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EXISTENCE THEOREMS OF POSITIVE SOLUTIONS
FOR A FOURTH-ORDER THREE-POINT BOUNDARY VALUE

PROBLEM

De-xiang Ma, Yu Tian and Wei-gao Ge

Abstract. In this paper, the following fourth-order three-point boundary value
problem with p-Laplacian operator is studied:


(φp(u′′(t)))′′ = a(t)f(u(t)), t ∈ (0, 1),

u(0) = ξu(1), u′(1) = ηu′(0),

u′′(0) = α1u
′′(δ), u′′(1) = β1u

′′(δ),

where α1, β1 ≥ 0, ξ �= 1, η �= 1, 0 < δ < 1 and φp(z) = |z|p−2z for p > 1.
We impose growth conditions on f which guarantee the existence of at least
three positive solutions for the problem.

1. INTRODUCTION

In the last ten years, a great deal of work has been done to study the positive
solutions of two point boundary value problems for differential equations which
are used to describe a number of physical, biological and chemical phenomena. For
additional background and results, we refer the reader to the monograph by Agarwal,
O’Regan and Wong [1] as well as the recent contributions by [2-8].

Boundary value problems for even order differential equations can arise, espe-
cially for fourth-order equations. Recently, three-point or multiple-point boundary
value problems of the differential equations were presented and studied by many
authors, see [9-10].
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In this paper, we are concerned with the existence of three positive solutions for
the fourth-order three-point boundary value problem (BVP for short) consisted of
the p-Laplacian differential equation

(1) (φp(u′′(t)))′′ − a(t)f(u(t)) = 0, t ∈ (0, 1),

and the following boundary value conditions

(2) u(0) = ξu(1), u′(1) = ηu′(0), u′′(0) = α1u
′′(δ), u′′(1) = β1u

′′(δ),

where f : R → [0,+∞) and a : (0, 1) → [0,+∞) are continuous functions,
α1, β1 ≥ 0, ξ �= 1, η �= 1, 0 < δ < 1 and φp(z) = |z|p−2z for p > 1.

When p = 2, (1) becomes u(4)(t)− a(t)f(u(t)) = 0, t ∈ (0, 1).

The fourth-order three-point boundary value problem (1)− (2) has not received
as much attention in the literature as lidstone condition boundary value problem:

(3)

{
u(4)(t) = a(t)f(u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

and as the three-point boundary value problem for the second-order differential
equation

(4)

{
u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = αu(η)

that were extensively considered in [2-5] and [9-10], respectively. The results of
existence of positive solutions of BVP (1)-(2) are relatively scarce. Recently, there
is an increasing interest in obtaining twin or three positive solutions for two-point
boundary value problems by using multiple fixed points theorems on cones. The
purpose of this paper is to establish the existence of at least three positive solutions of
(1)-(2). Our arguments involve the use of the concavity and integral representation
of solutions and a fixed point theorem (Theorem 2.1) which is a nice generalization
of the well-known Leggett-Williams fixed point Theorem. We will impose growth
conditions on f which ensure the existence of at least three positive solutions of
(1)-(2).

For the remainder of the paper, we assume that

(i) 0 <
∫ 1
0 a(s)ds < +∞.

(ii) q satisfies 1
p + 1

q = 1 and (φp)−1(z) = φq(z) = |z|q−2z.
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2. PRELIMINARY

In this section, we present two definitions in Banach space, an appreciate gen-
eralized form of Leggett-Williams fixed point theorem by Avery and Henderson [7]
and four lemmas.

Definition 2.1. Let X be a real Banach space and P be a cone of X . A map
ψ : P → [0,+∞) is called nonnegative continuous concave functional map if ψ is
nonnegative, continuous and satisfies ψ(tx+ (1 − t)y) ≥ tψ(x) + (1 − t)ψ(y) for
all x, y ∈ P and t ∈ [0, 1].

Definition 2.2. Let X be a real Banach space and P be a cone of X . A map
β : P → [0,+∞) is called nonnegative continuous convex functional map if β is
nonnegative, continuous and satisfies β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y) for
all x, y ∈ P and t ∈ [0, 1].

