This paper is available online at http://www.tjm.nsysu.edu.tw/

THE EQUITABLE COLORINGS OF KNESER GRAPHS

Bor-Liang Chen and Kuo-Ching Huang

Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. An m-coloring of a graph G is a mapping $f: V(G) \to \{1, 2, ..., m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. The chromatic number $\chi(G)$ of G is the minimum number m such that G is mcolorable. An equitable m-coloring of a graph G is an m-coloring f such that any two color classes differ in size by at most one. The equitable chromatic number $\chi_{-}(G)$ of G is the minimum number m such that G is equitably m-colorable. The equitable chromatic threshold $\chi_{-}^{*}(G)$ of G is the minimum number m such that G is equitably r-colorable for all $r \geq m$. It is clear that $\chi(G) \leq \chi_{\underline{-}}(G) \leq \chi_{\underline{-}}^*(G)$. For $n \geq 2k+1$, the Kneser graph $\mathsf{KG}(n,k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in KG(n, k) if they have empty intersection as subsets. The Kneser graph KG(2k+1,k) is called the Odd graph, denoted by O_k . In this paper, we study the equitable colorings of Kneser graphs KG(n, k). Mainly, we obtain that $\chi_=(\operatorname{KG}(n,k)) \leq \chi_=^*(\operatorname{KG}(n,k)) \leq n-k+1$ and $\chi(O_k)=\chi_=(O_k)=1$ $\chi_{-}^{*}(O_{k})=3$. We also show that $\chi_{-}(\mathsf{KG}(n,k))=\chi_{-}^{*}(\mathsf{KG}(n,k))$ for k=2or 3 and obtain their exact values.

1. Introduction

An m-coloring of a graph G is a mapping $f:V(G) \to \{1,2,\ldots,m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. A color class $f^{-1}(i)$ under f is a subset of V(G) in which every vertex is assigned the same color i. A graph G is m-colorable if it admits an m-coloring. The chromatic number $\chi(G)$ of G is the minimum number m such that G is m-colorable. The well-known Brooks' Theorem is stated as following.

Received January 9, 2008, Accepted March 11, 2008.

Communicated by Hung-Lin Fu.

2000 Mathematics Subject Classification: 05C15.

Key words and phrases: Equitable coloring, Equitable chromatic number, equitable chromatic threshold, Kneser graph, Odd graph, Intersection family.

Theorem 1. ([2]). Suppose G is a graph different from a complete graph and an odd cycle. Then $\chi(G) < \Delta(G)$.

An equitable m-coloring of a graph G is an m-coloring such that any two color classes differ in size by at most one. A graph G is equitably m-colorable if it admits an equitable m-coloring. The equitable chromatic number $\chi_{=}(G)$ of G is the minimum number m such that G is equitably m-colorable. One can also consider the minimum number m such that G is equitably r-colorable for all $r \geq m$. Such a number m is called the equitable chromatic threshold of G, denoted by $\chi_{=}^*(G)$. It is clear that $\chi(G) \leq \chi_{=}(G) \leq \chi_{=}^*(G)$. Since $\chi(G) \leq \chi_{=}(G)$, Meyer then posed the following conjecture which, if true, is stronger than the Brooks' Theorem.

Conjecture 1. ([15]). Suppose G is a connected graph different from a complete graph and an odd cycle. Then $\chi_{=}(G) \leq \Delta(G)$.

One well-known result of Hajnal and Szemerédi, when rephrased in terms of the equitable colorability, has already been shown as follows.

Theorem 2. ([6, 9]). A graph G, not necessary connected, is equitably m-colorable if $m \ge \Delta(G) + 1$.

Theorem 2 says that $\chi_{=}(G) \leq \chi_{=}^*(G) \leq \Delta(G) + 1$ for all graphs G. Since the graphs G that require at least $\Delta(G) + 1$ colors to color the vertices equitably are complete graphs and odd cycles, Chen, Lih and Wu put forth the following.

Conjecture 2. ([4]). Equitable Δ -Coloring Conjecture.

A connected graph G is equitably $\Delta(G)$ -colorable if and only if G is different from the complete graph K_n , the odd cycle C_{2n+1} and the complete bipartite graph $K_{2n+1,2n+1}$ for all $n \geq 1$.

They also verified this conjecture for a graph with $\Delta(G) \geq |V(G)|/2$ or $\Delta(G) \leq 3$. Yap and Zhang [18] obtained a finer bound when $|V(G)|/2 > \Delta(G) \geq (|V(G)|/3) + 1$. Moreover, some particular cases have been studied, such as trees [1, 3], bipartite graphs [13], d-degenerate graphs [11, 12] and planar graphs [10, 16, 17]. However, Conjecture 1 and Conjecture 2 are still open in general.

For $n \ge 2k+1$, the Kneser graph $\mathsf{KG}(n,k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in $\mathsf{KG}(n,k)$ if they have empty intersection as subsets. The Odd graph O_k is the Kneser graph $\mathsf{KG}(2k+1,k)$. The chromatic number of $\mathsf{KG}(n,k)$ was obtained by Lovász.

Theorem 3. ([14]). $\chi(KG(n,k)) = n - 2k + 2$.

In this paper, we study the equitable colorings of $\mathsf{KG}(n,k)$. Since $\mathsf{KG}(n,1) = K_n$, it is easy to see that $\chi(\mathsf{KG}(n,1)) = \chi_=(\mathsf{KG}(n,1)) = \chi_=^*(\mathsf{KG}(n,1)) = n$. Throughout this paper, we assume $k \geq 2$. For convenience, we introduce some notation. For integers i < j, let [i,j] be the set of all integers $i,i+1,\ldots,j$ and [n] = [1,n]. If X is a set, then the collection of all k-subsets of X is denoted by $\binom{X}{k}$. Hence, the vertex set $V(\mathsf{KG}(n,k))$ is denoted by $\binom{[n]}{k}$ and $|V(\mathsf{KG}(n,k))| = C(n,k) = \binom{n}{k}$. An i-flower \mathcal{F} of $\binom{X}{k}$ is a subcollection of $\binom{X}{k}$ in which all k-subsets have a common element i, i.e., $i \in \bigcap_{A \in \mathcal{F}} A$. It is clear that every i-flower is an independent set of $\mathsf{KG}(n,k)$. An independent set \mathcal{F} of $\mathsf{KG}(n,k)$ is also called an intersection family of $\binom{[n]}{k}$, i.e., $A \cap B \neq \emptyset$ for all A and B in \mathcal{F} . The independence number $\alpha(\mathsf{KG}(n,k))$ of $\mathsf{KG}(n,k)$ was obtained by Erdös, Ko and Rado.

Theorem 4. ([5]). Suppose \mathcal{F} is an intersection family of $\binom{[n]}{k}$. Then $|\mathcal{F}| \leq C(n-1,k-1)$. Moreover, the equality holds if and only if $\mathcal{F} = \{A \in \binom{[n]}{k} : i \in A\}$ for some $i \in [n]$.

