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STRONG CONVERGENCE TO COMMON FIXED POINTS OF A
FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE MAP

Yonghong Yao and Yeong-Cheng Liou

Abstract. Suppose F is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a
nonempty closed convex and bounded subset of E. Let T3, T5,---T,. : C — C
be a finite family of asymptotically nonexpansive mappings. In this paper, we
suggest and analyze an iterative algorithm for a finite family of asymptotically
nonexpansive mappings {7;}7_,. We show the convergence of the proposed
algorithm to a common fixed point p € N{_, F'(T;) which is the unique solution
of some variational inequality. Our results can be considered as an refinement
and improvement of many known results.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space . Recall that
a mapping f : C — C'is called a contraction if there exists a constant v € [0, 1)
such that || f(z) — f(»)|| < vllz — yll,Va,y € C and a mapping 7" : C — C
is called nonexpansive if |7z — Ty| < |z — y|| for all z,y € C. We denote
by F(T) the set of fixed points of T". Let T3,7%,---,T, be a finite family of
nonexpansive mappings satisfying that the set F' = N}_, F'(T;) of common fixed
points of 73,75, --,T, is nonempty. The problem of finding a common fixed
point of a finite family of nonexpasnive mappings has been investigated by many
researchers; see, for example, Atsushiba and Takahashi [1], Bauschke [2], Lions
[3], Shimizu and Takahashi [4], Takahashi, Tamura and Toyoda [5], Zeng, Cubiotti
and Yao [6]. Especially, in 2005, Kimura, Takahashi and Toyoda [7] deal with an
iteration scheme for a finite family of nonexpansive mappings which is more general
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than that of Wittmann’s result [8]. They proved the following strong convergence
theorem.

Theorem KTT. (see [7, Theorem 4]) Let E be a uniformly convex Banach
space whose norm is uniformly Gateaux differentiable and let C' be a closed convex
subset of E. Let T4, T5, - - - , T;. be nonexpansive mappings of C' into itself such that
the set F' =N, F(T;) of common fixed points of 7', T5,- - -, T is nonempty. Let
{a,,} and {3, } betwosequencesin [0, 1] which satisfy the following control conditions:

(i) limy oo =0, > 02 oy =00 @nd Y 07 oy — o] < 00;
(i) limy—oo B, = B* and 31, 85 = 1,n € N for some 3¢ € (0,1), i €
{17 gttt 7/,"};
(i) D021 2oict [Bga — Bl < oo

Let = € C and define a sequence {z,} by z; € C and

,
(1) Tpt1 = anZ + (1 — ay) Zﬁfﬂ}xn, n € N.
i=1

Then {z,} converges strongly to a common fixed point p € N7_, F(T;).

Recall also that a mapping 7" : C' — C' is called asymptotically nonexpansive
if there exists a sequence {k,} C [1,00) with lim,,_~ k, = 1 such that | 7"z —
T < kyllz — yl|| for all integers n > 0 and all 2,y € C. The mapping T :
C — C is called uniformly L-Lipschitzian (L > 0) if | 7"z — T™y| < L]z — y||,
Vz,y € C and for all n > 0. It is clear that every nonexpansive mapping is
asymptotically nonexpansive. The converse does not hold. The asymptotically
nonexpansive mapping as an important generalization of nonexpansive mapping has
been studied by many authors; you may see [9-20, 23-30].

Inspired and motivated by the result of Kimura, Takahashi and Toyoda [7],
in this paper, we suggest and analyze an iterative algorithm for a finite family of
asymptotically nonexpansive mappings {7;}7_, as follows:

Let C' be a nonempty closed convex subset of a real Banach space E, {T;}]_; :
C — C be a finite family of asymptotically nonexpansive mappings with sequences
{kff) ", Let{t,} C (0,1), o and (3 be two positive numbers such that a+ 5 = 1
and f be a contraction on C, a sequence {z,} iteratively defined by 2, € C and

(2) Zn+l = (1 -

tn aty, Btn —
7 n 5 ~n > zTn ns
kn)f(z)—i—knz +kn ZZ;T "z

where {7;}7_, are positive numbers in (0, 1) satisfying > 7 ;7 = 1 and k,, =
(@) ; —
max{ky’, i =1,2,--- 1}
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Remark 1.1. From [24, Proposition 1], if {7;}]_, : C' — C be a finite family

of asymptotically nonexpansive mappings with sequences {kff) "1, then we can
obtain {k,} such that

T — Tyl < kpllz —yll,Vn > 1,2,y e Cyi=1,2,--- 1,

where k,, = max{kff),i =1,2,---,r}. Inthe sequel, we will assume that {7 };_; :
C — C be a finite family of asymptotically nonexpansive mappings with sequences
{Fn}.