Let γ , β and θ be nonnegative continuous convex functionals on P , and let
α and ψ be nonnegative continuous concave functionals on P . For nonnegative
numbers h, a, b, d and c, we define the following sets:

P (γ, c) = {x ∈ P : γ(x) < c},

P (γ, α, a, c) = {x ∈ P : a ≤ α(x), γ(x) ≤ c},

Q(γ, β, d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c},

P (γ, θ, α, a, b, c) = {x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},

Q(γ, β, ψ, h, d, c) = {x ∈ P : h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.
To obtain multiple positive solutions of BVP (1)−(2), the following fixed point

theorem in [7] is needed.

Theorem 2.1. [7] Let X be a real Banach space and P be a cone of X .
Suppose that γ, β and θ are three nonnegative continuous convex functionals on P
and α, ψ are two nonnegative continuous concave functionals on P such that for
some positive numbers c and M ,

α(x) ≤ β(x), ||x|| ≤Mγ(x) for x ∈ P (γ, c).

Suppose further that T : P (γ, c) → P (γ, c) is completely continuous and there
exist h, d, a, b≥ 0 with 0 < d < a such that each of the following is satisfied:

(i) {x ∈ P (γ, θ, α, a, b, c) : α(x) > a} �= ∅ and x ∈ P (γ, θ, α, a, b, c) implies
α(Tx) > a,
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(ii) {x ∈ Q(γ, β, ψ, h, d, c) : β(x) < d} �= ∅ and x ∈ Q(γ, β, ψ, h, d, c) implies
β(Tx) < d,

(iii) x ∈ P (γ, α, a, c) with θ(Tx) > b implies α(Tx) > a,

(iv) x ∈ Q(γ, β, d, c) with ψ(Tx) < h implies β(Tx) < d.

Then T has at least three fixed points x 1, x2, x3 ∈ P (γ, c) such that

β(x1) < d, a < α(x2), d < β(x3), with α(x3) < a.

Lemma 2.1. If f ∈ C(R,R), M = 1 − φp(α1) − [φp(β1) − φp(α1)]δ �= 0.
Then the unique solution of the following second-order three-point boundary value
problem

(5)

{ −y′′ = f(t), t ∈ (0, 1),

y(0) = φp(α1)y(δ), y(1) = φp(β1)y(δ)

is

y(t) =
1
M

∫ 1

0

g(t, s)a(s)ds, t ∈ (0, 1),

where

g(t, s) =




s(1 − t) + φp(β1)s(t− δ), 0≤ s≤ t< δ< 1 or

0 ≤ s ≤ δ ≤ t ≤ 1,

t(1−s)+φp(β1)t(s−δ)+φp(α1)(1−δ)(s−t), 0 ≤ t≤s≤δ < 1,

s(1−t)+φp(β1)δ(t−s)+φp(α1)(1−t)(δ−s), 0 ≤ δ ≤ s ≤ t ≤ 1,

(1 − s)(t− φp(α1)t+ φp(α1)δ), 0 < δ≤ t≤ s≤ 1 or

0 ≤ t < δ ≤ s ≤ 1.

Proof. In fact, if y(t) is a solution of (5), then we suppose that

y(t) = −
∫ t

0
(t− s)f(s)ds+ At+ B, t ∈ (0, 1).

By the boundary conditions of (5), it follows that

B = −φp(α1)
∫ δ

0
(δ − s)f(s)ds+ φp(α1)δA+ φp(α1)B



Fourth-order Three-point Boundary Value Problem 1561

and

−
∫ 1

0
(1−s)f(s)ds+A+B = −φp(β1)

∫ δ

0
(δ−s)f(s)ds+φp(β1)δA+φp(β1)B.

Hence,

y(t) = −
∫ t

0

(t− s)f(s)ds+
[1− φp(α1)]t

M

∫ 1

0

(1 − s)f(s)ds

− [φp(β1) − φp(α1)]t
M

∫ δ

0

(δ − s)f(s)ds

+
φp(α1)δ
M

∫ 1

0

(1 − s)f(s)ds− φp(α1)
M

∫ δ

0

(δ − s)f(s)ds

=
1
M

∫ 1

0
g(t, s)f(s)ds.

We may verify that g(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1] if M > 0.

Lemma 2.2. If f ∈ C(R,R), M1 = (1 − ξ)(1 − η) �= 0. Then the unique
solution of the following second-order boundary value problem

(6)

{ −y′′ = f(t), t ∈ (0, 1)

u(0) = ξy(1), u′(1) = ηy′(0)

is

y(t) =
1
M1

∫ 1

0
h(t, s)f(s)ds, t ∈ [0, 1],

where

h(t, s) =

{
s + η(t− s) + ξη(1− t), 0 ≤ s ≤ t ≤ 1,

t+ ξ(s− t) + ξη(1− s), 0 ≤ t ≤ s ≤ 1.

