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ON CONVERGENT RATES OF ERGODIC HARRIS CHAINS INDUCED
FROM DIFFUSIONS

Feng-Rung Hu

Abstract. We construct an irreducible ergodic Harris chain {Xn} from a
diffusion {St} and barriers ρ±(x). We show that {Xn} is exponentially
uniformly ergodic in the sense of the operator norm under the Banach space
Cβ , where β ∈ (0, 1). Moreover, the sizes of the convergent rates αX(β) and
αS(β) measured by the operator norm are studied. We give an upper bound of
αX(β) in terms of ρ±(x). The Ornstein-Uhlenbeck process and proper ρ±(x)
are taken to show αX(β) < αS(β) for 0 < β < 0.5.

1. INTRODUCTION

Let St be a diffusion in natural scale with the generator L = ∂2

m(x)∂x2 , where
m(x) is positive and continuous. Throughout this article, we assume

(1) x2m(x) → 0, |x| → ∞.

On the other hand, barriers ρ±(x) are both continuous functions of x and satisfy

(2) ρ+(x) = c+x, ρ
−(x) = c−x, ∀x ≥ 1,

(3) ρ+(x) = d+x, ρ
−(x) = d−x, ∀x ≤ −1,

where c+ > 1, 0 < c− < 1 and d− > 1, 0 < d+ < 1.
We consider a Harris chain {Xn} defined by

(i) X0 ≡ S0 ≡ x and X1 ≡ S1∧τ , where

τ± ≡ inf{t ≥ 0 : St = ρ±(x)}, τ ≡ τ+ ∧ τ−.
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(ii) {Xn} has a stationary transition probability

p(x, dy) ≡ Px(S1∧τ ∈ dy) = pc(x, dy) + pd(x, dy),

where pc(x, dy) ≡ Px(S1 ∈ dy, τ > 1) and pd(x, dy) ≡ Px(Sτ ∈ dy, τ ≤ 1).

The consideration of {Xn} has a background from Taiwan’s stock market. In
order to maintain a stable stock market, barriers of stocks are set at 7% of the
closing price of the preceding business day in Taiwan’s stock market. Concretely,
if the final price of yesterday’s stock was x, then the lower bound ρ−(x) of today’s
stock price is defined by 0.93x, and the upper bound ρ+(x) of today’s stock price is
defined by 1.07x. However, stock prices are determined by themselves in financial
market. It seems unreasonable to settle barriers ρ± at daily stock price. The problem
is what the influence of price limits is and what effect barriers bring. To investigate
these problems, we use Xn to represent the final price at the nth day in Taiwan
market, and Sn to represent the final price without barriers at the nth day. In [2], a
fat tail’s effect was found by comparing {Xn} with {Sn}. Moreover, by [2], {Xn}
defined above is an irreducible ergodic Harris chain with the general state space R.
And there exists the unique invariant probability measure µ(·) of {Xn}.

Before making our attempt obvious in this article, we give some settings and a
definition at first. Fix β ∈ (0, 1), η > 0 and introduce a smooth positive function
ψ on R such that

ψ(x) = |x|β + η, if |x| ≥ 1,

and ‖f‖β ≡ supx∈R |f(x)|(ψ(x))−1. Set

Cβ ≡ {f : f is continuous on R with ‖f‖β <∞}, for 0 < β < 1.

For β = 0, C0 is the set of all bounded continuous functions on R. Define T,H by

Tf(x) ≡ Exf(X1), Hf(x) ≡ Exf(S1), ∀f ∈ Cβ .

Definition 1.1. An ergodic Harris chain {Xn} is called ”exponentially uni-
formly ergodic in the sense of the operator norm” iff, there exist two positive con-
stants ε and C such that ‖T n − µ(·)‖ ≤ Ce−nε for every positive integer n, where

‖T n − µ(·)‖ = sup{‖T nf − µ(f)‖β : f ∈ Cβ , ‖f‖β ≤ 1}.

Further, define

αX(β) ≡ max{ε : ‖T n − µ(·)‖ ≤ Ce−nε, ∀n ∈ N},
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αX(β) is called a ”convergent rate” of {Xn}. Similarly, we define αS(β) for {Sn}.
Note that {Sn} is obtained from {St} by restricting values of t to non-negative
integers.