In this paper we will show the convergence of the proposed algorithm (2) to a
common fixed point p € N{_, F'(T;) which is the unique solution of some variational
inequality. Our results can be considered as an refinement and improvement of many
known results.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual of E.
Denote by (-, -) the duality product. The normalized duality mapping J from E to
E* is defined by

J(x) = {z" € B* : (a,27) = |lz]|* = |2"|*},

for z € E.
A Banach space E is said to be strictly convex if [|23¥|| < 1 forall z,y € E
with ||z|| = |ly]| = 1 and = # y. It is also said to be uniformly convex if

lim,, o0 ||Zn — yn || = 0 for any two sequences {x,}, {y,} in E such that ||z,| =
[yl = 1 and lim, oo || 22422 || = 1. Let S = {z € E : ||z| = 1} denote the unit
sphere of the Banach space E. The space F is said to have a Gateaux differentiable
norm if the limit

- P

n—00 t

exists for each z,y € S, and we call £ smooth; and E is said to have a uniformly
Gateaux differentiable norm if for each y € S the limit (3) is attained uniformly for
x € S. Further, E is said to be uniformly smooth if the limit (3) exists uniformly
for (z,y) € S x S. Itis well known that if E is smooth then any duality mapping
on FE is single-valued, and if E has a uniformly Gateaux differentiable norm then
the duality mapping is norm-to-weak* uniformly continuous on bounded sets.

Let C' a nonempty closed convex and bounded subset of the Banach space E
and let the diameter of C' be defined by d(C) = sup{||z —y|| : 2,y € C}. For each
z € C, letr(z,C) =sup{|lz —y|| : y € C} and let #(C) = inf{r(z,C) : z € C}
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denote the Chebyshev radius of C relative to itself. The normal structure coefficient
N(E) of E is defined by

. o) .
N(E) = inf {r(C) : C'is a closed convex and

bounded subset of E with d(C') > 0}.

A space E such that N(E) > 1 is said to have uniform normal structure. It is
known that every space with a uniform normal structure is reflexive, and that all
uniformly convex and uniformly smooth Banach spaces have the uniform normal
structure.

A mapping T : C — C is called uniformly asymptotically regular (in short
u.a.r.) if for each e > 0 there exists nog € N such that

1Tz —T"z|| < e,

for all n > ng and x € C and it is called uniformly asymptotically regular with
sequence {e,} (in short u.a.rs.) if

| T2 — Tz || < e,

for all integers n > 1 and all € C, where ¢, — 0 as n — oc.

Remark 2.1. It is clear that every nonexpansive mapping is u.a.r.s.

We let LIM be a Banach limit. Recall that LIM € (1°°)* such that ||[LIM|| = 1,
liminf, , an, < LIMpa, < limsup,,_,., a,, and LIM,a,, = LIM,a,4; for all
{an}e 1°°. Let {x,} be a bounded sequence of E. Then we can define the real-
valued continuous convex function g on E by g(z) = LIM,||x, — z|* for all
zeC.

We will need the following lemmas for proving our main results.

Lemma 2.1. ([12]) Suppose E is a Banach space with uniformly normal
structure, C'is a nonempty bounded subset of E/, and T': C — C'is a uniformly L-
Lipschitzian mapping with L < N (FE) 7, Suppose also that there exists a nonempty
bounded closed convex subset M of C' with the following property (P):

x € M implies w,(z) C M,
where w,,(x) is the weak w-limit set of T" at z, i.e., the set

{ye E:y=weak —limT" xz forsome n; — oo}.
J

Then T has a fixed point in M.