Proof. In fact, if y(t) is a solution of (6), then we suppose that

y(t) = −
∫ t

0
(t− s)f(s)ds+At+B, t ∈ [0, 1].

By the boundary conditions (6), we get

B = ξ

[
B +A −

∫ 1

0
(1 − s)f(s)ds

]
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and

A −
∫ 1

0

f(s)ds = ηA.

Hence,

y(t) = −
∫ t

0

(t− s)f(s)ds+ t

∫ 1
0 f(s)ds
1 − η

+
ξ

1 − ξ

[∫ 1
0 f(s)ds
1 − η

−
∫ 1

0
(1 − s)f(s)ds

]

=
1
M1

∫ 1

0

h(t, s)f(s)ds.

Obviously, if ξ, η ≥ 0, then h(t, s) ≥ 0.
Suppose that u(t) is solution of problem (1)-(2). By Lemma 2.1 and (5),

(7) u′′(t) = − 1
φq(M)

φq

(∫ 1

0

g(t, s)a(s)f(u(s))ds
)
.

By Lemma 2.2 and (6),

u(t) =
1

M1φq(M)

∫ 1

0
h(t, s)φq

(∫ 1

0
g(s, τ)a(τ)f(u(τ))dτ

)
ds.

Lemma 2.3. Suppose that 0 ≤ ξ, η < 1, 0 < t1 < t2 < 1 and δ ∈ (0, 1). If
s ∈ [0, 1], then

(8)
h(t1, s)
h(t2, s)

≥ t1
t2
,

and

(9)
h(1, s)
h(δ, s)

≤ 1
δ
.

Proof. Let s ∈ [0, 1]. Firstly, we prove (8).
If s ≤ t1 < t2, then

h(t1, s)
h(t2, s)

=
s+ η(t1 − s) + ξη(1− t1)
s+ η(t2 − s) + ξη(1− t2)

=
s(1 − η) + ξη + ηt1(1 − ξ)
s(1 − η) + ξη + ηt2(1 − ξ)

≥ ηt1(1 − ξ)
ηt2(1 − ξ)

=
t1
t2
.
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If t1 < t2 ≤ s, then

h(t1, s)
h(t2, s)

=
t1 + ξ(s− t1) + ξη(1− s)
t2 + ξ(s− t2) + ξη(1− s)

≥ t1 + ξ(s− t1)
t2 + ξ(s− t2)

≥ t1
t2
.

If t1 < s < t2, then

h(t1, s)
h(t2, s)

=
t1 + ξ(s− t1) + ξη(1− s)
s + η(t2 − s) + ξη(1− t2)

.

Since [ξ(s − t1) + ξη(1 − s)] − [ξη(1 − t2)] = ξ(s − t1) + ξη(t2 − s) ≥ 0 and
t1

s+η(t2−s)
− t1

t2
= t1(t2−s)(1−η)

t2[s+η(t2−s)]
≥ 0, it follows that

h(t1, s)
h(t2, s)

≥ t1 + ξη(1− t2)
s+ η(t2 − s) + ξη(1− t2)

≥ t1
s + η(t2 − s)

≥ t1
t2
.

Now, we prove (9).
If δ ≤ s, then

h(1, s)
h(δ, s)

− 1
δ

=
s + η(1− s)

δ + ξ(s− δ) + ξη(1− s)
− 1
δ

≤ s + η(1− s)
δ + ξη(1− s)

− 1
δ

=
η(1− s)(η − 1) − ξη(1− s)

δ[δ + ξη(1− s)]
≤ 0.

If δ ≥ s, then

h(1, s)
h(δ, s)

− 1
δ

=
s + η(1− s)

s+ η(δ − s) + ξη(1− δ)
− 1
δ

≤ s + η(1− s)
s + η(δ − s)

− 1
δ

=
s(1 − δ)(η− 1)
δ[s+ η(δ − s)]

≤ 0.

Lemma 2.4. Suppose that ξ, η > 1, 0 < t1 < t2 < 1 and δ ∈ (0, 1). If
s ∈ [0, 1], then

(10)
h(t2, s)
h(t1, s)

≥ 1 − t2
1 − t1

,

and

(11)
h(0, s)
h(δ, s)

≤ 1
1 − δ

.