There are independent sets of $\mathsf{KG}(n,k)$ which are not flowers. Denote by $\alpha_2(\mathsf{KG}(n,k))$, or simply by $\alpha_2(n,k)$, the maximum size of independent sets $\mathcal H$ of $\mathsf{KG}(n,k)$ satisfying $\bigcap_{A\in\mathcal H} A=\emptyset$. The following result was obtained by Hilton and Milner.

Theorem 5. ([8]). Suppose \mathcal{H} is an intersection family of $\binom{[n]}{k}$ with $\bigcap_{A \in \mathcal{H}} A = \emptyset$. Then $|\mathcal{H}| \leq C(n-1,k-1) - C(n-k-1,k-1) + 1$. Moreover, the equality holds if and only if $\mathcal{H} \cong \{A \in \binom{[n]}{3} : |A \cap [1,3]| \geq 2\}$ or $\mathcal{H} \cong \{A \in \binom{[n]}{k} : 1 \in A, |A \cap [2,k+1]| \geq 1\} \cup \{[2,k+1]\}$.

We also need the following to prove our main results.

Theorem 6. ([7]). A bipartite graph G = G(X, Y) with bipartition (X, Y) has a matching that saturates every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$, where N(S) denotes the set of neighbors of vertices in S.

2. General Bounds

In this section, let $n \geq 2k+1$. Since every flower of $\binom{[n]}{k}$ is an independent set of $\mathsf{KG}(n,k)$, it is natural to partition flowers to form an equitable coloring of $\mathsf{KG}(n,k)$. In this case, every k-subset of [n] is in some flower. Hence, if f is an equitable m-coloring of $\mathsf{KG}(n,k)$ such that every color class under f is

contained in some flower, then $m \ge n - k + 1$. Otherwise, suppose $m \le n - k$ and each color classe $f^{-1}(i)$ is contained in some t_i -flower for $1 \leq i \leq m$, respectively. Since $|[n] \setminus \{t_1, t_2, \dots, t_m\}| \ge n - m \ge k$, we may choose a ksubset $A \subseteq [n] \setminus \{t_1, t_2, \dots, t_m\}$. Since f is an equitable m-coloring, $A \in f^{-1}(i)$ for some i, i.e., $t_i \in A$. It is a contradiction. Hence, we have the following.

Lemma 7. If f is an equitable m-coloring of KG(n, k) such that every color class under f is contained in some flower of $\binom{[n]}{k}$, then $m \ge n - k + 1$.

In what follows, we should show that KG(n, k) is equitably m-colorable for all $m \ge n - k + 1$ by partitioning flowers of $\binom{[n]}{k}$ into m equitably independent sets. Precisely, letting m = qn + r, $0 \le r < n$, we will partition $\binom{[n]}{k}$ into msubcollections $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_m$ with $a_i = |\mathcal{V}_i| = \lceil (C(n,k) - i + 1)/m \rceil, 1 \le i \le n$ m, such that V_i is contained in a $\pi(i)$ -flower, where $\pi(i) = i \pmod{n}$ if $1 \le i \le qn$ and $\pi(i) = i + n - m$ if $qn + 1 \le i \le m$. The notation $i \pmod{n}$ denotes the residue of i modulo n taken in the set [n]. To do this, we construct a bipartite graph G = G(X,Y) with bipartition (X,Y), where X is the disjoint union of the sets $X_i = \{x_{i,j} : 1 \le j \le a_i\}, \ 1 \le i \le m, \ \text{and} \ Y = {[n] \choose k}.$ Two vertices $x_{i,j} \in X$ and $A \in Y$ are adjacent if and only if $\pi(i) \in A$. It is easy to see that $|X| = |Y| = {n \choose k}$. If G has a perfect matching $M = \{\{x_{i,j}, A_{i,j}\}: 1 \leq i \leq m, 1 \leq j \leq a_i\}$, letting $\mathcal{V}_i = \{A_{i,j} : 1 \leq j \leq a_i\}, 1 \leq i \leq m$, then the partition $(\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_m)$ forms an equitable m-coloring of KG(n, k). By Theorem 6, G has a perfect matching if $|N(S)| \ge |S|$ for all $S \subseteq X$. Hence, we need to show the inequality $|N(S)| \ge |S|$. Suppose $S \subseteq X$. Let $I(S) = \{\pi(j) : S \cap X_j \neq \emptyset\}$. Note that if $|I(S)| \geq$ $n-k+1, \text{ then } N(S)=Y \text{ and } |N(S)|\geq |S|. \text{ For } |I(S)|=i\leq n-k, \text{ let}$ $S_i=\bigcup_{\pi(j)=n-r+1}^{n-r+i}X_j \text{ if } i\leq r \text{ and } S_i=(\bigcup_{\pi(j)=n-r+1}^nX_j)\cup(\bigcup_{\pi(j)=1}^{i-r}X_j) \text{ if } i>r.$ Then $|S| \leq |S_i|$. Moreover, the set $I(S_i) = \{\pi(j) : S_i \cap X_j \neq \emptyset\}$ has the same size as I(S). It follows that $|N(S)| = |N(S_i)| = C(n,k) - C(n-i,k)$ and then $|N(S)| - |S| \ge |N(S_i)| - |S_i|$. The following lemmas are used to show the

inequality $|N(S_i)| \ge |S_i|$ that implies $|N(S)| - |S| \ge 0$.

Lemma 8. Suppose m = qn + r, where $q \ge 1$ and 0 < r < n. Let S_i be defined as above. Then $|S_i| \leq \frac{2i}{n+i}C(n,k)$.

$$\begin{aligned} & \textit{Proof.} \; \text{For} \; 1 \leq j \leq n, \, \text{let} \; W_j = \bigcup_{\substack{\pi(t) = j, \; t \leq qn \\ |X_{qn+t}| \leq |W_{n-r+t}| \; \text{and} \; |W_j| \leq |W_{n-r+t}| + |X_{qn+t}| \; \text{for} \; 1 \leq j \leq n \; \text{and} \; 1 \leq t \leq r. \\ & \text{If} \; i \leq r, \, \text{then} \; |S_i| = \sum_{j=1}^i (|W_{n-r+j}| + |X_{qn+j}|) \leq 2 \sum_{j=1}^i |W_{n-r+j}| \leq 2i|W_{n-r+1}|, \end{aligned}$$

or
$$\frac{|S_i|}{2i} \le |W_{n-r+1}|$$
. On the other hand, $C(n,k) - |S_i| = \sum_{j=1}^{n-r} |W_j| + \sum_{j=i+1}^n (|W_{n-r+j}| + |X_{qn+j}|) \ge (n-i)|W_{n-r}|$, or $\frac{C(n,k) - |S_i|}{n-i} \ge |W_{n-r}|$. Hence, $\frac{|S_i|}{2i} \le |W_{n-r+1}| \le |W_{n-r}| \le \frac{C(n,k) - |S_i|}{n-i}$. It follows that $\frac{|S_i|}{2i} \le \frac{|S_i| + C(n,k) - |S_i|}{2i + n - i} = \frac{C(n,k)}{n+i}$.