Strong Convergence of Asymptotically Nonexpansive Mappings 853

Lemma 2.2. ([16]) Let E be an arbitrary real Banach space. Then
Iz +yl1* < lll? + 2(y, (2 + y)),
for all z,y € F and Vj(z +y) € J(z + y).

Lemma 2.3. ([21]) Let {z,} and {y,} be bounded sequences in a Banach
space E and {5, } be a sequence in [0, 1] with

0 < liminf 3, < limsupf3, < 1.
n—00 n—00

Suppose that 2,11 = (1 — Bn)Yn + By, for all n > 0 and lim sup,, o (||yn+1 —
Ynll = |Zns1 — zn|)) < 0. Then lim, oo ||yn — 2n|| = 0.

Lemma 2.4. ([22]) Let {s,} be a sequence of nonnegative numbers satisfying
the condition
Sn+1 S (1 - an)sn + anﬁnv n Z 07

where {«,,}, {8,} are sequences of real numbers such that

(i) {on} < [0,1] and 3277, o = o0,
(ii) limsup,,_,oo Bn < 00r > 0% ) o3y, IS CONvergent.

Then lim,,_.o s, = 0.

3. MAIN RESULTS

In this section, we will prove our main results. For the sake of convenience, we
prove the conclusions only for the case of » = 2 and then the other cases can be
proved by the same way. First we give the following result which will be used to
prove Theorem 3.5.

Theorem 3.1. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E. Let T, T : C' — C be two asymptotically
nonexpansive mappings with sequences {k,} C [1,00) satisfying max{k,,n >
0} < N(E)%. Let f : C — C be a contraction with constant v € [0,1). Let
{t,} C (0,%) be such that lim, . ¢, = 1 and lim, . ﬁ = 0. Let
71 and 7o be two positive numbers such that 71 + 7o = 1. Suppose F(S) =
F(Th) N F(Ty) # 0, where S = Ty + 7T%. Then for each integer n > 0, there
exists a unique z,, € C such that

t

n tn n n
t = (1= g f (@) + (T + T ).
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Further, if T and T satisfy lim,, .« || zn, —Th2, || = 0 and lim,,_o ||z — T2z, || =
0, then the sequence {z,} converges strongly to the unique solution of the varia-
tional inequality:

p € F(Ty) N F(Ty)such that ((I— f)p, j(p—x*)) <0,Vz* € F(T1) N F(T3).
Proof. We note that ¢,, < {= 7)7 which implies ¢,, = (1 — t—")7+t € (0,1)
for each integer n > 0, then the mapping T,, : C — C'is defined for each z € C

by Thz = (1 — ,’;—Z)f(x) + 7 2 (nTi'z + 713 z) is a contraction. Indeed, for all
xz,y € C, we have

tn tn n n
I Tz = Tuyll < (1= ) 1F (@) = F@)]| + Ll Tie + T3e)
—(nTi'y + T3y
tn tn n n
= (1= @) = W)l + N TP - nTiy)
(T3 — nT3y) ||
ln
<(1-=
<( "
<[(1 =) +talllz —yll.

t
Nl =yl + ={riknlle =yl + maknlle = yll}
n

It follows from Banach’s contractive principle that there exists a unique z,, in C
such that T},x,, = x,, that is,

t

4) T = (1= ) flag) + 2

. . (M Ty, + 1215 xy).
n n

From the assumptions, we obtain ||z, — Sz,| — 0 as n — oo. Define a function
g:C — R" by
9(z) = LIMy |z — ZHQ

for all z € C. Since g is continuous and convex, g(z) — oo as ||z|| — oo and E
is reflexive, g attains it infimum over C. Let M = {z € C : g(z) = inf,cc g(2)}.
It is easy to see that M is nonempty, closed and bounded. From [12, Theorem
2, p.1348] we know that though M is not necessarily invariant under S, it does
have the property (P). Therefore by Lemma 2.1, we obtain S has a fixed point in
M. Letp e MNF(Ty) N F(T) and let ¢t € (0,1). For any =z € C, we have
g(p) < g((1 —t)p + tz). Then, by Lemma 2.2, we have

g((L=t)p+tx) —g(p)

0<
- t

S _QLIMn<x - pv.j(xn 2 t(x - p))>
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This implies that
) LIMy(z —p, j(zn —p—t(z = p))) < 0.

