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STRONG CONVERGENCE TO COMMON FIXED POINTS OF A
FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE MAP

Yonghong Yao and Yeong-Cheng Liou

Abstract. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a
nonempty closed convex and bounded subset of E. Let T1, T2, · · ·Tr : C → C
be a finite family of asymptotically nonexpansive mappings. In this paper, we
suggest and analyze an iterative algorithm for a finite family of asymptotically
nonexpansive mappings {Ti}r

i=1. We show the convergence of the proposed
algorithm to a common fixed point p ∈ ∩r

i=1F (Ti) which is the unique solution
of some variational inequality. Our results can be considered as an refinement
and improvement of many known results.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space E . Recall that
a mapping f : C → C is called a contraction if there exists a constant γ ∈ [0, 1)
such that ‖f(x) − f(y)‖ ≤ γ‖x − y‖, ∀x, y ∈ C and a mapping T : C → C
is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote
by F (T ) the set of fixed points of T . Let T1, T2, · · · , Tr be a finite family of
nonexpansive mappings satisfying that the set F = ∩r

i=1F (Ti) of common fixed
points of T1, T2, · · · , Tr is nonempty. The problem of finding a common fixed
point of a finite family of nonexpasnive mappings has been investigated by many
researchers; see, for example, Atsushiba and Takahashi [1], Bauschke [2], Lions
[3], Shimizu and Takahashi [4], Takahashi, Tamura and Toyoda [5], Zeng, Cubiotti
and Yao [6]. Especially, in 2005, Kimura, Takahashi and Toyoda [7] deal with an
iteration scheme for a finite family of nonexpansive mappings which is more general
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than that of Wittmann’s result [8]. They proved the following strong convergence
theorem.

Theorem KTT. (see [7, Theorem 4]) Let E be a uniformly convex Banach
space whose norm is uniformly Gateaux differentiable and let C be a closed convex
subset of E . Let T1, T2, · · · , Tr be nonexpansive mappings of C into itself such that
the set F = ∩r

i=1F (Ti) of common fixed points of T1, T2,· · ·, Tr is nonempty. Let
{αn} and{βn}betwosequences in [0, 1]whichsatisfy the followingcontrolconditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| < ∞;
(ii) limn→∞ βi

n = βi and
∑r

i=1 βi
n = 1, n ∈ N for some β i ∈ (0, 1), i ∈

{1, , · · · , r};
(iii)

∑∞
n=1

∑r
i=1 |βi

n+1 − βi
n| < ∞.

Let x ∈ C and define a sequence {xn} by x1 ∈ C and

(1) xn+1 = αnx + (1 − αn)
r∑

i=1

βi
nTixn, n ∈ N.

Then {xn} converges strongly to a common fixed point p ∈ ∩ r
i=1F (Ti).

Recall also that a mapping T : C → C is called asymptotically nonexpansive
if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that ‖T nx −
T ny‖ ≤ kn‖x − y‖ for all integers n ≥ 0 and all x, y ∈ C. The mapping T :
C → C is called uniformly L-Lipschitzian (L > 0) if ‖T nx − T ny‖ ≤ L‖x − y‖,
∀x, y ∈ C and for all n ≥ 0. It is clear that every nonexpansive mapping is
asymptotically nonexpansive. The converse does not hold. The asymptotically
nonexpansive mapping as an important generalization of nonexpansive mapping has
been studied by many authors; you may see [9-20, 23-30].

Inspired and motivated by the result of Kimura, Takahashi and Toyoda [7],
in this paper, we suggest and analyze an iterative algorithm for a finite family of
asymptotically nonexpansive mappings {Ti}r

i=1 as follows:
Let C be a nonempty closed convex subset of a real Banach space E , {Ti}r

i=1 :
C → C be a finite family of asymptotically nonexpansive mappings with sequences
{k(i)

n }r
i=1. Let {tn} ⊂ (0, 1), α and β be two positive numbers such that α+β = 1

and f be a contraction on C, a sequence {zn} iteratively defined by z0 ∈ C and

(2) zn+1 = (1 − tn
kn

)f(zn) +
αtn
kn

zn +
βtn
kn

r∑
i=1

τiT
n
i zn,

where {τi}r
i=1 are positive numbers in (0, 1) satisfying

∑r
i=1 τi = 1 and kn =

max{k(i)
n , i = 1, 2, · · · , r}.
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Remark 1.1. From [24, Proposition 1], if {Ti}r
i=1 : C → C be a finite family

of asymptotically nonexpansive mappings with sequences {k(i)
n }r

i=1, then we can
obtain {kn} such that

‖T n
i x − T n

i y‖ ≤ kn‖x − y‖, ∀n ≥ 1, x, y ∈ C, i = 1, 2, · · · , r,

where kn = max{k(i)
n , i = 1, 2, · · · , r}. In the sequel, we will assume that {Ti}r

i=1 :
C → C be a finite family of asymptotically nonexpansive mappings with sequences
{kn}.