If
$$i > r$$
, then $|S_i| = \sum_{j=1}^{i-r} |W_j| + \sum_{j=1}^{r} (|W_{n-r+j}| + |X_{qn+j}|) \le (i-r)(|W_{n-r+1}| + |X_{qn+1}|) + r(|W_{n-r+1}| + |X_{qn+1}|) \le 2i|W_{n-r+1}|$, or $\frac{|S_i|}{2i} \le |W_{n-r+1}|$. On the other hand, $C(n,k) - |S_i| = \sum_{j=i-r+1}^{n-r} |W_j| \ge (n-i)|W_{n-r}|$, or $\frac{C(n,k) - |S_i|}{n-i} \ge |W_{n-r}|$. Hence, $\frac{|S_i|}{2i} \le |W_{n-r+1}| \le |W_{n-r}| \le \frac{C(n,k) - |S_i|}{n-i}$. It follows that $\frac{|S_i|}{2i} \le \frac{|S_i| + C(n,k) - |S_i|}{2i + n - i} = \frac{C(n,k)}{n+i}$. Therefore, $|S_i| \le \frac{2i}{n+i} C(n,k)$ as desired.

Lemma 9. Suppose that $k \leq n - i$.

(1)
$$C(n, k-1) > C(n-i, k-1) + ik$$
 for $k > 3$.

(2)
$$C(n,k) - C(n-i,k) \ge \frac{2i}{n+i}C(n,k)$$
 for $k \ge 2$.

Proof.

(1) By direct computation, we have

$$C(n, k-1) = C(n-1, k-1) + C(n-1, k-2)$$

$$= C(n-i, k-1) + C(n-i, k-2) + C(n-i+1, k-2)$$

$$+ \dots + C(n-1, k-2)$$

$$\geq C(n-i, k-1) + iC(k, 1)$$

$$= C(n-i, k-1) + ik.$$

(2) By direct computation, we have

$$\frac{C(n,k)}{C(n-i,k)} = \frac{n(n-1)\cdots(n-k+1)}{(n-i)(n-i-1)\cdots(n-i-k+1)}$$

$$= \left(1 + \frac{i}{n-i}\right)\left(1 + \frac{i}{n-i-1}\right)\cdots\left(1 + \frac{i}{n-i-k+1}\right)$$

$$> \left(1 + \frac{i}{n-i}\right)^k$$

$$\geq \left(1 + \frac{i}{n-i}\right)^2$$

$$> \left(1 + \frac{2i}{n-i}\right)$$

$$= \frac{n+i}{n-i}.$$

Hence,
$$C(n,k) - C(n-i,k) \ge \frac{2i}{n+i}C(n,k)$$
 as desired.

Now, we are ready to show our main results.

Lemma 10. Suppose that $n - k + 1 \le m \le n$. Then $\mathsf{KG}(n,k)$ is equitably m-colorable.

Proof. Let the bipartite graph G=G(X,Y), S and S_i be defined as before. It suffices to show that $|N(S_i)|-|S_i|\geq 0$ for $i\leq n-k$. First, we consider k=2. Then m=n-1 or n and $i\leq n-2$. If i=n-2, then $|S_i|=|X|-|X_m|$ for m=n-1 or $|S_i|=|X|-|X_{m-1}|-|X_m|$ for m=n. Hence, $|N(S_i)|-|S_i|\geq C(n,2)-1-\left(C(n,2)-\left\lfloor\frac{C(n,2)}{n-1}\right\rfloor\right)=\left\lfloor\frac{n}{2}\right\rfloor-1>0$. If $i\leq n-3$, then $|N(S_i)|-|S_i|\geq C(n,2)-C(n-i,2)-i\left\lfloor\frac{C(n,2)}{m}\right\rfloor-i\geq C(n,2)-C(n-i,2)-i\left\lfloor\frac{C(n,2)}{m}\right\rfloor-i\geq C(n,2)-C(n-i,2)-i\left\lfloor\frac{C(n,2)}{n-1}\right\rfloor-i\geq C(n,2)-C(n-i,2)-i\left\lfloor\frac{C(n,2)}{n-1}\right\rfloor-i\geq C(n,2)$. Suppose $k\geq 3$. Then, $|S_i|=\sum_{j=1}^i\left\lceil\frac{C(n,k)-j+1}{m}\right\rceil\leq i\left(\frac{C(n,k)}{n-k+1}+1\right)$. By Lemma 9(1), we have

$$|N(S)| - |S| \ge |N(S_i)| - |S_i|$$

$$\ge \frac{n - k + 1 - i}{k} (C(n, k - 1) - C(n - i, k - 1)) - i$$

$$\ge \frac{n - k + 1 - i}{k} ik - i$$

$$= (n - k - i)i \ge 0.$$

Therefore, we complete the proof.

Lemma 11. Suppose that m > n. Then KG(n, k) is equitably m-colorable.

Proof. First, consider $m=qn,\ q\geq 1$. By Lemma 10, $\binom{[n]}{k}$ can be partitioned equitably into n subcollections $\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_n$, where each \mathcal{X}_i is an i-flower. For each $i\geq 1$, we can partition \mathcal{X}_i into q equitable subcollections $\mathcal{X}_{i,1},\mathcal{X}_{i,2},\ldots,\mathcal{X}_{i,q}$. Hence the collection $\{\mathcal{X}_{i,j}:1\leq i\leq n,1\leq j\leq q\}$ forms an equitable m-coloring of $\mathsf{KG}(n,k)$.

Now, suppose m is not divisible by n. Let the bipartite graph G=G(X,Y), S and S_i be defined as before. It suffices to show that $|N(S_i)|-|S_i|\geq 0$ for $i\leq n-k$. By Lemma 8 and Lemma 9(2), $|N(S_i)|-|S_i|\geq C(n,k)-C(n-i,k)-\frac{2i}{n+i}C(n,k)\geq 0$.

Therefore, we complete the proof.

Combining Lemma 10 and Lemma 11, the following is easy to see.

Theorem 12. Suppose that $m \ge n - k + 1$. Then $\mathsf{KG}(n,k)$ is equitably m-colorable, i.e., $\chi_=(\mathsf{KG}(n,k)) \le \chi_-^*(\mathsf{KG}(n,k)) \le n - k + 1$.

Suppose $m \leq n-k$ and $\operatorname{KG}(n,k)$ is equitably m-colorable. Let f be an equitable m-coloring of $\operatorname{KG}(n,k)$. By Lemma 7, there is some color class $f^{-1}(i)$ which is contained in no flowers of $\binom{[n]}{k}$. Moreover, the particular $f^{-1}(i)$ must satisfy that $|f^{-1}(i)| \leq \alpha_2(n,k) = C(n-1,k-1) - C(n-k-1,k-1) + 1$. Using this fact, we have the following.

