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EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A
KIND OF FIRST ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH A DEVIATING ARGUMENT

Bingwen Liu and Lihong Huang

Abstract. In this paper, we use the coincidence degree theory to establish new
results on the existence and uniqueness of T -periodic solutions for the first
order neutral functional differential equation with a deviating argument of the
form

(x(t) + Bx(t − δ))′ = g1(t, x(t)) + g2(t, x(t − τ (t))) + p(t).

1. INTRODUCTION

Consider the first order neutral functional differential equation(NFDE) with a
deviating argument of the form

(1.1) (x(t) + Bx(t − δ))′ = g1(t, x(t)) + g2(t, x(t − τ(t))) + p(t),

where τ , p : R → R and g1, g2 : R×R → R are continuous functions, B and δ are
constants, τ and p are T -periodic, g1 and g2 are T -periodic in the first argument,
|B| �= 1 and T > 0.

Such kind of NFDE has been used for the study of distributed networks con-
taining lossless transmission lines [6,7]. Hence, in recent years, the problem of the
existence of periodic solutions for Eq. (1.1) has been extensively studied in the
literature. For more details, we refer the reader to [1, 3-8,10] and the references
cited therein. However, to the best of our knowledge, there exist no results for the
existence and uniqueness of periodic solutions of Eq. (1.1).
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The main purpose of this paper is to establish sufficient conditions for the
existence and uniqueness of T -periodic solutions of Eq. (1.1). The results of
this paper are new and they compliment previously known results. An illustrative
example is given in Section 4.

For ease of exposition, throughout this paper we will adopt the following nota-
tions:

|x|k = (
∫ T

0
|x(t)|kdt)1/k, |x|∞ = max

t∈[0,T ]
|x(t)|.

Let X = {x|x ∈ C(R, R), x(t + T ) = x(t), for all t ∈ R} be a Banach space
with the norm ‖x‖X = |x|∞. Define linear operators A and L in the following form
respectively

A : X −→ X, (Ax)(t) = x(t) + Bx(t − δ)

and

(1.2) L : D(L) ⊂ X −→ X, Lx = (Ax)′,

where D(L) = {x|x ∈ X, x′ ∈ C(R, R)}.
We also define a nonlinear operator N : X −→ X by setting

(1.3) Nx = g1(t, x(t)) + g2(t, x(t − τ(t))) + p(t).

By Hale’s terminology [4], a solution u(t) of Eq (1.1) is that u ∈ C(R, R) such
that Au ∈ C1(R, R) and Eq (1.1) is satisfied on R. In general, u �∈ C1(R, R). But
from Lemma 1 in [8], in view of |B| �= 1, it is easy to see that (Ax)′ = Ax′. So a
T−periodic solution u(t) of Eq (1.1) must be such that u ∈ C1(R, R). Meanwhile,
according to Lemma 1 in [8], we can easily get that KerL = R, and ImL = {x|x ∈
X,

∫ T
0 x(s)ds = 0}. Therefore, the operator L is a Fredholm operator with index

zero. Define the continuous projectors P : X −→ KerL and Q : X −→ X/ImL
by setting

Px(t) =
1
T

∫ T

0

x(s)ds

and

Qx(t) =
1
T

∫ T

0
x(s)ds.

Hence, ImP = KerL and KerQ = ImL. Set LP = L|D(L)∩KerP, then LP has
continuous inverse L−1

P defined by

(1.4) L−1
P y(t) = A−1

(
1
T

∫ T

0

sy(s)ds +
∫ t

0

y(s)ds

)
.

Therefore, it is easy to see from (1.3) and (1.4) that N is L−compact on Ω, where
Ω is an open bounded set in X .
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2. PRELIMINARY RESULTS

In view of (1.2) and (1.3), the operator equation

Lx = λNx

is equivalent to the following equation

(2.1) x′(t) + Bx′(t − δ) = λ[g1(t, x(t)) + g2(t, x(t − τ(t))) + p(t)],

where λ ∈ (0, 1).
For convenience, we introduce the Continuation Theorem [3] as follows.

Lemma 2.1. Let X be a Banach space. Suppose that L : D(L) ⊂ X −→ X

is a Fredholm operator with index zero and N : Ω −→ X is L−compact on Ω,
where Ω is an open bounded subset of X . Moreover, assume that all the following
conditions are satisfied:

(1) Lx �= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
(2) Nx �∈ ImL, for all x ∈ ∂Ω ∩ KerL;
(3) The Brower degree

deg{QN, Ω ∩ KerL, 0} �= 0.