In this paper we will show the convergence of the proposed algorithm (2) to a
common fixed point p ∈ ∩r

i=1F (Ti) which is the unique solution of some variational
inequality. Our results can be considered as an refinement and improvement of many
known results.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E .
Denote by 〈·, ·〉 the duality product. The normalized duality mapping J from E to
E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},

for x ∈ E .
A Banach space E is said to be strictly convex if ‖x+y

2 ‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x �= y. It is also said to be uniformly convex if
limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn}, {yn} in E such that ‖xn‖ =
‖yn‖ = 1 and limn→∞ ‖xn+yn

2 ‖ = 1. Let S = {x ∈ E : ‖x‖ = 1} denote the unit
sphere of the Banach space E . The space E is said to have a Gateaux differentiable
norm if the limit

(3) lim
n→∞

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S, and we call E smooth; and E is said to have a uniformly
Gateaux differentiable norm if for each y ∈ S the limit (3) is attained uniformly for
x ∈ S. Further, E is said to be uniformly smooth if the limit (3) exists uniformly
for (x, y) ∈ S × S. It is well known that if E is smooth then any duality mapping
on E is single-valued, and if E has a uniformly Gateaux differentiable norm then
the duality mapping is norm-to-weak∗ uniformly continuous on bounded sets.

Let C a nonempty closed convex and bounded subset of the Banach space E
and let the diameter of C be defined by d(C) = sup{‖x−y‖ : x, y ∈ C}. For each
x ∈ C, let r(x, C) = sup{‖x − y‖ : y ∈ C} and let r(C) = inf{r(x, C) : x ∈ C}
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denote the Chebyshev radius of C relative to itself. The normal structure coefficient
N (E) of E is defined by

N (E) = inf
{

d(C)
r(C)

: C is a closed convex and

bounded subset of E with d(C) > 0} .

A space E such that N (E) > 1 is said to have uniform normal structure. It is
known that every space with a uniform normal structure is reflexive, and that all
uniformly convex and uniformly smooth Banach spaces have the uniform normal
structure.

A mapping T : C → C is called uniformly asymptotically regular (in short
u.a.r.) if for each ε > 0 there exists n0 ∈ N such that

‖T n+1x − T nx‖ ≤ ε,

for all n ≥ n0 and x ∈ C and it is called uniformly asymptotically regular with
sequence {εn} (in short u.a.r.s.) if

‖T n+1x − T nx‖ ≤ εn,

for all integers n ≥ 1 and all x ∈ C, where εn → 0 as n → ∞.

Remark 2.1. It is clear that every nonexpansive mapping is u.a.r.s.

We let LIM be a Banach limit. Recall that LIM ∈ (l∞)∗ such that ‖LIM‖ = 1,
lim infn→∞ an ≤ LIMnan ≤ lim supn→∞ an, and LIMnan = LIMnan+1 for all
{an}∈ l∞. Let {xn} be a bounded sequence of E . Then we can define the real-
valued continuous convex function g on E by g(z) = LIMn‖xn − z‖2 for all
z ∈ C.

We will need the following lemmas for proving our main results.

Lemma 2.1. ([12]) Suppose E is a Banach space with uniformly normal
structure, C is a nonempty bounded subset of E , and T : C → C is a uniformly L-
Lipschitzian mapping with L < N (E)

1
2 . Suppose also that there exists a nonempty

bounded closed convex subset M of C with the following property (P):

x ∈ M implies ωω(x) ⊂ M,

where ωω(x) is the weak ω-limit set of T at x, i.e., the set

{y ∈ E : y = weak − lim
j

T njx forsome nj → ∞}.

Then T has a fixed point in M .
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Lemma 2.2. ([16]) Let E be an arbitrary real Banach space. Then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,
for all x, y ∈ E and ∀j(x + y) ∈ J(x + y).

