 1. Since every flower of ([Z]) is an independent
set of KG(n, k), it is natural to partition flowers to form an equitable coloring
of KG(n, k). In this case, every k-subset of [n] is in some flower. Hence, if
f is an equitable m-coloring of KG(n, k) such that every color class under f is
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contained in some flower, then m > n — k + 1. Otherwise, suppose m < n — k
and each color classe f~1(i) is contained in some t;-flower for 1 < i < m,
respectively. Since |[n] \ {t1,t2,...,tm}| > n —m > k, we may choose a k-
subset A C [n] \ {t1,to,...,tm}. Since f is an equitable m-coloring, A € f~1(i)
for some i, i.e., t; € A. It is a contradiction. Hence, we have the following.

Lemma 7. [If f is an equitable m-coloring of KG(n, k) such that every color
class under f is contained in some flower of ([Z]), thenm>n—k+ 1.

In what follows, we should show that KG(n, k) is equitably m-colorable for
all m > n — k 4 1 by partitioning flowers of ([Z]) into m equitably independent
sets. Precisely, letting m = qn + r, 0 < r < n, we will partition ([Z]) into m
subcollections Vi, Vs, ..., Vpy, with a; = |V;| = [(C(n, k) —i+1)/m], 1 < i <
m, such that V; is contained in a 7 (i)-flower, where 7(i) = i(mod n) if 1 <i < gn
and 7(i) =i+ n—m if gn +1 < i < m. The notation i(mod n) denotes the
residue of ¢ modulo n taken in the set [n]. To do this, we construct a bipartite graph
G = G(X,Y) with bipartition (X,Y"), where X is the disjoint union of the sets
Xi={r;j:1<j<q},1<i<m,andY = ([Z]). Two vertices z; j € X and
A €Y are adjacent if and only if 7(i) € A. It is easy to see that | X| = |[V] = (}).
If G has a perfect matching M = {{z; ;, 4;;} : 1 <i < m,1 < j < aq;}, letting
Vi={A4i; :1<j<a}, 1 <i<m, then the partition (V1,Vs,...,V,,) forms
an equitable m-coloring of KG(n, k). By Theorem 6, G has a perfect matching if
IN(S)| > |S]| for all S C X. Hence, we need to show the inequality | N (S)| > |S].
Suppose S C X. Let I(S) = {n(j) : SN X, # 0}. Note that if |[I(S)| >
n—k+1, then N(S) = Y and |N(S)| > |S|. For |[I(S)] =i < n —k, let

n

n—r-+i i—r
Si= |J Xjifi<radS=( (J X)u(lJ Xpifi>r
w(j)=n—r+1 w(j)=n—r+1 w(j)=1

Then |S| < |S;|. Moreover, the set I(.S;) = {n(j) : S; N X; # 0} has the same
size as I(S). It follows that |[N(S)| = |N(S;)| = C(n,k) — C(n — i,k) and
then |[N(S)| — |S| > |N(S;)| — |Si|. The following lemmas are used to show the
inequality |N(S;)| > |.S;| that implies | N(S)| — |S| > 0.

Lemma 8. Suppose m = qn+r, where ¢ > 1 and 0 < r < n. Let S; be

o
defined as above. Then |S;| < ! -C(n, k).
n+1
Proof. For1<j<n,letW;= | ) Xy Then |[W, 1| <[W;|<[Wjia]+1,
m(t)=j, t<qn

‘an—i—t‘ < ‘Wn—r—f—t‘ and ’Wj‘ < ‘Wn—r—f—t‘ +‘an+t‘ fOI' 1 S] <n and 1 <t<r.