Then equation Lx = Nx has at least one solution on Ω ∩ D(L).

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.2. Let x(t) ∈ X
⋂

C1(R, R) . Suppose that there exists a constant
D ≥ 0 such that

(2.2) |x(τ0)| ≤ D, τ0 ∈ [0, T ].

Then

(2.3) |x|2 ≤ T

π
|x′|2 +

√
TD.

Proof. Let

y(t) =
{

x(t + τ0 − T ) − x(τ0), T − τ0 ≤ t ≤ T,
x(t + τ0) − x(τ0), 0 ≤ t < T − τ0.

Then

(2.4) y(0) = y(T ) = 0, and y′(t) = x′(t + τ0) for all t ∈ [0, T ].
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Thus, by Theorem 225 in [2], (2.4) implies that

(2.5) |y|2 ≤ T

π
|y′|2.

In view of the inequality of Minkowski, we have

(2.6)

|x|22 =
∫ T

τ0

|x(t)|2dt +
∫ τ0

0
|x(t)|2dt

=
∫ T−τ0

0
|x(t + τ0)|2dt +

∫ T

T−τ0

|x(t + τ0 − T )|2dt

= |y(t) + x(τ0)|22
≤ (|y|2 + |x(τ0)|2)2

≤ (|y|2 +
√

TD)2.

Combining (2.5) and (2.6), we obtain

|x|2 ≤ |y|2 +
√

TD ≤ T

π
|y′|2 +

√
TD =

T

π
|x′|2 +

√
TD.

This completes the proof of Lemma 2.2.

Lemma 2.3. Assume that the following conditions are satisfied.
(A0) one of the following conditions holds:

(1) (gi(t, u1) − gi(t, u2))(u1 − u2) > 0, for i = 1, 2, ui ∈ R, ∀t ∈ R and
u1 �= u2,

(2) (gi(t, u1) − gi(t, u2))(u1 − u2) < 0, for i = 1, 2, ui ∈ R, ∀t ∈ R and
u1 �= u2;

(A0) one of the following conditions holds:

(1) there exists constants b1 and b2 such that b1
T
π + 1

2b2T < 1− |B|, and
|gi(t, u1) − gi(t, u2)| ≤ bi|u1 − u2|, for i = 1, 2, ui ∈ R, ∀t ∈ R,

(2) there exists constants b1 and b2 such that b1
T
π + 1

2b2T < |B| − 1, and
|gi(t, u1) − gi(t, u2)| ≤ bi|u1 − u2|, for i = 1, 2, ui ∈ R, ∀t ∈ R.

Then Eq. (1.1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of Eq. (1.1).
Then, we have

(x1(t) + Bx1(t − δ))′ − g1(t, x1(t)) − g2(t, x1(t − τ(t))) = p(t)
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and

(x2(t) + Bx2(t − δ))′ − g1(t, x2(t)) − g2(t, x2(t − τ(t))) = p(t).

This implies that

[(x1(t) − x2(t)) + B(x1(t − δ) − x2(t − δ))]′ − (g1(t, x1(t))− g1(t, x2(t)))

(2.7) −(g2(t, x1(t − τ(t)))− g2(t, x2(t − τ(t)))) = 0.

Set Z(t) = x1(t) − x2(t). Then, from (2.7), we obtain

(2.8)
Z ′(t) + BZ ′(t − δ) − (g1(t, x1(t)) − g1(t, x2(t)))

−(g2(t, x1(t − τ(t)))− g2(t, x2(t − τ(t)))) = 0.

Thus, integrating (2.8) from 0 to T, we have∫ T

0
[(g1(t, x1(t))−g1(t, x2(t)))+(g2(t, x1(t−τ(t)))−g2(t, x2(t−τ(t))))]dt = 0.

Therefore, in view of integral mean value theorem, it follows that there exists a
constant γ ∈ [0, T ] such that

(2.9)
g1(γ, x1(γ))− g2(γ, x2(γ))) + g2(γ, x1(γ − τ(γ)))

−g2(γ, x2(γ − τ(γ)))) = 0.

From (A0), (2.9) implies that

(x1(γ)− x2(γ))(x1(γ − τ(γ))− x2(γ − τ(γ))) ≤ 0.