Proof. Let s ∈ [0, 1]. Firstly, we prove (10).
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If s ≤ t1 < t2, then

h(t2, s)
h(t1, s)

− 1 − t2
1 − t1

=
s + η(t2 − s) + ξη(1− t2)
s + η(t1 − s) + ξη(1− t1)

− 1 − t2
1 − t1

≥ η(t2 − s) + ξη(1− t2)
η(t1 − s) + ξη(1− t1)

− 1 − t2
1 − t1

=
η(t2 − t1)(1 − s)

(1 − t1)[η(t1 − s) + ξη(1− t1)]
> 0.

If t1 < t2 ≤ s, then

h(t2, s)
h(t1, s)

− 1− t2
1− t1

=
t2 + ξ(s− t2) + ξη(1− s)
t1 + ξ(s− t1) + ξη(1− s)

− 1 − t2
1 − t1

=
(t2 − t1)[1 + ξ(1 − s)(η − 1)]

(1 − t1)[t1 + ξ(s− t1) + ξη(1− s)]
> 0.

If t1 < s < t2, then

h(t2, s)
h(t1, s)

− 1− t2
1− t1

=
s+ η(t2 − s) + ξη(1− t2)
t1 + ξ(s− t1) + ξη(1− s)

− 1 − t2
1 − t1

≥ s+ ξη(1− t2)
t1 + ξ(s− t1) + ξη(1− s)

− 1 − t2
1 − t1

=
(s− t1) + t1(t2 − s) + ξ(1− t2)(s− t1)(η − 1)

(1 − t1)[t1 + ξ(s− t1) + ξη(1− s)]
> 0.

Now, we prove (11).
If δ ≤ s, then

h(0, s)
h(δ, s)

− 1
1 − δ

=
ξs + ξη(1− s)

δ + ξ(s− δ) + ξη(1− s)
− 1

1 − δ

≤ ξs + ξη(1− s)
δ + ξη(1− s)

− 1
1 − δ

=
ξs(1 − δ)(1 − η)− δ

(1− s)[δ + ξη(1− δ)]
≤ 0.

If δ ≥ s, then

h(0, s)
h(δ, s)

− 1
1 − δ

=
ξs+ ξη(1− s)

s + η(δ − s) + ξη(1− δ)
− 1

1 − δ

≤ ξs + ξη(1− s)
s + ξη(1− δ)

− 1
1 − δ

=
sξ(1 − δ)(1− η)− s

(1 − δ)[s+ ξη(1− δ)]
≤ 0.
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3. THREE POSITIVE SOLUTIONS OF (1)-(2)

Now, let the classical Banach space X = C([0, 1]) be endowed with the norm
||x|| = max0≤t≤1 |x(t)|. The cones P1, P2 ⊂ X are defined as follows:

P1 = {u ∈ X : u(t) is nonnegative concave and nondecreasing on (0, 1)},
P2 = {u ∈ X : u(t) is nonnegative concave and nonincreasing on (0, 1)}.

Next, let t1, t2, t3 ∈ (0, 1) with t1 < t2. Define nonnegative continuous concave
functionals α, ψ and nonnegative convex functionals β, θ, γ on P1 by

γ(x) = maxt∈[0,t3] x(t) = x(t3), x ∈ P1,

ψ(x) = mint∈[δ,1] x(t) = x(δ), x ∈ P1,

β(x) = maxt∈[δ,1] x(t) = x(1), x ∈ P1,

α(x) = mint∈[t1,t2] x(t) = x(t1), x ∈ P1,

θ(x) = maxt∈[t1,t2] x(t) = x(t2), x ∈ P1.

It is easy to prove that α(x) = x(t1) ≤ x(1) = β(x) and ||x|| = x(1) ≤ 1
t3
x(t3) =

1
t3
γ(x) for x ∈ P1.