(2

K]
Ifi <r,then|S;| = Z(‘Wn—r—I—j""‘an—l—j‘) < 22 Wi—rtj] < 2i|Wypyal,
j=1 i=1
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n—r n

S
‘2 | < |Wn—ps1]- Onthe other hand, C(n, k)—|Si| = > [Wil+ > (1Wn—rs;]
j=1 j=i+1
. C n,k — Sz Sz
Hx ) 2 (i) Welor S ) ence, B < w4
k) — |S; : Si| + C(n, k) — |S;
< Wy < COR IS fows that‘ ‘ < Sl k) = IS _
n—i 2t4+n—1
C(n, k)
n+i
Ifi > r, then | S| = Z\WHZ Wi—rtj |+ 1 Xgnisl) < (@=7)((Wonpia |+
7=1 7=1
. Si
Xeal) + 1 Wacra] + Xgnia]) < 2i Wi, or 50 < W, 1], On the
= . C(n, k) — |5l
1S, = | > _ IS RN IndCI N
other hand, C(n, k) — | Sj| Z Wil = (n = i)Wy, or ===t >
j=t—r+1
: C(n, k) —|S;
|Wp—r|. Hence, ‘iz‘ < Wherga] < [Wyey| < M It follows that
1 n-—1
1Sil _ 1Sil+ Cln.k) —|Si| _ Clnk)
2 ~ 2i4+n—i  nti
Therefore, |.S;| < (n, k) as desired. |

n+1
Lemma 9. Suppose that k < n — 1.
(1) C(n,k—1)>C(n—1i,k—1)+ik for k > 3.
(2) Cn k) — C(n — i, k) > nQ—jiC(n, k) for k > 2.

Proof.
(1) By direct computation, we have
Cn,k—1)=Cn—1,k—1)+C(n—1,k—2)
Cn—i,k—1)+Cn—i,k—2)+C(n—i+1,k—2)
+---+C(n—1,k—2)
> C(n—ik—1)+iC(k,1)
C

(2) By direct computation, we have
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C(n, k) nn—1)---(n—k+1)
C(n—1i,k) iyn—i—1)---(n—i—k+1)

1 14+ — )14 —
+n—i>< +n—i—1> < +n—i—k—|—1>

)
!

21
n—+1

Now, we are ready to show our main results.

Hence, C(n, k) — C(n —i,k) > C(n, k) as desired. |

Lemma 10. Suppose that n — k +1 < m < n. Then KG(n, k) is equitably
m-colorable.

Proof. Let the bipartite graph G = G(X,Y), S and S; be defined as before.
It suffices to show that |N(S;)| — |S;| > 0 for i < n — k. First, we consider
k=2 Thenm =n—1lornand i < n-—2 Ifi=n-—2, then |S;| =
| X| — | Xpm| for m =n—1or S| = |X|—|Xm-1] — |Xm| for m = n. Hence,

IN(S)| = 1S > C(n,2) — 1 — <C(n,2)_ {%D - gJ 10 If
i < n -3, then [N(S)| - S| > C(n,2) — Cln —,2) i {%J i
C(n,z)—C(n—i,z)—ﬂ%J —iZ%(n—z—3)>0

Suppose k > 3. Then, |S;| = Z [Ww < (% N 1>'

j=1
By Lemma 9(1), we have

IN(S) = IS[ = [N(Si)] = |5i]

_ 1—4

> %(C(n,k—l)—(}’(n—i,k—l))—i
k41—

ZnTMik—i

= (n—k—1i)i>0.
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Therefore, we complete the proof. ]
Lemma 11. Suppose that m > n. Then KG(n, k) is equitably m-colorable.

Proof. First, consider m = gn, ¢ > 1. By Lemma 10, ([Z]) can be partitioned
equitably into n subcollections X, Xs, .. ., &),, where each & is an i-flower. For
each 7 > 1, we can partition X; into g equitable subcollections X 1, Xj o, ..., & 4.
Hence the collection {X;; : 1 <i <mn,1 < j < g} forms an equitable m-coloring
of KG(n, k).

Now, suppose m is not divisible by n. Let the bipartite graph G = G(X,Y),
S and S; be defined as before. It suffices to show that [N (S;)| — |S;| > 0 for
i < n—k. By Lemma 8 and Lemma 9(2), | N (S;)| —|Si| > C(n, k) —C(n—i, k) —

2 O(n, k) > 0.

n-+1
Therefore, we complete the proof. ]

Combining Lemma 10 and Lemma 11, the following is easy to see.

Theorem 12. Suppose that m > n — k + 1. Then KG(n, k) is equitably
m-colorable, i.e., x_(KG(n,k)) < x* (KG(n,k)) <n—Fk+1.