Lemma 13. Suppose that $m \leq n-k$ and $\left\lfloor \frac{C(n,k)}{m} \right\rfloor > \alpha_2(n,k)$. Then $\operatorname{KG}(n,k)$ is not equitably r-colorable for all $r \leq m$, i.e., $\chi_{=}^*(\operatorname{KG}(n,k)) \geq \chi_{=}(\operatorname{KG}(n,k)) \geq m+1$.

Proof. Suppose $\mathsf{KG}(n,k)$ has an equitable r-coloring f for some $r \leq m$. Then there is some color class $f^{-1}(i)$ satisfying that $|f^{-1}(i)| \leq \alpha_2(n,k)$. Since f is an equitable r-coloring, $|f^{-1}(i)| \geq \left\lfloor \frac{C(n,k)}{m} \right\rfloor > \alpha_2(n,k)$ which is a contradiction. Hence, $\mathsf{KG}(n,k)$ is not equitably r-colorable for all $r \leq m$ and then $\chi_{=}^*(\mathsf{KG}(n,k)) \geq \chi_{=}(\mathsf{KG}(n,k)) \geq m+1$.

Theorem 14. If
$$\left\lfloor \frac{C(n,k)}{n-k} \right\rfloor > \alpha_2(n,k)$$
. Then $\chi_=(\mathsf{KG}(n,k)) = \chi_=^*(\mathsf{KG}(n,k)) = n-k+1$.

Proof. It follows from Theorem 12 and Lemma 13.

3. Cases for
$$k=2,3$$

By the same argument as in the proof of Lemma 10, the following is not difficult to see.

Lemma 15. Suppose that $1 \leq t \leq m$. Then the collectiom $\binom{[m]}{t}$ can be partitioned equitably into m subcollections $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_m$, such that each \mathcal{F}_i is an i-flower.

By Lemma 13, Theorem 14 and Lemma 15, we can show that $\chi_{=}(\mathsf{KG}(n,k)) = \chi_{=}^*(\mathsf{KG}(n,k))$ for k=2 or 3 and obtain their exact values.

Theorem 16. For $n \geq 5$,

$$\chi_{=}(\mathsf{KG}(n,2)) = \chi_{=}^{*}(\mathsf{KG}(n,2)) = \left\{ \begin{array}{ll} n-1 & \textit{if } n \geq 7, \\ n-2 & \textit{if } n = 5 \textit{ or } 6. \end{array} \right.$$

Proof. By Theorem 3 and Theorem 12,

$$n-2 = \chi(\mathsf{KG}(n,2)) \le \chi_{=}(\mathsf{KG}(n,2)) \le \chi_{-}^{*}(\mathsf{KG}(n,2)) \le n-1.$$

By direct computation, $\left\lfloor \frac{C(n,2)}{n-2} \right\rfloor > \alpha_2(n,2) = 3$ if and only if $n \geq 7$. Hence, by Theorem 14, $\chi_=(\mathsf{KG}(n,2)) = \chi_-^*(\mathsf{KG}(n,2)) = n-1$ if $n \geq 7$.

For convenience, we use ij to denote the 2-subset $\{i,j\}$. It is easy to see that the partition $(\{12,13,14,15\},\{23,24,25\},\{34,35,45\})$ forms an equitable 3-coloring of $\mathsf{KG}(5,2)$ and the partition $(\{12,14,15,16\},\{23,24,25,26\},\{13,34,35,36\},\{45,46,56\})$ forms an equitable 4-coloring of $\mathsf{KG}(6,2)$. Hence, $\chi(\mathsf{KG}(n,2)) = \chi_=(\mathsf{KG}(n,2)) = \chi_=(\mathsf{KG}(n,2)) = n-2$ if $5 \le n \le 6$.

Lemma 17. For $7 \le n \le 15$, $\chi_{=}(\mathsf{KG}(n,3)) \le \chi_{=}^*(\mathsf{KG}(n,3)) \le n-3$. Moreover, $\chi_{=}(\mathsf{KG}(n,3)) = \chi_{=}^*(\mathsf{KG}(n,3)) = n-3$ if $14 \le n \le 15$.

 $\begin{array}{ll} \textit{Proof.} & \text{Let } \mathcal{H} = \{A \in {[n] \choose 3}: |A \cap \{n-2, n-1, n\}| \geq 2\}. \text{ Then } {[n-3, n] \choose 3} \subseteq \mathcal{H} \\ \text{and } |\mathcal{H}| = 3n-8 \geq \left\lfloor \frac{C(n,3)}{n-3} \right\rfloor \geq 4 \text{ for } n \leq 15. \text{ Note that if } A \not\in \mathcal{H}, \text{ then } \\ \end{array}$

$$A \text{ is in some } i\text{-flower, } 1 \leq i \leq n-4. \text{ Let } \mathcal{F} = \bigcup_{i=1}^{n-4} (\{A \in \binom{[n]}{3} : i \in A\} \setminus \mathcal{H})$$

and $\mathcal{G}_t = \{\{i,j,t\}: 1 \leq i < j \leq n-4\}$ for $n-3 \leq t \leq n$. Then $\mathcal{F} = \{i,j,t\}$ $\binom{[n-4]}{3} \cup (\bigcup \mathcal{G}_t)$. By Lemma 15, $\binom{[n-4]}{3}$ can be partitioned equitably into n-4subcollections $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_{n-4}$ such that each \mathcal{X}_i is an *i*-flower. Since $\{A \setminus \{t\} : A \in \mathcal{G}_t\} = \binom{[n-4]}{2}$ for $n-3 \le t \le n$, by Lemma 15, \mathcal{G}_t can be partitioned equitably into n-4 subcollections $\mathcal{X}_{1,t}, \mathcal{X}_{2,t}, \ldots, \mathcal{X}_{n-4,t}$ such that each $\mathcal{X}_{i,t}$ is an *i*-flower. By adjusting the sizes of \mathcal{X}_i and $\mathcal{X}_{i,t}$, \mathcal{F} can be partitioned equitably into n-4subcollections $\mathcal{V}_i = \mathcal{X}_i \cup (\bigcup_{t=n-3} \mathcal{X}_{i,t}), 1 \leq i \leq n-4$ such that each \mathcal{V}_i is an i-flower.