Since j is norm-to-weak* uniformly continuous on any bounded set, from (5), we
have

In particular,
LIMy(f(p) = p, j(@n —p)) < 0.

On the other hand, from (4), we have

t

Ty — (M Ty, + 1oT5,) = (1 — k—n)(f(xn) — (mTT'xy, + 1215 2y)),
n
which implies that
n n 1 - /tﬁ_:lz kn —tn
(6) Tn — (TlTl Tn + 7_2T2 xn) = tn (f(xn) - xn) = t (f(xn) - xn)
E n
Note that
(xn — (MT'2n + 2T92y), j(2n — D))
= (xn —p, j(xn —p)) + (M TTp + 12T5'p
(7) _(TlT{an + 7_2T£an)v ](xn - p)>

= |20 = plI? + 7 (T]'p = T{'wn, j (20 — D))
+72(T5'p — T3 wn, j(%n — p))
> —(kn — 1)l2n — pl*.
It follows from (6) and (7) that

tn(kn — 1)

m\vn ) _ 2
e

(T = flan), j(zn —p)) <
which implies that
lim sup(z, — f(2n), j(zn —p)) < 0.

Observe that

(1 =)z _pH2 < A(xy — f(xn),j(zn —p)) + {(f(p) — p,j(zn — p))-
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Thus we have
LIM, |z, — p| = 0.

Consequently, by the same argument as that in the proof of [22, Theorem 3.1],
Theorem 3.1 is easily proved. ]

Proposition 3.2. Suppose E is a real Banach space. Let C be a nonempty
closed convex and bounded subset of E. Let T'1, 75 : C — C be two asymptotically
nonexpansive mappings with sequences {k,} C [1,00) satisfying max{k,,n >
0} < N(E)%. Let f : C — C be a contraction with constant v € [0,1). Let
{t,}  (0,1) be such that lim,, .o, t, = 1 and lim,, ﬁ =0. Leta, 8, 1
and 7o be four positive numbers such that o + 3 = 1 and 71 + 7o = 1. Suppose
F(S) = F(Th) N F(Ty) # 0, where S = 7T} + 72T5. For an arbitrary zg € C,
let the sequence {z,} be iteratively defined by

t ot t
i1 = (1— ) f(zn) + —2n + —ﬁ (T 2 + 12T 2y).
kn, kn, kn,

If 71 and Ty are u.a.rs, then lim,, . ||zn+1 — 2n|| = 0.
Proof. Set a,, = ﬁ then a,, — 1 as n — oo. Define
Znt1 = @ zn + (1 — aom)yn.

Observe that

Ant2 — Qlnt12p41  Zntl — QQnZn

Yn+1—Yn =

1 — aont1 1— aa,
_ (L= ane) f(znrd) + B (NI 2pr + 1T3 2001
1- OCn+1
(= an)f(zn) + Bon (T 20 + 1215 2n)
1— aa,
= O () — f)] + (L L0
1 — aapt et " 1—aopnt1 11— ooy, "
ﬁan—l—l'rl (Tn+12n 1_Tn—|—1 )+ ﬁan-l—l’rl (Tn+1 _T{LG)
1—aap1 1—aap11
(foman BTy, g DO gt
—aony1 l—oao, 1—aapy
R R -

1 — aopnt1 1 —aopnt1 11— ooy,
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It follows that

[9n+1 = ynll = 2041 — 2l
1 —apt1 — Ont1 1—ay
< _
< T s = 2+ 1 — ()]
e LR R e s
1- Qlln41 n+
Bop1T1 BanT Bon 172
+ ] - \HT1 znl| + 7’” HT”“an — T3z
1- Qlnt1 1 - n+1
Bon172 ﬁOé 172 BanTs
o, — T g+ | " |17z |
— Q41 1 —aopqq 11— oy,
— |2nt+1 — 2l
1 —apq1 -« Bom i1 Ba
< |t S ()| + ot — T T 2
(8) Qlp 41 — Qlnt1 (e7e7%
Bom i1 ﬁ Bop 171
+1q e ‘HT2T2ZRH+7R+ |T7+ 2 — T 20|
—aopy1 1 — QO