Our purpose in this article is to study the convergent speed of {Xn} and to
compare the size of αX(β) with αS(β).

We find that {Xn} is exponentially uniformly ergodic in the sense of the operator
norm for 0 < β < 1. Moreover, we obtain αX(β) ≤ (−β ln c−)∧(−β lnd+) under
a mild condition. And if 0 < β < 0.5, then αS(β) ≥ − lnλ, where λ is given in
Section 2. In particular, if 0 < β < 0.5,

∫∞
1 y2m(y)dy = ∞ and

∫∞
1 ym(y)dy <

∞, then αS(β) = − lnλ. The Ornstein-Uhlenbeck process, c− = d+ = 0.5 and
c+ = d− = 1.5 are taken to show αX(β) < αS(β) for 0 < β < 0.5.

An outline of this article is as follows. In Section 2, we present the main
theorems. Proofs of lemmas are given in the last section.

2. MAIN THEOREMS

Our main theorems are the followings.

Theorem 2.1. If 0 < β < 1, then {Xn} is exponentially uniformly ergodic in
the sense of the operator norm.

Proof. It is clear that T n

n converges weakly to 0. Since ρ±(x) satisfies (2, 3),
we obtain δ < 1 in Lemma 3.3. This implies that T is a quasi-compact operator.
Thus, by Theorem 2.8 of [5] page 91 (or Theorem 6-7 of [1] pages 713-714), we
obtain that

(i) T n =
∑k

i=1 λ
n
i Pi + Sn for each positive integer n, where {λ1, λ2, · · · , λk}

is the set of all eigenvalues of T with λi = e2πiθi , θi is rational and Pi is a
projection with TPi

λi
= PiT

λi
= Pi = P 2

i for i = 1, 2, · · · , k,

(ii) S = T −∑k
i=1 λiPi with ‖Sn‖ ≤ Cρn for each positive integer n, where

ρ ∈ (0, 1) and C is a positive constant.

Let n0 = min{m ∈ N : λm
i = 1 for all i = 1, 2, · · · , k}. It is clear that

‖T n0nf − Pf‖β ≤ Cρn‖f‖β for any f ∈ Cβ and any positive integer n, where
P =

∑k
i=1 Pi. Notice that Pf(x) =

∫
R
f(x)µ(dx) for any f ∈ Cβ and any x ∈ R.

To complete the proof, we must claim that n0 = 1. Assume n0 
= 1. Then by
the definition of n0, we obtain that T has an eigenvalue λ = e

2πi
n0 . And f ∈ Cβ

is an eigenfunction corresponding to λ. Thus Exf(Xn) = λnf(x) for every n.
Let Yn = λ−nf(Xn). Then {Yn} is a martingale under Px. Moreover, since
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|f(x)| ≤ ‖f‖βψ(x) and by Lemma 3.1, we get

Ex|Yn| ≤ ‖f‖βExψ(Xn) ≤ ‖f‖β(θr
n−1∑
k=0

γk
r + γn

r ψ(x)).

This implies that there exists a finite random variable Y such that

(4) Px( lim
n→∞ Yn = Y ) = 1.

Under the assumption that T has an eigenvalue λ = eiθ with θ ∈ (0, 2π), we will
claim that f(x) is a non-zero constant function firstly. We show this on the contrary.
Suppose that f(x) is not a constant function. Hence there exist a, b, a 
= b and a
positive constant ε such that Ua ∩ Ub = ∅, where

Ua ≡ {x ∈ R : |f(x)− a| < ε}, Ub ≡ {x ∈ R : |f(x)− b| < ε}.

On the other hand, it is not hard to obtain that {Xn0n}n≥0 is positive recurrent.
Further, since pc(x, y) > 0 for any y ∈ (ρ−(x), ρ+(x)) and

µ(U) =
∫

R

pn(y, U)µ(dy), ∀n = 1, 2, · · · ,

we obtain µ(U) > 0 for any open set U . Since {Xn0n} is positive recurrent and
µ(Ua) > 0, µ(Ub) > 0, we get

(5) Px

( ∞∑
n=0

1Ua(Xn0n) = ∞
)

= 1, Px

( ∞∑
n=0

1Ub
(Xn0n) = ∞

)
= 1.