It is easy to see that the set $\{i, s, t\} \in \mathcal{H}$ for $1 \leq i \leq n-4$ and $n-2 \leq i \leq n-4$ $s < t \le n$. For each pair (s,t), remove the sets $\{i,s,t\}$ from $\mathcal H$ and add them one by one into V_i to obtain new V'_i , respectively, and preserve the equality of sizes of \mathcal{V}_i 's. Continuing this process, \mathcal{H} can be reduced to \mathcal{H}' such that $|\mathcal{H}'| =$ $\left\lfloor \frac{C(n,3)}{n-3} \right\rfloor. \text{ In this case, the } \mathcal{V}_i'\text{'s satisfy } ||\mathcal{V}_i'| - |\mathcal{V}_j'|| \leq 1. \text{ Hence, the partition } \\ (\mathcal{V}_1',\mathcal{V}_2',\ldots,\mathcal{V}_{n-4}',\mathcal{H}') \text{ forms an equitable } (n-3)\text{-coloring of KG}(n,3). \text{ Therefore, } \\ \chi_=(\mathsf{KG}(n,3)) \leq \chi_=^*(\mathsf{KG}(n,3)) \leq n-3 \text{ for } 7 \leq n \leq 15. \\ \text{Moreover, since } \left\lfloor \frac{C(n,3)}{n-4} \right\rfloor > \alpha_2(n,3) = 3n-8 \text{ if and only if } n \geq 14. \text{ Therefore } 14. \\ \text{Therefore } 12 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \text{ Therefore } 14. \\ \text{Therefore } 13 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \text{ Therefore } 14. \\ \text{Therefore } 13 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \text{ Therefore } 14. \\ \text{Therefore } 13 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq n-3 \text{ if } n \geq 14. \\ \text{Therefore } 14 \leq C(n,3) \leq C(n,3)$

by Lemma 13, $\chi_{-}^{*}(\mathsf{KG}(n,3)) \geq \chi_{-}(\mathsf{KG}(n,3)) \geq n-3$ if $n \geq 14$. Therefore, $\chi_{=}(\mathsf{KG}(n,3)) = \chi_{-}^{*}(\mathsf{KG}(n,3)) = n-3 \text{ for } 14 \leq n \leq 15$

Lemma 18. For $7 \le n \le 13$, $\chi(\mathsf{KG}(n,3)) = \chi_{-}(\mathsf{KG}(n,3)) = \chi_{-}^{*}(\mathsf{KG}(n,3)) = \chi_{-}^{*}($ n-4.

Proof. By Theorem 3 and Lemma 17,

$$n-4=\chi(\operatorname{KG}(n,3))\leq \chi_{=}(\operatorname{KG}(n,3))\leq \chi_{-}^{*}(\operatorname{KG}(n,3))\leq n-3.$$

It suffices to show that $\mathsf{KG}(n,3)$ is equitably (n-4)-colorable for $7 \le n \le 13$. Let $\mathcal{H}_1 = \{A \in {[n] \choose 3} : |A \cap \{n-2,n-1,n\}| \ge 2\}$ and $\mathcal{H}_2 = \{A \in {[n] \choose 3} : A \cap \{n-2,n-1,n\} \}$ $|A \cap \{n-5, n-4, n-3\}| \ge 2\}$. Then $|\mathcal{H}_1| = |\mathcal{H}_2| = 3n-8 \ge \left\lfloor \frac{C(n,3)}{n-4} \right\rfloor \ge 2$ $\frac{1}{2}\left|\binom{[n-5,n]}{3}\right|=\frac{C(6,3)}{2}=10$ for $7\leq n\leq 13$. By the same argument as in Lemma 17, \mathcal{H}_1 and \mathcal{H}_2 can be reduced to \mathcal{H}_1' and \mathcal{H}_2' such that $|\mathcal{H}_1'| = \left\lceil \frac{C(n,3) - (n-5) + 1}{n-4} \right\rceil$ and $|\mathcal{H}_2'| = \left\lceil \frac{C(n,3) - (n-4) + 1}{n-4} \right\rceil$. Moreover, $\binom{[n]}{3} \setminus (\mathcal{H}_1' \cup \mathcal{H}_2')$ can be partitioned equitably into n-6 subcollections $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_{n-6}$ such that each V_i is an *i*-flower and $|V_i| = \left\lceil \frac{C(n,3) - i + 1}{n-4} \right\rceil$. Hence, KG(n,3) is

equitably (n-4)-colorable. Therefore, $\chi(\mathsf{KG}(n,3)) = \chi_=(\mathsf{KG}(n,3)) = \chi_=^*(\mathsf{KG}(n,3)) = n-4$ for $7 \le n \le 13$.

Theorem 19. For $n \geq 7$,

$$\chi_{=}(\mathsf{KG}(n,3)) = \chi_{=}^{*}(\mathsf{KG}(n,3)) = \left\{ \begin{array}{ll} n-2 & \text{if } n \geq 16, \\ n-3 & \text{if } 14 \leq n \leq 15, \\ n-4 & \text{if } 7 \leq n \leq 13. \end{array} \right.$$

Proof. By Theorem 3 and Theorem 12,

$$n-4 = \chi(\mathsf{KG}(n,3)) \le \chi_{=}(\mathsf{KG}(n,3)) \le \chi_{-}^{*}(\mathsf{KG}(n,3)) \le n-2.$$

Since $\left\lfloor \frac{C(n,3)}{n-3} \right\rfloor > \alpha_2(n,3) = 3n-8$ if and only if $n \geq 16$, by Theorem 14, $\chi_=(\mathsf{KG}(n,2)) = \chi_=^*(\mathsf{KG}(n,2)) = n-2$ if $n \geq 16$. The remaining two cases follow from Lemma 17 and Lemma 18.

4. THE ODD GRAPHS

Since $O_1 = K_3$, we have $\chi(O_1) = \chi_{=}(O_1) = \chi_{=}^*(O_1) = 3$. By Theorem 16 and Theorem 19, $\chi(O_k) = \chi_{=}(O_k) = \chi_{=}^*(O_k) = 3$ for k = 2 or 3. Suppose $k \ge 4$.

Lemma 20. O_k is equitably 3-colorable.