+ %HT”H — T3z + %anHan — Zn||
%kn—l—l”zm—l zn!!—i—%g;»yuznﬂ—zn]]—Hzn+1—an
Tt e LU R LE A B )
SO s, — T+ 2T 1, - 1 )
#(fretbet | Co ey

We note that
kn+1_7_(ﬁkn+l+a_ ) ( )n+1_a
>1-pF—-—a=0.
It follows that

(A= knr o (A =Vknp

tht1 < < )
" kni1 — Bkpi1+a—7

which implies that

Eniitni1 S+ thpra — thp1y < (1 —7)knpa
= Pkpp10n41 F g — a1y <1 -7y
(9) = fkptiani + (1 —app)y <1 —oapnia

Bknt1ani1 + (1 — apy1)y
1 —oanpic

<1
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By the conditions, we note that

1—Oén+1 1—0¢n

lim { —
n—oo 1 —aont; 1 —aoy,

}=0.
From (8) and (9), we obtain
lim sup([|yn+1 = Ynll = Iznt1 — 2nll) < 0.
n—oo

Hence, by Lemma 2.3 we know

lim ||y, — 2| = 0,
n—oo
consequently
lim ||zp41 — 2a| = 0. |
n—oo

Corollary 3.3. Suppose F is a real Banach space. Let C' be a nonempty
closed convex subset of E. Let 71,75 : C — C be two nonexpansive mappings.
Suppose F(Ty) (F(T3) # 0. Let o, 8, 1 and 7 be four positive numbers such
that o + 0 =1 and 71 + o = 1. Let {a,,} be a sequence in [0, 1] which satisfies
lim,, .~ o, = 1. For an arbitrary zy € C, let the sequence {z,}, be iteratively
defined by

Znt1 = (1 — an) f(2n) + aanzn + Bagn (11 Tz, + 72T0zy).
Then limy, o0 ||2n+1 — 20| = 0.

Proof. First we can prove that {z,} is bounded. To end this, by taking a fixed
element p € F(Ty) N F(T,), we have

[2n+1 = pll < (1 — )|l f(2n) — pll + @an |z, — pl|
+ B (a2 — pl + | Ty — o)
< (1= @) [£(z0) — SO + (@~ )| £2) — pll + a2~
+ Bon(malzn — pll + 72l — o)
< (1= awhrllzn —pll + (1= an) 1) ~ 2l + €z~ ]
= (1= (=)(1 = anHlan =5l + (1= )1 - ey L2220

< max{|lzn - ]l %Hf(p) Y

By induction, we get
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1
|20 — pl| < max{||zo — pl|, :Hf(p) - pll},

for all n» > 0. This shows that {z,} is bounded. From Remark 2.1, we know that
T1 and Ty are u.a.rs. It follows from Proposition 3.2 that we can conclude the
desired result. n

Remark 3.4. We would like to point out that the conclusion lim,, o || 241 —
zn|| = 0 is very crucial for proving the strong convergence of {z,} in many litera-
tures; please refer to [7, 22].

Theorem 3.5. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E. Let T, T : C' — C be two asymptotically
nonexpansive mappings with sequences {k,} C [1,00) satisfying max{k,,n >
0} < N(E)%. Let f : C — C be a contraction with constanty € [0, 1). Let {¢,,} C
(0, 0,) be such that limy, oo ty, = 1,502 £, (1 — t,) = oo and lim,, ,f:%ti =
0, where o,, = min{%, in}. Let o, 3, 71 and 7 be four positive numbers
such that «+ 3 =1 and 71 + 75 = 1. Suppose F(S) = F(T1) ( F(Ts) # 0, where
S = nTy + T, For an arbitrary zo € C, let the sequence {z,} be iteratively
defined by

tn
kn

t t
)f(zn) + o ﬁ—n(ﬂszn + 71975 2).

n =(1-
Zn1 = ( ko ko

Then for each integer n > 0, there exists a unique x,, € C such that

t t
wp = (1= ) f(@n) + —(nTTay + 215 wn).
kn, kn,
Further, if T, and T satisfy lim,, o ||2n—Tizy|| = 0 and lim,, .« ||2n—Ti2n|| = 0
for i = 1,2, then the sequence {z,,} converges strongly to the unique solution of
the variational inequality:

p € F(Ty) N F(Ty) such that (I — f)p,j(p—=x*)) <0, Vz* € F(T1) N F(T3).