Since λn0 = 1, we obtain that (5) contradicts (4). Consequently, we obtain that
f(x) is a non-zero constant. This implies λn = 1 for every positive integer n. But
this contradicts that T has an eigenvalue λ = eiθ, θ ∈ (0, 2π). Hence n0 = 1. This
completes the proof.

Theorem 2.2. If 0 < β < 0.5, then αS(β) ≥ − lnλ, where

λ = max
{

(f, Ĥf)m : f ∈ L2(m),
∫

R

f(x)m(x)dx = 0,
∫

R

f2(x)m(x)dx = 1
}
,

and Ĥf(x) = Exf(S1) for all f ∈ L2(R, m(x)dx).

Remark 2.3. Assume
∫∞
1 y2m(y)dy = ∞ and

∫∞
1 ym(y)dy <∞ in Theorem

2.2. Because the argument used in the proof of Lemma 3.5 can also work for −α(<
0) which is not the second largest eigenvalue, we obtain that other eigenfunctions
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of Ĥ have the similar asymptotic behaviors like Lemma 3.5 (ii), This implies that
all eigenfunctions of Ĥ are bounded. It follows that all eigenfunctions of Ĥ belong
to Cβ . This leads to the fact that the set of all eigenvalues of Ĥ is a subset
of all eigenvalues of H . Since Cβ ⊂ L2(R, m(x)dx) provided 0 < β < 0.5,
we get that the set of all eigenvalues of H is a subset of all eigenvalues of Ĥ.
This establishes that the set of all eigenvalues of Ĥ is the same as the set of
all eigenvalues of H . Moreover, under the condition (1), it can be shown that
Ĥ : L2(R, m(x)dx) → L2(R, m(x)dx) is a compact operator in terms of the
Krein’s spectral theory (cf. Theorem 2 of [4] page 252). By the argument in the
proof of Theorem 2.2 below, we obtain that e−αS (β) = λ provided 0 < β < 0.5,
that is, αS(β) = − lnλ.

Proof. Since 0 < β < 0.5, we get Cβ ⊂ L2(R, m(x)dx). It is clear that
eigenvalues of H are eigenvalues of Ĥ. Further, by Lemma 2.2, we obtain that H
is a compact operator. Hence the spectrum of H consists of an at most countable
set of points of the complex plane which has no point of accumulation except
possibly zero (cf. Theorem 2 of [6] page 284). As mentioned in Remark 3.2, we
know that Ĥ is a compact operator on L2(R, m(x)dx). Hence, every non-zero
number in the spectrum of H(resp. Ĥ) is an eigenvalue of H(resp. Ĥ). Since
Cβ ⊂ L2(R, m(x)dx), we get that the spectrum of H is contained in the spectrum
of Ĥ. On the other hand, since Ĥ is a non-negative self-adjoint compact operator
on L2(R, m(x)dx), we have that the largest eigenvalue of Ĥ is 1 and the second
largest eigenvalue λ is

λ = max{(f, Ĥf)m : f ∈ L2(m),
∫

R

f(x)m(x)dx = 0,
∫

R

f2(x)m(x)dx = 1}.

Since a compact operator is also a quasi-compact operator, by Theorem 2.8 of [5]
page 91, we have Hn = P1 + Sn such that S = T − P1 and ‖Sn‖ ≤ Mλn for
each positive integer n, where M is a positive constant and P1 is the projection
with P1f(x) =

∫
R
f(y)m(y)dy for any f ∈ Cβ . By definition of αS(β), we get

e−αS (β) ≤ λ. This leads αS(β) ≥ − lnλ. This completes the proof.

Theorem 2.4. If one of the following conditions holds;
(i)

∫
R
x2m(x)dx <∞ and 0 < β < 1,

(ii)
∫

R
x2m(x)dx = ∞,

∫
R
|x|m(x)dx <∞ and 0 < β < 1,

(iii)
∫

R
|x|m(x)dx = ∞ and 1

2 ≤ β < 1,

then αX(β) ≤ (−β ln c−) ∧ (−β lnd+).