Lemma 2.3. ([21]) Let {xn} and {yn} be bounded sequences in a Banach
space E and {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4. ([22]) Let {sn} be a sequence of nonnegative numbers satisfying
the condition

sn+1 ≤ (1− αn)sn + αnβn, n ≥ 0,

where {αn}, {βn} are sequences of real numbers such that

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞,
(ii) lim supn→∞ βn ≤ 0 or

∑∞
n=0 αnβn is convergent.

Then limn→∞ sn = 0.

3. MAIN RESULTS

In this section, we will prove our main results. For the sake of convenience, we
prove the conclusions only for the case of r = 2 and then the other cases can be
proved by the same way. First we give the following result which will be used to
prove Theorem 3.5.

Theorem 3.1. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E . Let T1, T2 : C → C be two asymptotically
nonexpansive mappings with sequences {kn} ⊂ [1,∞) satisfying max{kn, n ≥
0} < N (E)

1
2 . Let f : C → C be a contraction with constant γ ∈ [0, 1). Let

{tn} ⊂ (0,
(1−γ)kn

kn−γ ) be such that limn→∞ tn = 1 and limn→∞ kn−1
kn−tn

= 0. Let
τ1 and τ2 be two positive numbers such that τ 1 + τ2 = 1. Suppose F (S) =
F (T1)

⋂
F (T2) �= ∅, where S = τ1T1 + τ2T2. Then for each integer n ≥ 0, there

exists a unique xn ∈ C such that

xn = (1 − tn
kn

)f(xn) +
tn
kn

(τ1T
n
1 xn + τ2T

n
2 xn).
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Further, if T1 and T2 satisfy limn→∞ ‖xn−T1xn‖ = 0 and limn→∞ ‖xn−T2xn‖ =
0, then the sequence {xn} converges strongly to the unique solution of the varia-
tional inequality:

p ∈ F (T1) ∩ F (T2) such that 〈(I−f)p, j(p−x∗)〉≤0, ∀x∗∈F (T1) ∩ F (T2).

Proof. We note that tn < (1−γ)kn

kn−γ which implies δn = (1− tn
kn

)γ + tn ∈ (0, 1)
for each integer n ≥ 0, then the mapping Tn : C → C is defined for each x ∈ C
by Tnx = (1 − tn

kn
)f(x) + tn

kn
(τ1T

n
1 x + τ2T

n
2 x) is a contraction. Indeed, for all

x, y ∈ C, we have

‖Tnx − Tny‖ ≤ (1− tn
kn

)‖f(x)− f(y)‖ +
tn
kn

‖(τ1T
n
1 x + τ2T

n
2 x)

−(τ1T
n
1 y + τ2T

n
2 y)‖

= (1− tn
kn

)‖f(x)− f(y)‖ +
tn
kn

‖(τ1T
n
1 x − τ1T

n
1 y)

+(τ2T
n
2 x − τ2T

n
2 y)‖

≤ (1− tn
kn

)γ‖x− y‖ +
tn
kn

{τ1kn‖x − y‖ + τ2kn‖x − y‖}

≤ [(1− tn
kn

)γ + tn]‖x − y‖.

It follows from Banach’s contractive principle that there exists a unique xn in C
such that Tnxn = xn, that is,

(4) xn = (1− tn
kn

)f(xn) +
tn
kn

(τ1T
n
1 xn + τ2T

n
2 xn).

From the assumptions, we obtain ‖xn − Sxn‖ → 0 as n → ∞. Define a function
g : C → R+ by

g(z) = LIMn‖xn − z‖2

for all z ∈ C. Since g is continuous and convex, g(z) → ∞ as ‖z‖ → ∞ and E
is reflexive, g attains it infimum over C. Let M = {x ∈ C : g(x) = infz∈C g(z)}.
It is easy to see that M is nonempty, closed and bounded. From [12, Theorem
2, p.1348] we know that though M is not necessarily invariant under S, it does
have the property (P). Therefore by Lemma 2.1, we obtain S has a fixed point in
M . Let p ∈ M ∩ F (T1) ∩ F (T2) and let t ∈ (0, 1). For any x ∈ C, we have
g(p) ≤ g((1− t)p + tx). Then, by Lemma 2.2, we have

0 ≤ g((1− t)p + tx) − g(p)
t

≤ −2LIMn〈x− p, j(xn − p − t(x − p))〉.
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This implies that

(5) LIMn〈x − p, j(xn − p − t(x − p))〉 ≤ 0.

Since j is norm-to-weak∗ uniformly continuous on any bounded set, from (5), we
have

LIMn〈x − p, j(xn − p)〉 ≤ 0, ∀x ∈ C.