Proof. From Theorem 3.1, we have that there exists a unique z,, € C such

that
t t
Ty = (1= 75) fzm) + kﬂ(ﬁT{”xm + T3 wy,).

km m

Set oy, = ,% for all m > 0, then we get

(10) T — 2 = (1 — an) (f () — 20) + @ (T Ty + 7215 Ty — 2.
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Applying Lemma 2.2 to (10), we have an estimation as follows
[@m — an2
< O‘%nHTlTlmxm + 115 T — an2 +2(1 — am){(f(@m) — 2n, j (T — 2n))
< 2 (|IMT w4+ 113wy — 1T 20 — RT3 20 || + |11 T 20 + T2 T3 2,
- an)2 +2(1 — o) [(f (@) — T, J (@ — 20)) + [|Tm — ZnHZ]
< 2 {(T1km + k)| Tm — 2ol + |11 T 20 + 7o T3 2 — 2|}
+2(1 — an) ({(f(zm) — Tm, j(2m — 20)) + k%onm - an2)
< O‘%n{kanxm - an2 + 2kml|@m — 2|1 TT" 20 + 215" 20 — 2|
+ T 2n + 215" 20 — an2} +2(1 — an) ({f(zm) — Tm, j(2m — 2n))
+ k%onm - an2)
=(1-(01- am))2kanxm - an2 + (|11 T 20 + T2T5" 20 — 24|
X (2kpllzm — znll + (|1 T 20 + 7215 20 — 20 )
+2(1 — an) ({(f(zm) — Tm, j(2m — 20)) + k%onm - an2)
< (14 (1= am)kmllzm = 2al* + (T TT" 20 = 20ll + 72l|T5 20 — 2al)
X (2kpllzm = znll + (|1 T 20 + 7215 20 — 20 )
+2(1 — an)(f(@m) = Tm, J(@m — 2n)).
It follows that
[k — 1+ k7 (1 — am)?]

lm sup(f(zm) — Tm,j(2n — Tm)) < 1 M
n— oo — O
+ timsup MU0 = 2l + 7ol T2 = 2a])
N—s00 1—a,

where M is a constant such that

- an2 2kml|zm — 2|l + 1T 20 + 725" 2 — an}
2 ’ 2 ’
VYm > 0,Yn > 0. So that

M > max{ 2

11)  limsup(f(zm) — Tm, 7 (2n — Tm)) < k2, = 1+ k2,(1 — aun)?]

n—oo 1-— A,

By Theorem 3.1, z,,, — p € F(T1) N F(T%), which solves the variational inequality
p € F(T1) N F(Ty) such that ((I — f)p,j(p—z™)) <0, Va* € F(T1) N F(Tv).

M.

Since j is norm to weak* continuous on any bounded set, letting m — oo in (11),
we obtain that

limsup(f(p) — p, j(2n — p)) <O0.

n—oo
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From Lemma 2.2, we have

|zn41 = plI?
= [|[(1 — an)(f(2n) — ) + @ (2, — p) + Bon (T T 20 + 7215 21 — p)H2
< ||Bon (T 20 + T2T5 2, — p) 4+ (2, — D)||?
+2(1 = an){f(2n) — P, j (201 — P))
< BRIl 2 4+ ToT8 20 — plI? + 20802 | 1T 20 + 7215 2 — ||| 20 — |
+ o allzn — pH2 +2(1 = an){(f(2n) — f(P); j(2nt+1 —p))
+2(1 = an){f(p) — p, i (2041 — p))
< B2l | TT 20 — pll + 72| T3 20 — pll}* + 20805 71| T 20 — pl|
+ 72| T3 20 = pl]llzn — pll + @Pa |20 = plI” +2(1 = an) | £ () = F ()]
X |[zn+1 = pll +2(1 — o) (f(p) — s 5 (2n+1 — P))
< (8%k;, + 2Baky + a®)a |20 — plI* +2(1 = an)yllz0 — Pl 2041 — ]
+2(1 = an){f(p) — p, i (2041 — p))
< ankillzn = pI? + (1= an)(llza = pII* + 2041 — %)
+2(1 = an){f(p) = p, i (2041 — p))-