Theorem 3.1. Suppose that 0 ≤ ξ, η < 1 and M > 0. There exist positive
numbers 0 < a < b < c such that 0 < a < b < t1

t2
b ≤ c and f(w) satisfies the

following conditions:

(12) f(w) < φp

( a
C

)
, 0 ≤ w ≤ a,

(13) f(w) > φp

(
b

B

)
, b ≤ w ≤ t2

t1
b,

(14) f(w) ≤ φp

( c
A

)
, 0 ≤ w ≤ 1

t3
c,

where A, B and C are defined as follows:

A =
1

M1φq(M)

∫ 1

0
h(t3, s)

[
φq

(∫ 1

0
g(s, r)a(r)dr

)]
ds,

B =
1

M1φq(M)

∫ 1

0
h(t1, s)

[
φq

(∫ t2

t1

g(s, r)a(r)dr
)]

ds,

C =
1

M1φq(M)

∫ 1

0

h(1, s)
[
φq

(∫ 1

0

g(s, r)a(r)dr
)]

ds.
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Then BVP (1)-(2) has at least three positive solutions x1, x2, x3 ∈ P1(γ, c) such
that

(15) x1(t1)>b, x2(1)<a, x3(t1)<b, x3(1)>a and xi(δ)≤c for i=1, 2, 3.

Proof. Define the completely continuous operator T : P1 → X by

Tu(t) =
1

M1φq(M)

∫ 1

0
h(t, s)

[
φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)]
ds.

It is easy to know that u is a positive solution of (1)-(2) if and only if u is a fixed
point of T on cone P1.

Firstly, we prove T : P1(γ, c) → P1(γ, c).

For u ∈ P1, since M > 0 and M1 = (1−ξ)(1−η) > 0, it follows that Tu ≥ 0.
Furthermore,

(Tu)′(t) =
1 − ξ

M1φq(M)

[
η

∫ t

0
φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

+
∫ 1

t
φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

]
≥ 0,

(Tu)′′(t) = − 1
φq(M)

φq

(∫ 1

0

g(t, r)f(u(r))a(r)dr
)
≤ 0.

So, TP1 ⊂ P1.

For u ∈ P1(γ, c), 0 ≤ u(t) ≤ ||u|| ≤ 1
t3
γ(u) ≤ 1

t3
c. By (14),

γ(Tu) = max
t∈[0,t3]

Tu(t) = Tu(t3)

=
1

M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

≤ 1
M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)φp(

c

A
)a(r)dr

)
ds

≤ c

A

1
M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)a(r)dr

)
ds = c.

Therefore, T : P1(γ, c) → P1(γ, c).
Secondly, it is immediate that

u1(t) ∈
{
u ∈ P1(γ, θ, α, b,

t2
t1
b, c) : α(u) > b

}
�= ∅,
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u2(t) ∈ {u ∈ Q(γ, β, ψ, δa, a, c) : β(u) < a} �= ∅,
where

u1(t) = b+ ε1 for 0 < ε1 <
t2
t1
b− b,

u2(t) = a− ε2 for 0 < ε2 < a− δa.

In the following steps, we will verify the remaining conditions of Theorem 2.1.

Step 1. We prove that

(16) u ∈ P (γ, θ, α, b,
t2
t1
b, c) implies α(Tu) > b.

In fact, u(t) ≥ u(t1) = α(u) ≥ b and u(t) ≤ u(t2) = θ(u) ≤ t2
t1
b for t ∈ [t1, t2].

By (13),

α(Tu) = min
t∈[t1,t2]

Tu(t) = Tu(t1)

=
1

M1φq(M)

∫ 1

0
h(t1, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≥ 1
M1φq(M)

∫ 1

0
h(t1, s)φq

(∫ t2

t1

g(s, r)a(r)f(u(r))dr
)
ds

>
1

M1φq(M)

∫ 1

0

h(t1, s)φq

(∫ t2

t1

g(s, r)a(r)φp(
b

B
)dr

)
ds

=
b

M1φq(M)B

∫ 1

0

h(t1, s)φq

(∫ t2

t1

g(s, r)a(r)dr
)
ds = b.

Step 2. We prove that

(17) u ∈ Q(γ, β, ψ, δa, a, c) implies β(Tu) < a.

In fact, 0 ≤ u(t) ≤ u(1) = β(u) ≤ a for t ∈ [0, 1]. By (12),

β(Tu) = max
t∈[δ,1]

Tu(t) = Tu(1)

=
1

M1φq(M)

∫ 1

0
h(1, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

<
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

g(s, r)a(r)φp(
a

C
)dr

)
ds

=
a

M1φq(M)C

∫ 1

0

h(1, s)φq

(∫ 1

0

g(s, r)a(r)dr
)
ds = a.



1568 De-xiang Ma, Yu Tian and Wei-gao Ge

Step 3. We prove that

(18) u ∈ P (γ, α, b, c) with θ(Tu) >
t2
t1
b implies α(Tu) > b.