In particular,
LIMn〈f(p)− p, j(xn − p)〉 ≤ 0.

On the other hand, from (4), we have

xn − (τ1T
n
1 xn + τ2T

n
2 xn) = (1− tn

kn
)(f(xn) − (τ1T

n
1 xn + τ2T

n
2 xn)),

which implies that

(6) xn − (τ1T
n
1 xn + τ2T

n
2 xn) =

1 − tn
kn

tn
kn

(f(xn) − xn) =
kn − tn

tn
(f(xn) − xn).

Note that

(7)

〈xn − (τ1T
n
1 xn + τ2T

n
2 xn), j(xn − p)〉

= 〈xn − p, j(xn − p)〉+ 〈(τ1T
n
1 p + τ2T

n
2 p

−(τ1T
n
1 xn + τ2T

n
2 xn), j(xn − p)〉

= ‖xn − p‖2 + τ1〈T n
1 p − T n

1 xn, j(xn − p)〉
+τ2〈T n

2 p − T n
2 xn, j(xn − p)〉

≥ −(kn − 1)‖xn − p‖2.

It follows from (6) and (7) that

〈xn − f(xn), j(xn − p)〉 ≤ tn(kn − 1)
kn − tn

‖xn − p‖2,

which implies that

lim sup
n→∞

〈xn − f(xn), j(xn − p)〉 ≤ 0.

Observe that

(1− γ)‖xn − p‖2 ≤ 〈xn − f(xn), j(xn − p)〉+ 〈f(p)− p, j(xn − p)〉.
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Thus we have
LIMn‖xn − p‖ = 0.

Consequently, by the same argument as that in the proof of [22, Theorem 3.1],
Theorem 3.1 is easily proved.

Proposition 3.2. Suppose E is a real Banach space. Let C be a nonempty
closed convex and bounded subset of E . Let T1, T2 : C → C be two asymptotically
nonexpansive mappings with sequences {kn} ⊂ [1,∞) satisfying max{kn, n ≥
0} < N (E)

1
2 . Let f : C → C be a contraction with constant γ ∈ [0, 1). Let

{tn} ⊂ (0, 1) be such that limn→∞ tn = 1 and limn→∞ kn−1
kn−tn

= 0. Let α, β, τ1

and τ2 be four positive numbers such that α + β = 1 and τ 1 + τ2 = 1. Suppose
F (S) = F (T1)

⋂
F (T2) �= ∅, where S = τ1T1 + τ2T2. For an arbitrary z0 ∈ C,

let the sequence {zn} be iteratively defined by

zn+1 = (1 − tn
kn

)f(zn) +
αtn
kn

zn +
βtn
kn

(τ1T
n
1 zn + τ2T

n
2 zn).

If T1 and T2 are u.a.r.s, then limn→∞ ‖zn+1 − zn‖ = 0.

Proof. Set αn = tn
kn

, then αn → 1 as n → ∞. Define

zn+1 = ααnzn + (1 − ααn)yn.

Observe that

yn+1−yn =
zn+2 − ααn+1zn+1

1 − ααn+1
− zn+1 − ααnzn

1 − ααn

=
(1 − αn+1)f(zn+1) + βαn+1(τ1T

n+1
1 zn+1 + τ2T

n+1
2 zn+1)

1 − ααn+1

− (1 − αn)f(zn) + βαn(τ1T
n
1 zn + τ2T

n
2 zn)

1 − ααn

=
1− αn+1

1 − ααn+1
[f(zn+1) − f(zn)] + (

1 − αn+1

1− ααn+1
− 1 − αn

1 − ααn
)f(zn)

+
βαn+1τ1

1−ααn+1
(T n+1

1 zn+1−T n+1
1 zn)+

βαn+1τ1

1−ααn+1
(T n+1

1 zn−T n
1 zn)

+ (
βαn+1τ1

1−ααn+1
− βαnτ1

1−ααn
)T n

1 zn +
βαn+1τ2

1−ααn+1
(T n+1

2 zn+1−T n+1
2 zn)

+
βαn+1τ2

1 − ααn+1
(T n+1

2 zn − T n
2 zn) + (

βαn+1τ2

1 − ααn+1
− βαnτ2

1 − ααn
)T n

2 zn.
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It follows that

(8)