Suppose m < n — k and KG(n, k) is equitably m-colorable. Let f be an
equitable m-coloring of KG(n, k). By Lemma 7, there is some color class f~!(4)
which is contained in no flowers of ([Z]). Moreover, the particular f~!(i) must
satisfy that | f~1(i)| < ag(n, k) = C(n—1,k—1)—C(n—k—1,k—1)+1. Using
this fact, we have the following.

Cln. k) > ag(n, k). Then
m
KG(n, k) is not equitably r-colorable for all r < m, i.e., x* (KG(n, k)) > x_ (KG(n,

k)) > m+ 1.

Lemma 13. Suppose that m < n — k and

Proof.  Suppose KG(n, k) has an equitable r-coloring f for some r < m.
Then there is some color class f~1(i) satisfying that | f~1(i)| < az(n, k). Since

C(n, k

f is an equitable 7-coloring, |f~1(i)| > > as(n, k) which is a con-

tradiction. Hence, KG(n, k) is not equitably r-colorable for all » < m and then
X2 (KG(n, k) = x_(KG(n, k)) = m + 1. n

C(n, Z)J > ag(n, k). Then x_(KG(n, k)) = x* (KG(n, k)) =

Theorem 14. ]f{
n J—

n—k+1.
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Proof. 1t follows from Theorem 12 and Lemma 13. ]

3. CASESFOR k = 2,3

By the same argument as in the proof of Lemma 10, the following is not difficult
to see.

Lemma 15. Suppose that 1 < t < m. Then the collectiom ([T]) can be
partitioned equitably into m subcollections F 1, Fa, ..., Fm, such that each F; is
an i-flower.

By Lemma 13, Theorem 14 and Lemma 15, we can show that x_(KG(n, k)) =
X" (KG(n, k)) for k = 2 or 3 and obtain their exact values.

Theorem 16. For n > 5,
n—1 ifn>"7,

Y- (KG(n,2)) = X (KG(n, 2)) = { i 5ot

Proof. By Theorem 3 and Theorem 12,
n—2 = x(KG(n,2)) < x_(KG(n,2)) < x* (KG(n,2)) <n—1.

C(n,2)
2

By direct computation, > a(n,2) = 3 if and only if n > 7. Hence, by

Theorem 14, x_(KG(n,2)) = x* (KG(n,2)) =n—1if n > 7.

For convenience, we use ij to denote the 2-subset {7, j }. It is easy to see that the
partition ({12, 13,14, 15}, {23, 24,25}, {34, 35,45}) forms an equitable 3-coloring
of KG(5, 2) and the partition ({12, 14, 15, 16}, {23, 24, 25,26}, {13, 34, 35, 36}, {45,
46,56}) forms an equitable 4-coloring of KG(6, 2). Hence, x(KG(n,2)) = x_ (KG
(n,2)) = x* (KG(n,2)) =n—2if 5 <n <6. n

Lemma 17. For 7 < n < 15, x_(KG(n,3)) < x* (KG(n,3)) < n — 3.
Moreover, x_(KG(n,3)) = x* (KG(n,3)) =n -3 if 14 <n < 15.
Proof. LetH={A¢€ ([731]) :JAN{n—2,n—1,n}| > 2}. Then ([”_33’”]) CH

C(n,3
(n, B)J > 4 for n < 15. Note that if A ¢ H, then
n—

and |H| = 3n — 8 > {

Uliiac (17

A is in some i-flower, 1 < i < n — 4. Let]—":U({Ae<3> i€ A} \H)
i=1



The Equitable Colorings of Kneser Graphs 895

and G, = {{i,j,t} : 1 <i<j<mn—-—4}forn—3 <t <n. Then F =
n

([”;1]) U ( U G:). By Lemma 15, ([”;1]) can be partitioned equitably into n — 4
t=n—3

subcollections X7, X, . .., X;,—4 such that each X; is an i-flower. Since {4\ {¢} :

Aec Gt = ([”;4]) forn—3 <t < n, by Lemma 15, G can be partitioned equitably

into n — 4 subcollections X7 4, Xo ¢, ..., X,—4 ¢ such that each &;; is an i-flower.