By Lemma 2.3,

α(Tu) = min
t∈[t1,t2]

Tu(t) = Tu(t1)

=
1

M1φq(M)

∫ 1

0
h(t1, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(t1, s)
h(t2, s)

h(t2, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≥ t1
t2
Tu(t2) =

t1
t2
θ(Tu) > b.

Step 4. We prove that

(19) u ∈ Q(γ, β, a, c) with ψ(Tu) < δa implies β(Tu) < a.

By Lemma 2.3,

β(Tu) = max
t∈[δ,1]

Tu(t) = Tu(1)

=
1

M1φq(M)

∫ 1

0

h(1, s)φq

(∫ 1

0

g(s, r)a(r)f(u(r))dr
)
ds

=
1

M1φq(M)

∫ 1

0

h(1, s)
h(δ, s)

h(δ, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≤ 1
δ
Tu(δ) =

1
δ
ψ(Tu) < a.

Therefore, the hypotheses of Theorem 2.1 are satisfied and there exist three
positive solutions x1, x2 and x3 for BVP (1) − (2) satisfying (15).

Similar to Theorem 3.1, let t1, t2, t3 ∈ (0, 1) with t1 < t2. Define nonnegative
continuous concave functionals α, ψ and nonnegative convex functionals β, θ, γ on
P2 by

γ(u) = maxt∈[t3,1] u(t) = u(t3), u ∈ P2,

ψ(u) = mint∈[0,δ] u(t) = u(δ), u ∈ P2,

β(u) = maxt∈[0,δ] u(t) = u(0), u ∈ P2,

α(u) = mint∈[t1,t2] u(t) = u(t2), u ∈ P2,

θ(u) = maxt∈[t1,t2] u(t) = u(t1), u ∈ P2.
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by observation, α(u) = u(t2) ≤ u(0) = β(u) and ||u|| = u(0) ≤ 1
t3
u(t3) = 1

t3
γ(u)

for u ∈ P2.

Theorem 3.2. Suppose that ξ, η > 1 andM > 0. There exist positive numbers
0 < a < b < c such that 0 < a < b < 1−t1

1−t2
b ≤ c and f(w) satisfies following

conditions:

(20) f(w) < φp

( a
C

)
, 0 ≤ w ≤ a,

(21) f(w) > φp

(
b

B

)
, b ≤ w ≤ 1 − t1

1 − t2
b,

(22) f(w) ≤ φp

( c
A

)
, 0 ≤ w ≤ 1

t3
c,

where A, B and C are defined as follows:

A =
1

M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)a(r)dr

)
ds,

B =
1

M1φq(M)

∫ 1

0
h(t2, s)φq

(∫ t2

t1

g(s, r)a(r)dr
)
ds,

C =
1

M1φq(M)

∫ 1

0

h(0, s)φq

(∫ 1

0

g(s, r)a(r)dr
)
ds.

Then BVP (1)-(2) has at least three positive solutions x1, x2, x3 ∈ P (γ, c) such
that

(23) x1(t2)>b, x2(0)<a, x3(t2)<b, x3(0)>a and xi(δ) ≤ c for i = 1, 2, 3.

Proof. Define the completely continuous operator T : P2 → X by

Tu(t) =
1

M1φq(M)

∫ 1

0
h(t, s)φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds.

It is easy to know that u is a positive solution of (1)-(2) if and only if u is a fixed
point of T on cone P2.

Firstly, we prove T : P2(γ, c) → P2(γ, c).
For u ∈ P2, since M1 > 0 and M = (1−ξ)(1−η) > 0, it follows that Tu ≥ 0.

Furthermore,

(Tu)′(t) =
1− ξ

M1φq(M)

[
η

∫ t

0
φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

+
∫ 1

t
φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

]
≤ 0,
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(Tu)′′(t) = − 1
φq(M)

φq

(∫ 1

0
g(t, r)f(u(r))a(r)dr

)
≤ 0.

So, TP2 ⊂ P2.

For u ∈ P2(γ, c), 0 ≤ u(t) ≤ ||u|| ≤ 1
t3
γ(u) ≤ 1

t3
c. By (22),

γ(Tu) = maxt∈[t3,1] Tu(t) = Tu(t3)

=
1

M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)f(u(r))a(r)dr

)
ds

≤ 1
M1φq(M)

∫ 1

0
h(t3, s)φq

(∫ 1

0
g(s, r)φp(

c

A
)a(r)dr

)
ds

≤ c

M1φq(M)A

∫ 1

0

h(t3, s)φq

(∫ 1

0

g(s, r)a(r)dr
)
ds = c.