Since Z(t) = x1(t) − x2(t) is a continuous function on R, it follows that there
exists a constant ξ ∈ R such that

(2.10) Z(ξ) = 0.

Let ξ = nT + γ̃, where γ̃ ∈ [0, T ] and n is an integer. Then, (2.10) implies that
there exists a constant γ̃ ∈ [0, T ] such that

(2.11) Z(γ̃) = Z(ξ) = 0,

which implies that

|Z(t)| = |Z(γ̃) +
∫ t

γ̃
Z ′(s)ds| ≤

∫ t

γ̃
|Z ′(s)|ds, t ∈ [γ̃, γ̃ + T ],
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and

|Z(t)| = |Z(t − T )| = |Z(γ̃) −
∫ γ̃

t−T
Z ′(s)ds| ≤

∫ γ̃

t−T
|Z ′(s)|ds, t ∈ [γ̃, γ̃ + T ].

Therefore,

|Z(t)| ≤ 1
2

∫ t

t−T
|Z ′(s)|ds =

1
2

∫ T

0
|Z ′(s)|ds, t ∈ [γ̃, γ̃ + T ],

which, together with Lemma 2.2 and Schwarz inequality, implies that

(2.12) |Z|∞ ≤ 1
2

√
T |Z ′|2, and |Z|2 ≤ T

π
|Z ′|2.

Now, we consider two cases.

Case (i). If (A0)(1) holds, multiplying both sides of (2.8) by Z′(t) and then
integrating them from 0 to T , using (2.12) and Schwarz inequality, we have

(2.13)

|Z ′|22 =
∫ T

0

|Z ′(t)|2dt

= −B

∫ T

0
Z ′(t)Z ′(t−δ)dt+

∫ T

0
(g1(t, x1(t))−g1(t, x2(t)))Z ′(t)dt

+
∫ T

0
(g2(t, x1(t − τ(t)))− g2(t, x2(t − τ(t))))Z ′(t)dt

≤ |B||Z ′|22 + b1

∫ T

0
|x1(t) − x2(t)||Z ′(t)|dt

+b2

∫ T
0 |x1(t − τ(t)) − x2(t − τ(t))||Z ′(t)|dt

≤ |B||Z ′|22 + b1|Z|2||Z ′|2 + b2|Z|∞
√

T |Z ′|2
≤ |B||Z ′|22 + b1

T
π |Z ′|2|Z ′|2 + 1

2b2T |Z ′|22
≤ [|B|+ (b1

T
π + 1

2b2T )]|Z ′|22.

From (2.11) and (A0)(1), (2.13) implies that

Z(t) ≡ Z ′(t) ≡ 0, for all t ∈ R.

Hence, x1(t) ≡ x2(t), for all t ∈ R. Therefore, Eq. (1.1) has at most one T -
periodic solution.
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Case (ii). If (A0)(2) holds, multiplying both sides of (2.8) by Z′(t − δ) and
then integrating them from 0 to T , using (2.12) and Schwarz inequality, we have

(2.14)

|B||Z′|22 = |
∫ T

0

B|Z′(t − δ)|2dt|

= |−
∫ T

0

Z′(t)Z′(t−δ)dt+
∫ T

0

(g1(t, x1(t))−g2(t, x2(t)))Z′(t−δ)dt

+
∫ T

0

(g2(t, x1(t − τ (t))) − g2(t, x2(t − τ (t))))Z′(t − δ)dt|

≤ |Z′|22 + b1

∫ T

0

|x1(t) − x2(t)||Z′(t − δ)|dt

+b2

∫ T

0

|x1(t − τ (t)) − x2(t − τ (t))||Z′(t − δ)|dt

≤ |Z′|22 + b1|Z|2||Z′|2 + b2|Z|∞
√

T |Z′|2

≤ |Z′|22 + b1
T

π
|Z′|2|Z′|2 +

1
2
b2T |Z′|22

≤ [1 + (b1
T

π
+

1
2
b2T )]|Z′|22

Then using the methods similar to those used in Case (i), from (2.11), (2.14) and
(A0)(2), we can conclude that Eq. (1.1) has at most one T -periodic solution. The
proof of Lemma 2.3 is now complete.