By adjusting the sizes of X; and &;;, F can be partitioned equitably into n — 4

n
subcollections V; = X;U( U Xit),1 <i < n—4 such that each V; is an i-flower.
t=n—3
It is easy to see that the set {i,s,t} € Hfor1 <i<nmn—-4andn—2 <
s < t < n. For each pair (s,t), remove the sets {7, s,¢} from H and add them
one by one into V; to obtain new V!, respectively, and preserve the equality of
sizes of V;’s. Continuing this process, H can be reduced to 1’ such that |H'| =

C(n,3 . . ..
Cln,3) . In this case, the V;’s satisfy [[Vj| — [Vj|| < 1. Hence, the partition
n J—

Vi, Vi, ...,V _4, H') forms an equitable (n — 3)-coloring of KG(n, 3). Therefore,
x_(KG(n,3)) < x* (KG(n,3)) <n—3for 7 <n < 15.
C(n,3
Moreover, since (Lzl) > ay(n,3) = 3n — 8 if and only if n > 14,
n J—
by Lemma 13, x* (KG(n,3)) > x_(KG(n,3)) > n — 3 if n > 14. Therefore,
X_(KG(n,3)) = x* (KG(n,3)) =n —3 for 14 <n < 15. |

Lemma 18. For7 < n <13, x(KG(n,3)) = x_(KG(n, 3)) = x* (KG(n, 3)) =
n —4.

Proof. By Theorem 3 and Lemma 17,
n—4=x(KG(n,3)) < x_(KG(n,3)) < XxZ(KG(n,3)) <n —3.

It suffices to show that KG(n, 3) is equitably (n — 4)-colorable for 7 < n < 13.
Let Hy ={Ae (I ]An{n—2,n—1,n}| > 2} and Ho = {A € (V) :

C(n,3
|[AN{n—5n—4,n—3} > 2}. Then [H;| = |Ha| = 3n -8 > {LA >
n_
1 -5 c(6,3
§'<[n 5 ,n])' = (2’ ) = 10 for 7 < n < 13. By the same argument

as in Lemma 17, H; and Hs can be reduced to H; and HY, such that |H}| =
C(n,3)—(n—>5)+1 C(n,3)—(n—4)+1 n
{ o and [H,| = — . Moreover, (I7)\

(H} UH),) can be partitioned equitably into n — 6 subcollections V1, Vs, ..., V¢

%}H-‘ Hence, KG(n, 3) is

such that each V; is an i-flower and |V;| = {
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equitably (n — 4)-colorable. Therefore, x(KG(n,3)) = x_(KG(n, 3)) = x* (KG(n,
3))=n—4for7<n<13. [

Theorem 19. Forn > 7,
n—2 ifn > 16,
X_(KG(n,3)) = x" (KG(n,3)) =< n—3 if14 <n <15,
n—4 if7<n<13.

Proof. By Theorem 3 and Theorem 12,

n—4 = x(KG(n,3)) < x_(KG(n, 3)) < x* (KG(n,3)) <n —2.

Since > ay(n,3) = 3n — 8 if and only if n > 16, by Theorem 14,

C(n,3)
-3

X_(KG(n,2)) = x* (KG(n,2)) = n—2if n > 16. The remaining two cases follow

from Lemma 17 and Lemma 18. |

4. THE OpD GRAPHS

Since O1 = K3, we have x(01) = x_(01)

_ (O1) = 3. By Theorem 16
and Theorem 19, x(Oy) = x_(Ok) k=

X* (Og) =3 for 2 or 3. Suppose k > 4.
Lemma 20. Oy is equitably 3-colorable.

Proof LetFi={A:1€A2¢ A}, Fo={A:1¢A2¢c A}, Fio={A:
le A2c Ay and F3 = {A:1¢ A,2¢ A}. Then (Fi, Fa, Fio, F3) forms a
partition(or 4-coloring) of Oy, |F1| = |Fo| = C(2k—1,k—1) =C(2k — 1,k) =
| Fsl, | Fro| = C(2k—1, k—2) and C(2k—+1, k) = 3C(2k—1, k—1)+C(2k—1, k—2).