Therefore
R e
+ T (1) = i~ D)
120 —on)y 12 :
:{1_ 1_(1 ) }H Zn p”
+ %mm b (e =)
= (1 - )‘n)Hzn - p”2 + )\n(sn
where \, = % and
= o “’;) ) = o = 9)
21— fa) |
10 Z—) _t%<f(p) =P, j (21— D))

_ 2
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It is easily observed that >, A\, = oo and limsup,,_,,, 6, < 0. Hence the
conditions in Lemma 2.4 are satisfied and so we can conclude our conclusion. =

By the same argument as that in the proof of Theorem 3.5, we can extend
Theorem 3.5 to a finite family of asymptotically nonexpansive mappings. Since the
proof is similar to that of the above result, therefore, is omitted.

Theorem 3.6. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E. Let T,15---,T, : C — C be a finite
family of asymptotically nonexpansive mappings with sequences {k,} C [1,00)
satisfying max{k,,n > 0} < N(E)%. Let f : C — C be a contraction with
constant v € [0,1). Let {¢,} C (0, 0,,) be such that lim,, ooty = 1,> 07 1 (1 —

fazl = 0, where o, = min{(lk;%, =} Leta, 5 and

t,) = oo and lim, =
{r:i}7_, be positive numbers such that « + 5 = 1 and >, ; 7, = 1. Suppose
F(S) = N_F(T;) # 0, where S = >""_, 7;7;. For an arbitrary z, € C, let the

sequence {z,} be iteratively defined by

aty,

tn b
fut = (1= ) f(en) + S0z, 4 DS gy,
" " i=1

kn,
Then for each integer n > 0, there exists a unique x,, € C such that

tn

g

Further, if {7}};_, satisfy lim,_. ||zy, — Tixy| = 0 and lim,, .o ||z, — Ti2n| = 0
forall i = 1,2,---,r, then the sequence {z,} converges strongly to the unique
solution of the variational inequality:

p € M, F(Ty) such that (I — f)p. j(p— ")) <0, Va* € N, F(T}).

Remark 3.7. Since every nonexpansive mapping is asymptotically nonexpan-
sive, our theorem 3.6 holds for the case when {7;};_, are nonexpansive. In this
case, from corollary 3.3, the boundedness requirement on C' can be removed from
the above result, you may consult [22]. On the other hand, by the same argument as
that in the proof of Theorem 3.5 and [7, Theorem 5], we can obtain the following
corollary which can be viewed as an improvement of [7, Theorem 5].

Corollary 3.8. Suppose E is a real uniformly convex Banach space which
has a uniformly Gateaux differentiable norm. Let C' be a nonempty closed convex
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subset of E. Let Ty,T5,---,T, : C — C be a finite family of nonexpansive
mappings. Let f : C — C be a contraction with constant v € [0,1). Suppose
N_, F(T;) # 0. Let {r;}/_, be positive numbers such that 7 , 7 = 1. Let «
and /3 be two positive numbers satisfying o + 5 = 1. Let {a,,} be a sequence in
[0, 1] which satisfies lim,, .o a, = 1 @and >~ | (1 — a,) = oo. For an arbitrary
2o € C, let the sequence {z,} be iteratively defined by

,
Znt1 = (1 — ap) f(zn) + aanzy, + Bay, ZTZTZzn
i=1

Then the sequence {z,,} converges strongly to the unique solution of the variational
inequality:

p € Ni_F(T;) such that ((I — f)p,j(p—x")) <0, Va* € Ni_, F(T).
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