Lemma 2.4. Assume that (A0) holds, and there exists a constant d > 0 such
that one of the following conditions holds:

(A1) x(g1(t, x) + g2(t, x) + p(t)) > 0, for all t ∈ R, |x| ≥ d;
(A2) x(g1(t, x) + g2(t, x) + p(t)) < 0, for all t ∈ R, |x| ≥ d.

If x(t) is a T -periodic solution of (2.1)λ, then

(2.15) |x|∞ ≤ d +
1
2

√
T |x′|2.

Proof. Let x(t) be a T -periodic solution of (2.1)λ. Then, integrating (2.1)λ

from 0 to T , we have∫ T

0
[g1(t, x(t)) + g2(t, x(t − τ(t))) + p(t)]dt = 0.

This implies that there exists a constant t1 ∈ R such that

(2.16) g1(t1, x(t1)) + g2(t1, x(t1 − τ(t1))) + p(t1) = 0.
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We show next that the following claim is true.
Claim. If x(t) is a T−periodic solution of (2.1)λ, then there exists a constant

t2 ∈ R such that

(2.17) |x(t2)| ≤ d.

Assume, by way of contradiction, that (2.17) does not hold. Then

(2.18) |x(t)| > d, for all t ∈ R,

which, together with (A1), (A2) and (2.16), implies that one of the following
relations holds:

(2.19) x(t1) > x(t1 − τ(t1)) > d;

(2.20) x(t1 − τ(t1)) > x(t1) > d;

(2.21) x(t1) < x(t1 − τ(t1)) < −d;

(2.22) x(t1 − τ(t1)) < x(t1) < −d.

If (2.19) holds, in view of (A0)(1), (A0)(2), (A1) and (A2) , we shall consider
four cases as follows.

Case (i). If (A1) and (A0)(1) hold, according to (2.19), we obtain

0 < g1(t1, x(t1 − τ(t1))) + g2(t1, x(t1 − τ(t1))) + p(t1)

< g1(t1, x(t1)) + g2(t1, x(t1 − τ(t1))) + p(t1),

which contradicts (2.16). This contradiction implies that (2.17) holds.
Case (ii). If (A1) and (A0)(2) hold, according to (2.19), we obtain

0 < g1(t1, x(t1))+g2(t1, x(t1))+p(t1) < g1(t1, x(t1))+g2(t1, x(t1−τ(t1)))+p(t1),

which contradicts (2.16). This contradiction implies that (2.17) holds.
Case (iii). If (A2) and (A0)(1) hold, according to (2.19), we obtain

g1(t1, x(t1))+g2(t1, x(t1−τ(t1)))+p(t1) < g1(t1, x(t1))+g2(t1, x(t1))+p(t1) < 0,

which contradicts (2.16). This contradiction implies that (2.17) holds.
Case (iv). If (A2) and (A0)(2) hold, according to (2.19), we obtain

g1(t1, x(t1)) + g2(t1, x(t1 − τ(t1))) + p(t1)

< g1(t1, x(t1 − τ(t1))) + g2(t1, x(t1 − τ(t1))) + p(t1) < 0,
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which contradicts (2.16). This contradiction implies that (2.17) holds.
If (2.20)(or (2.21), or (2.22)) holds, using the methods similar to those used in

Case (i)-Case (iv), we can show that (2.17) holds. This completes the proof of the
Claim.

Let t1 = mT + t0, where t0 ∈ [0, T ] and m is an integer. Then, using an
argument similar to that in proof of (2.12), we obtain

|x|∞ = max
t∈[0,T ]

|x(t)| ≤ d +
1
2

√
T |x′|2.

This completes the proof of Lemma 2.4.

3. MAIN RESULTS

Theorem 3.1. Let (A0) and (A0) hold. Assume that either the condition (A 1)
or the condition (A2) is satisfied. Then Eq. (1.1) has a unique T -periodic solution.

Proof. From Lemma 2.3, together with (A0) and (A0), it is easy to see that Eq.
(1.1) has at most one T -periodic solution. Thus, to prove Theorem 3.1, it suffices to
show that Eq. (1.1) has at least one T -periodic solution. To do this, we shall apply
Lemma 2.1. Firstly, we will claim that the set of all possible T -periodic solutions
of Eq. (2.1)λ are bounded.

Let x(t) be a T -periodic solution of equation (2.1)λ. In view of (A0)(1) and
(A0)(2), we shall consider two cases as follows.