Proof. Let $\mathcal{F}_1 = \{A: 1 \in A, 2 \not\in A\}, \ \mathcal{F}_2 = \{A: 1 \not\in A, 2 \in A\}, \ \mathcal{F}_{12} = \{A: 1 \in A, 2 \in A\} \ \text{and} \ \mathcal{F}_3 = \{A: 1 \not\in A, 2 \not\in A\}. \ \text{Then } (\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_{12}, \mathcal{F}_3) \ \text{forms a partition(or 4-coloring) of } O_k, \ |\mathcal{F}_1| = |\mathcal{F}_2| = C(2k-1, k-1) = C(2k-1, k) = |\mathcal{F}_3|, \ |\mathcal{F}_{12}| = C(2k-1, k-2) \ \text{and} \ C(2k+1, k) = 3C(2k-1, k-1) + C(2k-1, k-2).$ Let $a_i = \left\lfloor \frac{C(n,k)+i-1}{3} \right\rfloor, \ i=1,2,3 \ \text{and} \ t = \frac{1}{3}C(2k+1,k) - C(2k-1,k-2).$ Consider the two collections $\mathcal{H}_1 = \{A \in \mathcal{F}_3: 3 \in A, 4 \in A\} \ \text{and} \ \mathcal{H}_2 = \{A \in \mathcal{F}_{12}: |A \cap [3,4]| = 1\}. \ \text{By direct computation,} \ \frac{|\mathcal{H}_1|}{t} = \frac{3(k+1)k}{(2k-1)(2k-2)} > 1 \ \text{for} \ k \leq 8 \ \text{and} \ \frac{|\mathcal{H}_2|}{t} = \frac{3(k-2)(k+1)}{(2k-1)(k-1)} > 1 \ \text{for} \ k \geq 4. \ \text{For} \ 4 \leq k \leq 8, \ \text{choose} \ \mathcal{S} \subseteq \mathcal{H}_1 \ \text{with} \ |\mathcal{S}| = \lfloor t \rfloor = a_1 - C(2k-1, k-1) \ \text{and} \ \mathcal{T} \subseteq \mathcal{H}_2 \ \text{with} \ |\mathcal{T}| = a_2 - C(2k-1, k-1). \ \text{Let} \ \mathcal{S}_1 = \{A \in \mathcal{F}_1: [3, 2k+1] \setminus A \in \mathcal{S}\} \ \text{and} \ \mathcal{S}_2 = \{A \in \mathcal{F}_2: [3, 2k+1] \setminus A \in \mathcal{S}\}. \ \text{Then} \ |\mathcal{S}| = |\mathcal{S}_1| = |\mathcal{S}_2|. \ \text{Moreover, if} \ A \in \mathcal{F}_i \ \text{where} \ i = 1, 2, \ \text{then} \ A \cap B \neq \emptyset \ \text{for all} \ B \in \mathcal{F}_3 \ \text{except} \ B = [3, 2k+1] \setminus A. \ \text{Hence,} \ (\mathcal{F}_3 \setminus \mathcal{S}) \cup \mathcal{S}_1 \cup \mathcal{S}_2, \ (\mathcal{F}_2 \setminus \mathcal{S}_2) \cup \mathcal{S} \cup \mathcal{T} \ \text{and} \ (\mathcal{F}_1 \setminus \mathcal{S}_1) \cup (\mathcal{F}_{12} \setminus \mathcal{T}) \ \text{are} \ \mathcal{S}_1 \ \text{for} \ \mathcal{S}_1 = \mathcal{S}_1 \ \text{for} \ \mathcal{S}_1 \ \mathcal{S}_1 \cup \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_1 \ \text{one} \ \mathcal{S}_1 \ \mathcal{S}_1 \cup \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_3 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_2 \ \mathcal{S}_3 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_3 \ \mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_3 \ \mathcal{S}_3 \ \mathcal{S}_4 \ \mathcal{S}_4 \ \mathcal{S}_3 \ \mathcal{S}_4 \ \mathcal{S}_4 \ \mathcal{S}_3 \ \mathcal{S}_4 \ \mathcal{$

independent sets of sizes a_1 , a_2 and a_3 , respectively. Thus, the partition $((\mathcal{F}_1 \setminus \mathcal{S}_1) \cup (\mathcal{F}_{12} \setminus \mathcal{T}), (\mathcal{F}_2 \setminus \mathcal{S}_2) \cup \mathcal{S} \cup \mathcal{T}, (\mathcal{F}_3 \setminus \mathcal{S}) \cup \mathcal{S}_1 \cup \mathcal{S}_2)$ forms an equitable 3-coloring of O_k . Hence, O_k is equitably 3-colorable for $4 \leq k \leq 8$.

Now, suppose $k \geq 9$. Consider the two collections $\mathcal{H}_3 = \{A \in \mathcal{F}_3 : |A \cap [3,5]| = 2\}$ and $\mathcal{H}_4 = \{A \in \mathcal{F}_{12} : |A \cap [3,5]| \geq 2\}$. By direct computation, $\frac{|\mathcal{H}_3|}{t} = \frac{9(k+1)k}{2(2k-1)(2k-3)} > 1$ and $\frac{|\mathcal{H}_4|}{t} = \frac{12k^3 - 63k^2 + 87k - 18}{8k^3 - 24k^2 + 22k - 6} > 1$. Choose $\mathcal{P} \subseteq \mathcal{H}_3$ with $|\mathcal{P}| = |t| = a_1 - C(2k-1, k-1)$ and $\mathcal{Q} \subseteq \mathcal{H}_4$ with $|\mathcal{Q}| = a_2 - C(2k-1, k-1)$. Let $\mathcal{P}_1 = \{A \in \mathcal{F}_1 : [3, 2k+1] \setminus A \in \mathcal{P}\}$ and $\mathcal{P}_2 = \{A \in \mathcal{F}_2 : [3, 2k+1] \setminus A \in \mathcal{P}\}$. Then $|\mathcal{P}| = |\mathcal{P}_1| = |\mathcal{P}_2|$. By the same argument as above, $(\mathcal{F}_3 \setminus \mathcal{P}) \cup \mathcal{P}_1 \cup \mathcal{P}_2$, $(\mathcal{F}_2 \setminus \mathcal{P}_2) \cup \mathcal{P} \cup \mathcal{Q}$ and $(\mathcal{F}_1 \setminus \mathcal{P}_1) \cup (\mathcal{F}_{12} \setminus \mathcal{Q})$ are independent sets of sizes a_1, a_2 and a_3 , respectively. Thus, the partition $((\mathcal{F}_1 \setminus \mathcal{P}_1) \cup (\mathcal{F}_{12} \setminus \mathcal{Q}), (\mathcal{F}_2 \setminus \mathcal{P}_2) \cup \mathcal{P} \cup \mathcal{Q}, (\mathcal{F}_3 \setminus \mathcal{P}) \cup \mathcal{P}_1 \cup \mathcal{P}_2)$ forms an equitable 3-coloring of O_k . Hence, O_k is equitably 3-colorable for $k \geq 9$. Therefore, we complete the proof.

Let $\mathcal{U}=\binom{[2k+1]}{k}$ and $\mathcal{X}=\binom{[4,2k+1]}{k}$. For $1\leq i\leq 3$, let $\mathcal{F}_i=\{A\in\mathcal{U}:i\in A\}$ and $\mathcal{F}_{i0}=\{A\in\mathcal{U}:|A\cap\{1,2,3\}|=i\}$. For $1\leq i< j\leq 3$, let $\mathcal{F}_{ij}=\{A\in\mathcal{U}:A\cap\{1,2,3\}=\{i,j\}\}$. Let $\mathcal{F}_{123}=\{A\in\mathcal{U}:\{1,2,3\}\subseteq A\}$. Then $\mathcal{U}=(\bigcup_{i=1}^{3}\mathcal{F}_{i0})\cup(\bigcup_{1\leq i< j\leq 3}\mathcal{F}_{ij})\cup\mathcal{F}_{123}\cup\mathcal{X}, \mathcal{F}_i=\mathcal{F}_{i0}\cup\mathcal{F}_{is}\cup\mathcal{F}_{it}\cup\mathcal{F}_{123}, \{i,s,t\}=\{1,2,3\},|\mathcal{X}|=C(2k-2,k),|\mathcal{F}_{i0}|=C(2k-2,k-1),|\mathcal{F}_{ij}|=C(2k-2,k-2)$ and $|\mathcal{F}_{123}|=C(2k-2,k-3)$. It is not difficult to see that $\mathcal{X}\cup\mathcal{F}_{i0}$ is an independent set. If A and B both are in \mathcal{F}_{i0} , then $|A\cap B|\geq 2$ except $(A\setminus\{i\})\cup(B\setminus\{j\})=[4,2k+1]$. Hence, each \mathcal{F}_{i0} can be partitioned into \mathcal{S}_i and \mathcal{T}_i such that if $A\in\mathcal{S}_i$, then $([4,2k+1]\setminus A)\cup\{i\}\in\mathcal{T}_i$. Moreover, we may assume that $\{A\setminus\{i\}:A\in\mathcal{S}_i\}=\{A\setminus\{j\}:A\in\mathcal{S}_j\}$ for $1\leq i< j\leq 3$. Hence, $|\mathcal{S}_i|=|\mathcal{S}_j|=|\mathcal{T}_i|=|\mathcal{T}_j|=\frac{|\mathcal{F}_{i0}|}{2}$ and $\mathcal{S}_1\cup\mathcal{S}_2\cup\mathcal{S}_3\cup\mathcal{X}$ is an independent set. By direct computation, we have the following.