Therefore, T : P2(γ, c) → P2(γ, c).
Secondly, it is immediate that

u1(t) ∈ {u ∈ P (γ, θ, α, b,
1 − t1
1 − t2

b, c) : α(u) > b} �= ∅,

u2(t) ∈ {u ∈ Q(γ, β, ψ, (1− δ)a, a, c) : β(u) < a} �= ∅,
where

u1(t) = b+ ε1 for 0 < ε1 <
1−t1
1−t2

b− b,

u2(t) = a− ε2 for 0 < ε2 < a− (1 − δ)a.
In the following steps, we will verify the remaining conditions of Theorem 2.1.

Step 1. We prove that

(24) u ∈ P (γ, θ, α, b,
1 − t1
1 − t2

b, c) implies α(Tu) > b.

In fact, u(t) ≤ u(t1) = θ(u) ≤ 1−t1
1−t2

b and u(t) ≥ u(t2) = α(u) ≥ b for t ∈ [t1, t2].
Thus by (21),

α(Tu) = min
t∈[t1,t2]

Tu(t) = Tu(t2)

=
1

M1φq(M)

∫ 1

0
h(t2, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≥ 1
M1φq(M)

∫ 1

0
h(t2, s)φq

(∫ t2

t1

g(s, r)a(r)f(u(r))dr
)
ds

>
1

M1φq(M)

∫ 1

0
h(t2, s)φq

(∫ t2

t1

g(s, r)a(r)φp(
b

B
)dr

)
ds

=
b

M1φq(M)B

∫ 1

0
h(t2, s)φq

(∫ t2

t1

g(s, r)a(r)dr
)
ds = b.
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Step 2. We prove that

(25) u ∈ Q(γ, β, ψ, (1− δ)a, a, c) implies β(Tu) < a.

In fact, 0 ≤ u(t) ≤ u(0) = β(u) ≤ a for t ∈ [0, 1]. Thus by (20),

β(Tu) = max
t∈[0,δ]

Tu(t) = Tu(0)

=
1

M1φq(M)

∫ 1

0
h(0, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

<
1

M1φq(M)

∫ 1

0
h(0, s)φq

(∫ 1

0
g(s, r)a(r)φp(

a

C
)dr

)
ds

=
a

M1φq(M)C

∫ 1

0
h(0, s)φq

(∫ 1

0
g(s, r)a(r)dr

)
ds = a.

Step 3. We prove that

(26) u ∈ P (γ, α, b, c) with θ(Tu) >
1− t1
1− t2

b implies α(Tu) > b.

By Lemma 2.4,

α(Tu) = min
t∈[t1,t2]

Tu(t) = Tu(t2)

=
1

M1φq(M)

∫ 1

0
h(t2, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(t2, s)
h(t1, s)

h(t1, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≥ 1 − t2
1 − t1

Tu(t1) =
1 − t2
1 − t1

θ(Tu) > b.

Step 4. We prove that

(27) u ∈ Q(γ, β, a, c) with ψ(Tu) < (1 − δ)a implies β(Tu) < a.

By Lemma 2.4,

β(Tu) = max
t∈[0,δ]

Tu(t) = Tu(0)

=
1

M1φq(M)

∫ 1

0
h(0, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

=
1

M1φq(M)

∫ 1

0

h(0, s)
h(δ, s)

h(δ, s)φq

(∫ 1

0
g(s, r)a(r)f(u(r))dr

)
ds

≤ 1
1 − δ

Tu(δ) =
1

1 − δ
ψ(Tu) < a.
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Therefore, the hypotheses of Theorem 2.1 are satisfied and there exist three
positive solutions x1, x2 and x3 for BVP (1)− (2) satisfying (23).

Remark. When 0 ≤ ξ, η < 1 or ξ, η > 1, similar to Theorem 3.1 and Theorem
3.2, we can discuss the following four-point fourth-order BVP


(φp(u′′(t)))′′ − a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = ξu(1), u′(1) = ηu′(0),

α2u
′′(λ) = β2u

′′(δ), u′′′(0) = 0,

where f : R → [0,+∞) and a : (0, 1) → [0,+∞) are continuous functions,
0 ≤ δ, λ ≤ 1 and φp(z) = |z|p−2z for p > 1. The conclusions are similar to
Theorem 3.1 and Theorem 3.2.
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