Case (i). If (A0)(1) holds, multiplying both sides of (2.1)λ by x′(t) and then
integrating them from 0 to T , from (2.3), (2.15), (A0)(1) and the inequality of
Schwarz, we have

(3.1)

|x′|22 =
∫ T

0

|x′(t)|2dt

= −
∫ T

0

Bx′(t − δ)x′(t)dt + λ

∫ T

0

g1(t, x(t))x′(t)dtt

+λ

∫ T

0

g2(t, x(t − τ (t)))x′(t)d + λ

∫ T

0

p(t)x′(t)dt

≤ |B||x′|22 + |p|2|x′|2 + λ

∫ T

0

(g1(t, x(t))

−g1(t, 0))x′(t)dt + λ

∫ T

0

g1(t, 0)x′(t)dt

+λ

∫ T

0

(g2(t, x(t − τ (t))) − g2(t, 0))x′(t)dt + λ

∫ T

0

g2(t, 0)x′(t)dt
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(3.1)

≤ |B||x′|22 + |p|2|x′|2 + b1

∫ T

0

|x(t)||x′(t)|dt

+ max
t∈[0, T ]

|g1(t, 0)|
∫ T

0

|x′(t)|dt

+b2

∫ T

0

|x(t− τ (t))| · |x′(t)|dt + max
t∈[0, T ]

|g2(t, 0)|
∫ T

0

|x′(t)|dt

≤ |B||x′|22 + |p|2|x′|2 + b1|x|2|x′|2 + b2|x|∞
√

T |x′|2 + ( max
t∈[0, T ]

|g1(t, 0)|

+ max
t∈[0, T ]

|g2(t, 0)|)
√

T |x′(t)|2

≤ (|B| + b1
T

π
+

1
2
b2T )|x′|22 + [|p|2

+(db2 + max
t∈[0, T ]

|g1(t, 0)| + max
t∈[0, T ]

|g2(t, 0)|)
√

T ]|x′|2.

Now, let

D1 =
|p|2 + (db2 + max

t∈[0, T ]
|g1(t, 0)|+ max

t∈[0, T ]
|g2(t, 0)|)√T

1 − |B| − (b1
T
π + 1

2b2T )
.

In view of (2.15) and (3.1), we obtain

(3.2) |x′|2 ≤ D1, |x|∞ ≤ d +
√

TD1.

Case (ii). If (A0)(2) holds, multiplying both sides of (2.1)λ by x′(t − δ) and
then integrating them from 0 to T , from (2.3), (2.15), (A0)(2) and the inequality of
Schwarz, we have

(3.3)

|B||x′|22 = |
∫ T

0

B|x′(t−δ)|2dt|

= |−
∫ T

0

x′(t−δ)x′(t)dt+λ

∫ T

0

g1(t, x(t))x′(t−δ)dt

+λ

∫ T

0

g2(t, x(t−τ (t)))x′(t−δ)dt+λ

∫ T

0

p(t)x′(t−δ)dt|

≤ |x′|22+|p|2|x′|2+|λ
∫ T

0

(g1(t, x(t))

−g1(t, 0))x′(t−δ)dt+λ

∫ T

0

g1(t, 0)x′(t−δ)dt

+λ

∫ T

0

(g2(t, x(t−τ (t)))

−g2(t, 0))x′(t−δ)dt+λ

∫ T

0

g2(t, 0)x′(t−δ)dt|

≤ |x′|22+|p|2|x′|2+b1

∫ T

0

|x(t)||x′(t−δ)|dt
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(3.3)

+ max
t∈[0, T ]

|g1(t, 0)|
∫ T

0

|x′(t−δ)|dt

+b2

∫ T

0

|x(t−τ (t))| · |x′(t−δ)|dt

+ max
t∈[0, T ]

|g2(t, 0)|
∫ T

0

|x′(t−δ)|dt

≤ |x′|22+|p|2|x′|2+b1|x|2|x′|2+b2|x|∞
√

T |x′|2+( max
t∈[0, T ]

|g1(t, 0)|

+ max
t∈[0, T ]

|g2(t, 0)|)
√

T |x′(t)|2

≤ (1 + b1
T

π
+

1
2
b2T )|x′|22 + [|p|2

+(db2 + max
t∈[0, T ]

|g1(t, 0)|+ max
t∈[0, T ]

|g2(t, 0)|)
√

T ]|x′|2.