‖yn+1 − yn‖ − ‖zn+1 − zn‖
≤ 1 − αn+1

1 − ααn+1
γ‖zn+1 − zn‖ + | 1− αn+1

1 − ααn+1
− 1 − αn

1 − ααn
|‖f(zn)‖

+
βαn+1τ1

1 − ααn+1
‖T n+1

1 zn+1 − T n+1
1 zn‖ +

βαn+1τ1

1− ααn+1
‖T n+1

1 zn − T n
1 zn‖

+ | βαn+1τ1

1− ααn+1
− βαnτ1

1 − ααn
|‖T n

1 zn‖ +
βαn+1τ2

1 − ααn+1
‖T n+1

2 zn+1 − T n+1
2 zn‖

+
βαn+1τ2

1 − ααn+1
‖T n+1

2 zn − T n
2 zn‖ + | βαn+1τ2

1− ααn+1
− βαnτ2

1 − ααn
|‖T n

2 zn‖
− ‖zn+1 − zn‖

≤ | 1− αn+1

1 − ααn+1
− 1 − αn

1− ααn
|‖f(zn)‖+ | βαn+1

1 − ααn+1
− βαn

1 − ααn
|‖τ1T

n
1 zn‖

+ | βαn+1

1− ααn+1
− βαn

1 − ααn
|‖τ2T

n
2 zn‖ +

βαn+1τ1

1 − ααn+1
‖T n+1

1 zn − T n
1 zn‖

+
βαn+1τ2

1 − ααn+1
‖T n+1

2 zn − T n
2 zn‖ +

βαn+1τ1

1 − ααn+1
kn+1‖zn+1 − zn‖

+
βαn+1τ2

1−ααn+1
kn+1‖zn+1 − zn‖+

1−αn+1

1−ααn+1
γ‖zn+1−zn‖−‖zn+1−zn‖

≤ | 1− αn+1

1 − ααn+1
− 1 − αn

1− ααn
|{‖f(zn)‖ + ‖τ1T

n
1 zn‖+ ‖τ2T

n
2 zn‖}

+
βαn+1τ1

1 − ααn+1
‖T n+1

1 zn − T n
1 zn‖ +

βαn+1τ2

1 − ααn+1
‖T n+1

2 zn − T n
2 zn‖

+ {βαn+1kn+1

1 − ααn+1
+

(1− αn+1)γ
1 − ααn+1

− 1}‖zn+1 − zn‖.

We note that
kn+1 − γ − (βkn+1 + α − γ) = (1− β)kn+1 − α

≥ 1− β − α = 0.

It follows that
tn+1 ≤ (1− γ)kn+1

kn+1 − γ
≤ (1− γ)kn+1

βkn+1 + α − γ
,

which implies that

(9)

kn+1tn+1β + tn+1α − tn+1γ ≤ (1− γ)kn+1

⇒ βkn+1αn+1 + αn+1α − αn+1γ ≤ 1 − γ

⇒ βkn+1αn+1 + (1 − αn+1)γ ≤ 1 − αn+1α

⇒ βkn+1αn+1 + (1 − αn+1)γ
1 − αn+1α

≤ 1.
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By the conditions, we note that

lim
n→∞{ 1 − αn+1

1− ααn+1
− 1 − αn

1 − ααn
} = 0.

From (8) and (9), we obtain

lim sup
n→∞

(‖yn+1 − yn‖ − ‖zn+1 − zn‖) ≤ 0.

Hence, by Lemma 2.3 we know

lim
n→∞ ‖yn − zn‖ = 0,

consequently

lim
n→∞ ‖zn+1 − zn‖ = 0.

Corollary 3.3. Suppose E is a real Banach space. Let C be a nonempty
closed convex subset of E . Let T1, T2 : C → C be two nonexpansive mappings.
Suppose F (T1)

⋂
F (T2) �= ∅. Let α, β, τ1 and τ2 be four positive numbers such

that α + β = 1 and τ1 + τ2 = 1. Let {αn} be a sequence in [0, 1] which satisfies
limn→∞ αn = 1. For an arbitrary z0 ∈ C, let the sequence {zn}n be iteratively
defined by

zn+1 = (1− αn)f(zn) + ααnzn + βαn(τ1T1zn + τ2T2zn).

Then limn→∞ ‖zn+1 − zn‖ = 0.