(I1)
$$|\mathcal{X}| < \frac{|\mathcal{U}|}{m} < |\mathcal{X} \cup \mathcal{S}_i \cup \mathcal{S}_j| \text{ if } 4 \le m \le 7.$$

(I2) $\frac{1}{6}|\mathcal{U}| < |\mathcal{X} \cup \mathcal{S}_i| < \frac{2}{6}|\mathcal{U}| \le |\mathcal{F}_i \setminus \mathcal{F}_{123}| \le \frac{2}{5}|\mathcal{U}| \le |\mathcal{F}_i|.$

The inequalities (I1) and (I2) will be used to guarantee that there are
$$\mathcal{P}_i \subseteq \mathcal{S}_i$$
 (\mathcal{P}_i may be empty) for $1 \leq i \leq 3$ such that $|\mathcal{X} \cup \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3| = \left|\frac{|\mathcal{U}|}{m}\right|$ for

 $4 \le m \le 7$. Then we can partition $\bigcup_{i=1}^{3} (\mathcal{F}_i \setminus \mathcal{P}_i)$ equitably into m-1 subcollections so that O_k is equitably m-colorable.

Theorem 21.
$$\chi(O_k) = \chi_-(O_k) = \chi_-^*(O_k) = 3$$
 for $k \ge 1$.

Proof. If k = 1, 2 or 3, then we are done. Suppose $k \ge 4$. By Lemma 20, O_k is equitably 3-colorable. It suffices to show that O_k is equitably m-colorable for all $m \ge 4$.

For m=4, by (I1), we may choose $\mathcal{P}_i\subseteq\mathcal{S}_i, 1\leq i\leq 3$, such that $||\mathcal{P}_1|-|\mathcal{P}_2||\leq 1$ and $|\mathcal{X}\cup\mathcal{P}_1\cup\mathcal{P}_2\cup\mathcal{P}_3|=\left\lfloor\frac{|\mathcal{U}|}{4}\right\rfloor$. Partition \mathcal{F}_{123} into three subcollections $\mathcal{R}_1,\mathcal{R}_2$ and \mathcal{R}_3 such that $||\mathcal{R}_i|-|\mathcal{R}_j||\leq 1$ and $|(\mathcal{F}_{i0}\setminus\mathcal{S}_i)\cup\mathcal{F}_{i,i+1}\cup\mathcal{R}_i|=\left\lceil\frac{|\mathcal{U}|-i+1}{4}\right\rceil$ for $1\leq i\leq 2$. Note that $\mathcal{F}_{i,j}=\mathcal{F}_{i,j}$. Hence, $\mathcal{O}_{i,j}$ is equitably 4 colorable.

for $1 \leq i \leq 3$. Note that $\mathcal{F}_{34} = \mathcal{F}_{13}$. Hence, O_k is equitably 4-colorable. For m = 5, by (I1), we may choose $\mathcal{P}_i \subseteq \mathcal{S}_i, 2 \leq i \leq 3$, such that $||\mathcal{P}_2| - |\mathcal{P}_3|| \leq 1$ and $|\mathcal{X} \cup \mathcal{P}_2 \cup \mathcal{P}_3| = \left\lfloor \frac{|\mathcal{U}|}{5} \right\rfloor$. By (I2), we may choose $\mathcal{R} \subseteq \mathcal{F}_{123}$ such that $(\mathcal{F}_1 \setminus \mathcal{F}_{123}) \cup \mathcal{R} = \mathcal{V}_1 \cup \mathcal{V}_2$ with $|\mathcal{V}_1| = \left\lfloor \frac{|\mathcal{U}| + 4}{5} \right\rfloor$ and $|\mathcal{V}_1| = \left\lfloor \frac{|\mathcal{U}| + 3}{5} \right\rfloor$. It can be done since $(\mathcal{F}_1 \setminus \mathcal{F}_{123}) \cup \mathcal{R}$ is a 1-flower. Partition $(\mathcal{F}_{123} \setminus \mathcal{R}) \cup \mathcal{F}_{23}$ into two subcollections \mathcal{R}_2 and \mathcal{R}_3 such that $||\mathcal{R}_2| - |\mathcal{R}_3|| \leq 1$ and $|(\mathcal{F}_{i0} \setminus \mathcal{P}_i) \cup \mathcal{R}_i| = \left\lfloor \frac{|\mathcal{U}| + i - 1}{5} \right\rfloor$ for $2 \leq i \leq 3$. Hence, O_k is equitably 5-colorable.

For m=6, by (I2), we may choose $\mathcal{P}_3\subseteq\mathcal{S}_3$ such that $|\mathcal{X}\cup\mathcal{P}_3|=\left\lfloor\frac{|\mathcal{U}|}{6}\right\rfloor$ and choose $\mathcal{Q}_1\subseteq\mathcal{F}_{13}$ and $\mathcal{Q}_2\subseteq\mathcal{F}_{23}$ such that $||\mathcal{Q}_1|-|\mathcal{Q}_2||\leq 1$ and $|\mathcal{F}_3\setminus(\mathcal{P}_3\cup\mathcal{Q}_1\cup\mathcal{Q}_2\cup\mathcal{F}_{123})|=\left\lfloor\frac{|\mathcal{U}|+1}{6}\right\rfloor$. Partition $\mathcal{F}_{12}\cup\mathcal{F}_{123}$ into two subcollections \mathcal{R}_1 and \mathcal{R}_2 such that $||\mathcal{R}_1|-|\mathcal{R}_2||\leq 1$ and $||\mathcal{F}_{10}\cup\mathcal{Q}_1\cup\mathcal{R}_1|-|\mathcal{F}_{20}\cup\mathcal{Q}_2\cup\mathcal{R}_2||\leq 1$. Since $\mathcal{F}_{i0}\cup\mathcal{Q}_i\cup\mathcal{R}_i$ is an i-flower, it can be partitioned into $\mathcal{V}_{i,1}$ and $\mathcal{V}_{i,2}$ such that $|\mathcal{V}_{i,j}|=\left\lfloor\frac{|\mathcal{U}|+8-2i-j}{6}\right\rfloor$ for $1\leq i\leq 2$ and $1\leq j\leq 2$. Hence, \mathcal{O}_k is equitably 6-colorable.