Now, let

D1 =
|p|2 + (db2 + max

t∈[0, T ]
|g1(t, 0)|+ max

t∈[0, T ]
|g2(t, 0)|)√T

|B| − 1 − (b1
T
π + 1

2b2T )
.

In view of (2.15) and (3.3), we obtain

(3.4) |x′|2 ≤ D1, |x|∞ ≤ d +
√

TD1.

If x ∈ Ω1 = {x|x ∈ KerL∩X and Nx ∈ ImL}, then there exists a constant M1

such that

(3.5) x(t) ≡ M1 and
∫ T

0
[g1(t, M1) + g2(t, M1) + p(t)]dt = 0.

Thus,

(3.6) |x(t)| ≡ |M1| < d, for all x(t) ∈ Ω1.

Let M = (D1 + D1)
√

T + d + 1. Set

Ω = {x|x ∈ X, |x|∞ < M}.
It is easy to see from (1.3) and (1.4) that N is L−compact on Ω. We have from
(3.5), (3.6) and the fact M > max{D1

√
T + d, D1

√
T + d, d} that the conditions

(1) and (2) in Lemma 2.1 hold.
Furthermore, define continuous functions H1(x, µ) and H2(x, µ) by setting

H1(x, µ) = (1 − µ)x + µ · 1
T

∫ T

0
[g1(t, x) + g2(t, x) + p(t)]dt; µ ∈ [0 1],
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H2(x, µ) = −(1− µ)x + µ · 1
T

∫ T

0
[g1(t, x) + g2(t, x) + p(t)]dt; µ ∈ [0 1].

If (A1) holds, then

xH1(x, µ) �= 0 for all x ∈ ∂Ω ∩ KerL.

Hence, using the homotopy invariance theorem, we have

deg{QN, Ω∩KerL, 0} = deg{ 1
T

∫ T

0
[g1(t, x)+g2(t, x)+p(t)]dt, Ω∩KerL, 0}

= deg{x, Ω ∩ KerL, 0} �= 0.

If (A2) holds, then

xH2(x, µ) �= 0 for all x ∈ ∂Ω ∩ KerL.

Hence, using the homotopy invariance theorem, we obtain

deg{QN, Ω∩KerL, 0} = deg{ 1
T

∫ T

0
[g1(t, x)+g2(t, x)+p(t)]dt, Ω∩KerL, 0}

= deg{−x, Ω ∩ KerL, 0} �= 0.

In view of all the discussions above, we conclude from Lemma 2.1 that Theorem
3.1 is proved.

4. EXAMPLE AND REMARK

Example 4.1. The first order NFDE

(4.1) (x(t) +
1
8
x(t − δ))′ = − 1

8π
x +

1
2π

[1 − x(t − 3
2

sin t)] + ecos2 t

has a unique 2π-periodic solution.

Proof. From (4.1), we have B = 1
8 , g1(x) = − 1

8π x, g2(x(t− τ(t))) = 1
2π [1−

x(t − 3
2 sin t)] and p(t) = ecos2 t. Then, b1 = 1

8π , b2 = 1
2π . It is straight forward

to check that all the conditions needed in Theorem 3.1 are satisfied. Therefore, Eq.
(4.1) has a unique 2π-periodic solution.

Remark 4.1. Eq. (4.1) is a very simple version of first order NFDE. Since
B �= 0, all the results in [1-12] and the references therein can not be applicable to
Eq. (4.1) to obtain the existence and uniqueness of 2π-periodic solutions. Moreover,
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one can easily see that all the results in Ref. [12] are special ones of this paper.
This implies that the results of this paper are essentially new.

Remark 4.2. By using the methods similarly to those used for Eq. (1.1), we
can deal with the NFDE with multiple deviating arguments of the following type:

(4.2) (x(t) + Bx(t − δ))′ =
n∑

i=1

gi(t, x(t − τi(t))) + p(t),

where τi(i = 1, 2, · · · , n), p : R → R and gi(i = 1, 2, · · · , n) : R × R → R are
continuous functions, τi(i = 1, 2, · · · , n) and p are T -periodic, gi, i = 1, 2, · · · , n,

are T -periodic in the first argument, and T > 0. One may also establish the
results similar to those in Theorem 3.1 under some minor additional assumptions
on gi(t, x)(i = 1, 2, · · · , n).
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