Proof. First we can prove that {zn} is bounded. To end this, by taking a fixed
element p ∈ F (T1) ∩ F (T2), we have

‖zn+1 − p‖ ≤ (1 − αn)‖f(zn) − p‖ + ααn‖zn − p‖
+ βαn(τ1‖T1zn − p‖ + τ2‖T2zn − p‖)

≤ (1 − αn)‖f(zn) − f(p)‖+ (1− αn)‖f(p)− p‖+ ααn‖zn − p‖
+ βαn(τ1‖zn − p‖+ τ2‖zn − p‖)

≤ (1 − αn)γ‖zn − p‖+ (1− αn)‖f(p)− p‖+ αn‖zn − p‖

= {1 − (1 − γ)(1− αn)}‖zn − p‖ + (1 − γ)(1− αn)
‖f(p)− p‖

1 − γ

≤ max{‖zn − p‖, 1
1 − γ

‖f(p)− p‖}.

By induction, we get
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‖zn − p‖ ≤ max{‖z0 − p‖, 1
1 − γ

‖f(p)− p‖},

for all n ≥ 0. This shows that {zn} is bounded. From Remark 2.1, we know that
T1 and T2 are u.a.r.s. It follows from Proposition 3.2 that we can conclude the
desired result.

Remark 3.4. We would like to point out that the conclusion limn→∞ ‖zn+1 −
zn‖ = 0 is very crucial for proving the strong convergence of {zn} in many litera-
tures; please refer to [7, 22].

Theorem 3.5. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E . Let T1, T2 : C → C be two asymptotically
nonexpansive mappings with sequences {kn} ⊂ [1,∞) satisfying max{kn, n ≥
0} < N (E)

1
2 . Let f : C → C be a contraction with constant γ ∈ [0, 1). Let {tn} ⊂

(0, σn) be such that limn→∞ tn = 1,
∑∞

n=1 tn(1− tn) = ∞ and limn→∞ kn−1
kn−tn

=

0, where σn = min{ (1−γ)kn

kn−γ , 1
kn
}. Let α, β, τ1 and τ2 be four positive numbers

such that α+β = 1 and τ1 +τ2 = 1. Suppose F (S) = F (T1)
⋂

F (T2) �= ∅, where
S = τ1T1 + τ2T2. For an arbitrary z0 ∈ C, let the sequence {zn} be iteratively
defined by

zn+1 = (1− tn
kn

)f(zn) +
αtn
kn

zn +
βtn
kn

(τ1T
n
1 zn + τ2T

n
2 zn).

Then for each integer n ≥ 0, there exists a unique xn ∈ C such that

xn = (1 − tn
kn

)f(xn) +
tn
kn

(τ1T
n
1 xn + τ2T

n
2 xn).

Further, if T1 and T2 satisfy limn→∞ ‖xn−Tixn‖ = 0 and limn→∞ ‖zn−Tizn‖ = 0
for i = 1, 2, then the sequence {zn} converges strongly to the unique solution of
the variational inequality:

p ∈ F (T1) ∩ F (T2) such that 〈(I − f)p, j(p− x∗)〉 ≤ 0, ∀x∗ ∈ F (T1) ∩ F (T2).

Proof. From Theorem 3.1, we have that there exists a unique xm ∈ C such
that

xm = (1− tm
km

)f(xm) +
tm
km

(τ1T
m
1 xm + τ2T

n
2 xm).

Set αm = tm
km

for all m ≥ 0, then we get

(10) xm − zn = (1− αm)(f(xm) − zn) + αm(τ1T
m
1 xm + τ2T

m
2 xm − zn).
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Applying Lemma 2.2 to (10), we have an estimation as follows

‖xm − zn‖2

≤ α2
m‖τ1T

m
1 xm + τ2T

m
2 xm − zn‖2 + 2(1 − αm)〈f(xm) − zn, j(xm − zn)〉

≤ α2
m(‖τ1T

m
1 xm + τ2T

m
2 xm − τ1T

m
1 zn − τ2T

m
2 zn‖+ ‖τ1T

m
1 zn + τ2T

m
2 zn

− zn‖)2 + 2(1− αm)[〈f(xm) − xm, j(xm − zn)〉 + ‖xm − zn‖2]

≤ α2
m{(τ1km + τ2km)‖xm − zn‖+ ‖τ1T

m
1 zn + τ2T

m
2 zn − zn‖}2

+ 2(1− αm)(〈f(xm) − xm, j(xm − zn)〉 + k2
m‖xm − zn‖2)

≤ α2
m{k2

m‖xm − zn‖2 + 2km‖xm − zn‖‖τ1T
m
1 zn + τ2T

m
2 zn − zn‖

+ ‖τ1T
m
1 zn + τ2T

m
2 zn − zn‖2} + 2(1− αm)(〈f(xm) − xm, j(xm − zn)〉

+ k2
m‖xm − zn‖2)