For m=7, by (I1), we may choose $\mathcal{P}_i\subseteq\mathcal{S}_i, 1\leq i\leq 3$, such that $||\mathcal{P}_i|-|\mathcal{P}_j||\leq 1$ and $|\mathcal{X}\cup\mathcal{P}_1\cup\mathcal{P}_2\cup\mathcal{P}_3|=\left\lfloor\frac{|\mathcal{U}|}{7}\right\rfloor$. Partition \mathcal{F}_{123} into three subcollections $\mathcal{R}_1,\mathcal{R}_2$ and \mathcal{R}_3 such that $||\mathcal{R}_i|-|\mathcal{R}_j||\leq 1$ and $||(\mathcal{F}_{i0}\setminus\mathcal{P}_i)\cup\mathcal{F}_{i,i+1}\cup\mathcal{R}_i|-|(\mathcal{F}_{j0}\setminus\mathcal{P}_j)\cup\mathcal{F}_{j,j+1}\cup\mathcal{R}_j||\leq 1$. Note that $\mathcal{F}_{34}=\mathcal{F}_{13}$. Since each $(\mathcal{F}_{i0}\setminus\mathcal{P}_i)\cup\mathcal{F}_{i,i+1}\cup\mathcal{R}_i$ is an i-flower, it can partitioned into $\mathcal{V}_{i,1}$ and $\mathcal{V}_{i,2}$ such that $|\mathcal{V}_{i,j}|=\left\lfloor\frac{|\mathcal{U}|+9-2i-j}{7}\right\rfloor$ for $1\leq i\leq 3$ and $1\leq j\leq 2$. Hence, O_k is equitably 7-colorable.

From the foregoing argument, there are $\mathcal{P}_i \subseteq \mathcal{F}_i$ such that $|\mathcal{X} \cup \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3| = \left\lfloor \frac{|\mathcal{U}|}{m} \right\rfloor$ and $\mathcal{F}_i \setminus \mathcal{P}_i = \mathcal{V}_{i,1} \cup \mathcal{V}_{i,2}$ ($\mathcal{V}_{i,2}$ may be empty) with $|\mathcal{V}_{i,j}| = \left\lfloor \frac{|\mathcal{U}|}{m} \right\rfloor$ or $\left\lceil \frac{|\mathcal{U}|}{m} \right\rceil$

for $4 \leq m \leq 7$. Now, for $t \geq 1$, we can partition $\mathcal{X} \cup \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3$ into t+1 subcollections, partition $\mathcal{F}_i \setminus \mathcal{P}_i$ into t+1 or t+2 (if $\mathcal{V}_{i,2}$ is not empty) subcollections such that all of the subcollections are of size $\left\lfloor \frac{|\mathcal{U}|}{m+4t} \right\rfloor$ or $\left\lceil \frac{|\mathcal{U}|}{m+4t} \right\rceil$. Hence, O_k is equitably (m+4t)-colorable. Therefore, we complete the proof.

5. A Conjecture

In this paper, we have shown that $\chi_=(\mathsf{KG}(n,k)) \leq \chi_=^*(\mathsf{KG}(n,k)) \leq n-k+1$ and $\chi(O_k) = \chi_=(O_k) = \chi_=^*(O_k) = 3$. We have also shown that $\chi_=(\mathsf{KG}(n,k)) = \chi_=^*(\mathsf{KG}(n,k))$ for k=2 or 3 and obtained their exact values. We conclude this paper by posing the following conjecture.

Conjecture 3.
$$\chi_{=}(\mathsf{KG}(n,k)) = \chi_{-}^{*}(\mathsf{KG}(n,k))$$
 for $k \geq 2$.

ACKNOWLEDGMENT

The authors would like to thank Professor Ko-Wei Lih for his helpful comments to improve this paper. The authors also would like to thank referee for her/his many constructive suggestions.

REFERENCES

- 1. B. Bollobás and R. K. Guy, Equitable and proportional coloring of trees, *J. Combin. Theory Ser. B*, **34** (1983), 177-186.
- 2. R. L. Brooks, On colouring the nodes of a network, *Proc. Cambridge Phil. Soc.*, **37** (1941), 194-197.
- 3. B. L. Chen and K. W. Lih, Equitable coloring of trees, *J. Combin. Theory Ser. B*, **61** (1994), 83-87.
- 4. B. L. Chen, K. W. Lih and P. L. Wu, Equitable coloring and the maximum degree, *European J. Combin.*, **15** (1994), 443-447.
- 5. P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of the finite sets, *Quart. J. Math. Oxford* (2), **12** (1961), 313-320.
- A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdös, in: Combinatorial Theory and Its Applications, (P. Erdös, A. Rényi, V. Sós, Eds), 601-623, North-Holland, London, 1970.
- 7. P. Hall, On representation of subsets, J. London Math. Soc., 10 (1935), 26-30.
- 8. A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, *Quart. J. Math. Oxford* (2), **18** (1967), 369-384.

- 9. H. A. Kierstead and A. V. Kostochka, *A short proof of the Hajnal-Szemerédi theorem on equitable coloring*, to appear in Combin. Probab. Comput.
- 10. A. V. Kostochka, Equitable colorings of the outerplanar graphs, *Discrete Math.*, **258** (2002), 373-377.
- 11. A. V. Kostochka and K. Nakprasit, Equitable colourings of *d*-degenerate graphs, *Combin. Probab. Comput.*, **12** (2003), 53-60.
- 12. A. V. Kostochka, K. Nakprasit and S. V. Pemmaraju, On equitable coloring of *d*-degenerate graphs, *SIAM J. Discrete Math.*, **19** (2005), 83-95.
- 13. K. W. Lih and P. L. Wu, On equitable coloring of bipartite graphs, *Discrete Math.*, **151** (1996), 155-160.
- 14. L. Lovász, Kneser's conjecture, chromatic number, and homotopy, *J. Combin. Theory Ser. A*, **25** (1978), 319-324.
- 15. W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973), 920-922.
- 16. H. P. Yap and Y. Zhang, The equitable Δ -coloring holds for outplanar graphs, *Bull. Inst. Math. Acad. Sin.*, **5** (1997), 143-149.
- 17. H. P. Yap and Y. Zhang, Equitable colorings of planar graphs, *J. Combin. Math. Combin. Comput.*, **27** (1998), 97-105.
- 18. H. P. Yap and Y. Zhang, On the equitable coloring of graphs, manuscript, 1996.

Bor-Liang Chen Department of Business Administration, National Taichung Institute of Technology, Taichung 40401, Taiwan

Kuo-Ching Huang*
Department of Applied Mathematics,
Providence University,
Shalu 43301,
Taiwan