C(n,k)+i—1

1
Let a; = {fJ,i:I,Z,Bandt: 5Ok +1,k) — C(2k — 1k~

1) = gC(Qk — 1,k — 2). Consider the two collections H; = {A € F3 : 3 €

A4 € A} and Hy = {A € Fi2 : |[AN[3,4]| = 1}. By direct computation,
|H1 | 3(k+ 1)k |Ha|  3(k—2)(k+1)

i @R Dk—g) ~ Lrkssad == o
k> 4. For4 <k <8, choose S C H; with |S| = [t|] =a; —C(2k—1,k—1) and
T C Ho with ‘T‘ = ag—C(Qk—l,k—l). Let S| = {A e Fi: [3,2k+1]\A € S}
and So = {A € Fo: [3,2k+ 1]\ A € §}. Then |S| = |S1| = |S2|. Moreover, if
A e F; wherei = 1,2, then AN B # () for all B € F3 except B = 3,2k + 1]\ A.
Hence, (fg \ S) U S1 US,, (fg \ Sg) USUT and (fl \ 81) @] (.7:12 \ T) are

> 1 for
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independent sets of sizes a1, as and ag, respectively. Thus, the partition ((Fj \
S1)U(F12\T), (F2\S2)USUT, (F3\S)US1 USs) forms an equitable 3-coloring
of O. Hence, Oy is equitably 3-colorable for 4 < k < 8.

Now, suppose & > 9. Consider the two collections Hz = {4 € F3 : [AN

|Hs|

[3,5]| = 2} and Hy = {A € Fio : |AN[3,5]| > 2}. By direct computation, =

9(k+ 1)k |Ha|  12k% — 63k% + 87k — 18
20k - Dek-3) M T e ek ok 6 o ¢ Mo PE
Hs with |P| = [t] =a; —C(2k—1,k—1) and Q C Hy with |Q| = ay — C(2k —
Lk—1). Let Py = {A € Fy : [3,2k+ 1]\ A € P} and Py = {A € Fy :
3,2k 4+ 1]\ A € P}. Then |P| = |Pi| = |P2|. By the same argument as above,
(F3\P)UPLUPy, (F2\P2)UPUQ and (F; \ P1)U (Fi2\ Q) are independent
sets of sizes aj, az and ag, respectively. Thus, the partition ((F; \ P1) U (Fiz2 \
Q), (F2\P2)UPUQ,(F3\P)UP;UP;) forms an equitable 3-coloring of Oy
Hence, Oy, is equitably 3-colorable for £ > 9. Therefore, we complete the proof. m

Letd = (PE) and ¥ = (W25 For 1 <i <3, let /= {AcU:ic A}
and F;p = {A e U : ‘Aﬂ{l,?,?)}‘ = ’L} For1 <4 < j < 3, let f;‘j =

{A eU: AN {1,2,3} = {’L,j}} Let Fio3 = {A elU: {1,2,3} - A} Then
3

U=(JFo)u( | Fy)UF1sUX, Fi = FoU Fis UF U Fros, {i, 5,1} =
i=1 1<i<j<3

{1,2,3}, |X| = C(2k—2, k), | Fio| = C(2k—2,k—1), |Fy;| = C(2k—2, k—2) and

| Fia3] = C(2k—2, k—3). It is not difficult to see that X' UF;y is an independent set.

If A and B both are in F;g, then |ANB| > 2 except (A\{i})U(B\{j}) = [4, 2k+1].

Hence, each F;y can be partitioned into S; and 7; such that if A € §;, then

([4,2k+ 1]\ A) U {i} € 7;. Moreover, we may assume that {A\ {i} : A € §} =

{A\{j}: A€ S;} for1 <i<j<3. Hence, S| =|S;| = |Ti| = |T;| = ‘};0‘

and S1 U S U S3 U X is an independent set. By direct computation, we have the
following.

U
I1) ‘X‘ <‘Tn—‘< ‘XUSZ‘USJ“ 1f4<m<7.

1 2 2
(12) E\U\ <[XUS| < E\U\ < |Fi\ Fras| < 3\“\ < |Fil.
The inequalities (I1) and (I2) will be used to guarantee that there are P; C S;

(P’L may be emptY) for 1 < { < 3 such that ’X U 7)1 @] 732 U 733‘ = \\MJ for
m

3

4 < 'm < 7. Then we can partition LJ(]—"Z \ P;) equitably into m — 1 subcollections
i=1

so that Oy, is equitably m-colorable.
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Theorem 21. x(Oy) = x_(Ok) = x* (O) =3 for k > 1.