= (1 − (1 − αm))2k2
m‖xm − zn‖2 + ‖τ1T

m
1 zn + τ2T

m
2 zn − zn‖

× (2km‖xm − zn‖ + ‖τ1T
m
1 zn + τ2T

m
2 zn − zn‖)

+ 2(1− αm)(〈f(xm) − xm, j(xm − zn)〉 + k2
m‖xm − zn‖2)

≤ (1 + (1 − αm)2)k2
m‖xm − zn‖2 + (τ1‖Tm

1 zn − zn‖ + τ2‖Tm
2 zn − zn‖)

× (2km‖xm − zn‖ + ‖τ1T
m
1 zn + τ2T

m
2 zn − zn‖)

+ 2(1− αm)〈f(xm) − xm, j(xm − zn)〉.
It follows that

lim sup
n→∞

〈f(xm) − xm,j(zn − xm)〉 ≤ [k2
m − 1 + k2

m(1 − αm)2]
1 − αm

M

+ lim sup
n→∞

M(τ1‖Tm
1 zn − zn‖ + τ2‖Tm

2 zn − zn‖)
1 − αm

,

where M is a constant such that

M ≥ max{‖xm − zn‖2

2
,
2km‖xm − zn‖ + ‖τ1T

m
1 zn + τ2T

m
2 zn − zn‖

2
},

∀m ≥ 0, ∀n ≥ 0. So that

(11) lim sup
n→∞

〈f(xm) − xm, j(zn − xm)〉 ≤ [k2
m − 1 + k2

m(1 − αm)2]
1 − αm

M.

By Theorem 3.1, xm → p ∈ F (T1)∩F (T2), which solves the variational inequality

p ∈ F (T1) ∩ F (T2) such that 〈(I − f)p, j(p− x∗)〉 ≤ 0, ∀x∗ ∈ F (T1) ∩ F (T2).

Since j is norm to weak∗ continuous on any bounded set, letting m → ∞ in (11),
we obtain that

lim sup
n→∞

〈f(p)− p, j(zn − p)〉 ≤ 0.
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From Lemma 2.2, we have

‖zn+1 − p‖2

= ‖(1− αn)(f(zn) − p) + ααn(zn − p) + βαn(τ1T
n
1 zn + τ2T

n
2 zn − p)‖2

≤ ‖βαn(τ1T
n
1 zn + τ2T

n
2 zn − p) + ααn(zn − p)‖2

+ 2(1− αn)〈f(zn)− p, j(zn+1 − p)〉
≤ β2α2

n‖τ1T
n
1 zn + τ2T

n
2 zn − p‖2 + 2αβα2

n‖τ1T
n
1 zn + τ2T

n
2 zn − p‖‖zn − p‖

+ α2α2
n‖zn − p‖2 + 2(1− αn)〈f(zn) − f(p), j(zn+1 − p)〉

+ 2(1− αn)〈f(p)− p, j(zn+1 − p)〉
≤ β2α2

n[τ1‖T n
1 zn − p‖ + τ2‖T n

2 zn − p‖]2 + 2αβα2
n[τ1‖T n

1 zn − p‖
+ τ2‖T n

2 zn − p‖]‖zn − p‖+ α2α2
n‖zn − p‖2 + 2(1− αn)‖f(zn) − f(p)‖

× ‖zn+1 − p‖+ 2(1− αn)〈f(p)− p, j(zn+1 − p)〉
≤ (β2k2

n + 2βαkn + α2)α2
n‖zn − p‖2 + 2(1− αn)γ‖zn − p‖‖zn+1 − p‖

+ 2(1− αn)〈f(p)− p, j(zn+1 − p)〉
≤ α2

nk2
n‖zn − p‖2 + γ(1− αn)(‖zn − p‖2 + ‖zn+1 − p‖2)

+ 2(1− αn)〈f(p)− p, j(zn+1 − p)〉.
Therefore

‖zn+1 − p‖2 ≤ [t2n + (1 − αn)γ]
1− (1− αn)γ

‖zn − p‖2

+
2(1− αn)

1 − (1− αn)γ
〈f(p)− p, j(zn+1 − p)〉

= {1 − [1 − 2(1− αn)γ − t2n]
1 − (1 − αn)γ

}‖zn − p‖2

+
2(1− αn)

1 − (1− αn)γ
〈f(p)− p, j(zn+1 − p)〉

= (1 − λn)‖zn − p‖2 + λnδn.

where λn = [1−2(1−αn)γ−t2n]
1−(1−αn)γ and

δn =
2(1− αn)

1− 2(1− αn)γ − t2n
〈f(p) − p, j(zn+1 − p)〉

=
2(1− tn

kn
)

1− 2(1− tn
kn

)γ − t2n
〈f(p) − p, j(zn+1 − p)〉

=
2

kn(kn + tn) − 2γ − kn(kn + 1) kn−1
kn−tn

〈f(p)− p, j(zn+1 − p)〉.
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It is easily observed that
∑∞

n=1 λn = ∞ and lim supn→∞ δn ≤ 0. Hence the
conditions in Lemma 2.4 are satisfied and so we can conclude our conclusion.

By the same argument as that in the proof of Theorem 3.5, we can extend
Theorem 3.5 to a finite family of asymptotically nonexpansive mappings. Since the
proof is similar to that of the above result, therefore, is omitted.

Theorem 3.6. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex and bounded subset of E . Let T1, T2 · · · , Tr : C → C be a finite
family of asymptotically nonexpansive mappings with sequences {k n} ⊂ [1,∞)
satisfying max{kn, n ≥ 0} < N (E)

1
2 . Let f : C → C be a contraction with

constant γ ∈ [0, 1). Let {tn} ⊂ (0, σn) be such that limn→∞ tn = 1,
∑∞

n=1 tn(1−
tn) = ∞ and limn→∞ kn−1

kn−tn
= 0, where σn = min{ (1−γ)kn

kn−γ , 1
kn
}. Let α, β and

{τi}r
i=1 be positive numbers such that α + β = 1 and

∑r
i=1 τi = 1. Suppose

F (S) = ∩r
i=1F (Ti) �= ∅, where S =

∑r
i=1 τiTi. For an arbitrary z0 ∈ C, let the

sequence {zn} be iteratively defined by

zn+1 = (1 − tn
kn

)f(zn) +
αtn
kn

zn +
βtn
kn

r∑
i=1

τiT
n
i zn.

Then for each integer n ≥ 0, there exists a unique xn ∈ C such that

xn = (1− tn
kn

)f(xn) +
tn
kn

r∑
i=1

τiT
n
i xn.

Further, if {Ti}r
i=1 satisfy limn→∞ ‖xn−Tixn‖ = 0 and limn→∞ ‖zn−Tizn‖ = 0

for all i = 1, 2, · · · , r, then the sequence {zn} converges strongly to the unique
solution of the variational inequality:

p ∈ ∩r
i=1F (Ti) such that 〈(I − f)p, j(p− x∗)〉 ≤ 0, ∀x∗ ∈ ∩r

i=1F (Tr).

Remark 3.7. Since every nonexpansive mapping is asymptotically nonexpan-
sive, our theorem 3.6 holds for the case when {Ti}r

i=1 are nonexpansive. In this
case, from corollary 3.3, the boundedness requirement on C can be removed from
the above result, you may consult [22]. On the other hand, by the same argument as
that in the proof of Theorem 3.5 and [7, Theorem 5], we can obtain the following
corollary which can be viewed as an improvement of [7, Theorem 5].

Corollary 3.8. Suppose E is a real uniformly convex Banach space which
has a uniformly Gateaux differentiable norm. Let C be a nonempty closed convex



Strong Convergence of Asymptotically Nonexpansive Mappings 863

subset of E . Let T1, T2, · · · , Tr : C → C be a finite family of nonexpansive
mappings. Let f : C → C be a contraction with constant γ ∈ [0, 1). Suppose
∩r

i=1F (Ti) �= ∅. Let {τi}r
i=1 be positive numbers such that

∑r
i=1 τi = 1. Let α

and β be two positive numbers satisfying α + β = 1. Let {α n} be a sequence in
[0, 1] which satisfies limn→∞ αn = 1 and

∑∞
n=1(1 − αn) = ∞. For an arbitrary

z0 ∈ C, let the sequence {zn} be iteratively defined by

zn+1 = (1 − αn)f(zn) + ααnzn + βαn

r∑
i=1

τiTizn.

Then the sequence {zn} converges strongly to the unique solution of the variational
inequality:

p ∈ ∩r
i=1F (Ti) such that 〈(I − f)p, j(p− x∗)〉 ≤ 0, ∀x∗ ∈ ∩r

i=1F (Ti).
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