Proof. If k=1,2 or 3, then we are done. Suppose k > 4. By Lemma 20, Oy
is equitably 3-colorable. It suffices to show that Oy, is equitably m-colorable for all
m > 4.

For m = 4, by (I1), we may choose P, C S;,1 < i < 3, such that ||P1]|—|Ps|| <

1 and |XYUPLUP,UPs| = “ZZ—‘J . Partition F7o3 into three subcollections R, Ro

Ul—i+1
and Rg3 such that H’RZ‘ — ‘RJH <1 and ’(fZO\SZ) U]:z‘,z‘—I—l URZ“ = ’VH%-‘
for 1 < i < 3. Note that F34 = F13. Hence, Oy is equitably 4-colorable.

For m = 5, by (I1), we may choose P, C S;, 2 < i < 3, such that ||Py]|—|Ps|| <
U]

1and | X UPyUPs| = |—|. By (I2), we may choose R C Fo3 such that

5
. 4 3

(.7:1 \.7:123) UR = V1 UVy with ‘Vl‘ = \\%J and ’Vl‘ = \\%J It can

be done since (F; \ Fia3) UR is a 1-flower. Partition (Fia3 \ R) U Fag into two

subcollections R and R3 such that ||Ro| — [Rs|| < 1 and [(Fip \ P;) UR4| =

“u\ +i—1

5
For m = 6, by (I12), we may choose 7 C S3 such that |X' U P3| = {%J and
choose Q1 C Fi3 and Qo C Fog such that ||Qq] — [Qs|| < 1 and |F3\ (PsUQ; U
Qo U Fra3)| = i 6+ L . Partition F19 U Fio3 into two subcollections R and
R such that [|Ri| — |Ro|| < 1 and [|Fip U Q1 UR| — |Fao U Q2 URs|| < 1.
Since Fio U Q; UR; is an i-flower, it can be partitioned into V; 1 and V; » such that

Ul +8—-2i—3 . .
\Vi,j\:w [+ G ! ]J for 1 <i<2and1<j <2 Hence, O is equitably

J for 2 < i < 3. Hence, Oy, is equitably 5-colorable.

6-colorable.
For m = 7, by (I1), we may choose 7, C S;,1 < < 3, such that ||P;| —|P;|| <

U .. . .
1 and |XYUPLUP,UPs| = % . Partition F7o3 into three subcollections R, Ro

and R3 such that ||R;| — |R;|| <1 and ||(Fio \ Pi) U Fiit1 URs| —|(Fjo \ Pj) U
Fjj+1 UR;|| < 1. Note that F34 = Fy3. Since each (Fip \ P;) UF; 11 UR, is an
U +9— 2i— j

i-flower, it can partitioned into V; 1 and V; 5 such that |V; ;| = -

for 1 <i<3and 1< j<2. Hence, O is equitably 7-colorable.

From the foregoing argument, there are 7, C JF; such that | X UP; UP2UPs| =

{MJ and F; \ P; = Vi1 UV 2 (Vi2 may be empty) with [V, ;| = {MJ o [M
m " "
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for 4 < m < 7. Now, for t > 1, we can partition X U P; U Py U P3 into ¢t + 1
subcollections, partition F; \ P; into t+1 or t+2 (if V; 2 is not empty) subcollections

. U u
such that all of the subcollections are of size ] or ] . Hence, Oy,
m + 4t m 4+ 4t

is equitably (m + 4t)-colorable. Therefore, we complete the proof. ]

5. A CONJECTURE

In this paper, we have shown that x_ (KG(n, k)) < x* (KG(n,k)) <n—k+1
and x(Ok) = x_(Ok) = x* (Ok) = 3. We have also shown that x_(KG(n, k)) =
X" (KG(n, k)) for k = 2 or 3 and obtained their exact values. We conclude this
paper by posing the following conjecture.

Conjecture 3. x_(KG(n,k)) = x* (KG(n, k)) for k > 2.
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