Proof. By Lemma 3.5, we obtain ϕ ∈ Cβ under the condition (ii) or the
condition (iii). Also notice that we can choose ϕ(x) = c1 + o(1) with c1 > 0
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in Lemma 3.5. It is clear that ϕ(x) = c1 + o(1) with c1 > 0 is bounded. This
gives that ϕ ∈ Cβ under the condition (i). Now we will claim that αX(β) ≤
(−β ln c−) ∧ (−β ln d+) under ϕ ∈ Cβ . By Lemma 3.6, we obtain

Exϕ(Xn) = e−nαϕ(x) + hn(x), ∀x ∈ R,

where

hn(x) = e−(n−1)αg(x) + · · ·+ e−αExg(Xn−2) +Exg(Xn−1).

Let

ln =
1
cn−
, kn =

1
dn

+

, κ ≡ inf{g(x) : x ≥ l1}, ζ ≡ inf{(−g)(x) : x ≤ −k1}.

By Lemma 3.6, we get that κ > 0, ζ > 0 and for 1 ≤ i ≤ n,

Exg(Xi−1) ≥ κ, ∀x ≥ ln; Ex(−g)(Xi−1) ≥ ζ, ∀x ≤ −kn.

Notice that under the condition x ≥ ln, we have Xi−1 ≥ c−Xi−2 ≥ · · · ≥ ci−1
− x ≥

l1 for each i with 1 ≤ i ≤ n − 1. This gives

(6)
hn(x) ≥ κ(1− e−nα)

1 − e−α
, ∀x ≥ ln,

(−hn)(x) ≥ ζ(1− e−nα)
1− e−α

, ∀x ≤ −kn.

Since the value of µ(ϕ) has three possibilities, we consider the following cases;

Case 1. µ(ϕ) = 0.

‖T nϕ− µ(ϕ)‖β = ‖T nϕ‖β

≥ sup
x≥ln

(ψ(x))−1|T nϕ(x)|

= sup
x≥ln

(ψ(x))−1
(
e−αnϕ(x) + hn(x)

)
.

By (6), we obtain

(7)

‖T nϕ‖β ≥ sup
x≥ln

(ψ(x))−1
(
e−αnϕ(x) + hn(x)

)
≥ sup

x≥ln

(ψ(x))−1

(
e−αnϕ(x) +

κ(1− e−nα)
1 − e−α

)
≥ κc

nβ
− (1− e−nα)

(1 + ηc
nβ
− )(1− e−α)

+ (ψ(ln))−1ϕ(ln)e−αn.
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By the definition of αX(β) and (7), we obtain for every n

e−nαX (β) ≥ 1
C‖ϕ‖β

{
κcnβ

− (1− e−nα)

(1 + ηcnβ
− )(1− e−α)

+ (ψ(ln))−1ϕ(ln)e−αn

}
.

This implies

e−αX (β)≥
(

κcnβ
− (1 − e−nα)

C‖ϕ‖β(1 + ηcnβ
− )(1− e−α)

∨ ϕ(ln)e−nα

C‖ϕ‖βψ(ln)

) 1
n

.

Let n approach to infinity, we obtain e−αX (β) ≥ cβ− ∨ e−α. Notice ϕ ∈ Cβ , hence
limn→∞(ψ(ln))−

1
n (ϕ(ln))

1
n ≤ 1. This gives αX(β) ≤ (−β ln c−).

Case 2. µ(ϕ) < 0. It is trivial that

‖T nϕ− µ(ϕ)‖β ≥ sup
x≥ln

(ψ(x))−1|T nϕ(x)− µ(ϕ)|

≥ sup
x≥ln

(ψ(x))−1|T nϕ(x)|.

By the same argument, we obtain

‖T nϕ‖β ≥ κcnβ
− (1 − e−nα)

(1 + ηcnβ
− )(1− e−α)

+ (ψ(ln))−1ϕ(ln)e−αn.

Therefore, we get αX(β) ≤ (−β ln c−).

Case 3. µ(ϕ) > 0.
Since µ(−ϕ) < 0 and (6), we obtain

‖T n(−ϕ)− µ(−ϕ)‖β ≥ sup
x≤−kn

(ψ(x))−1|T n(−ϕ)(x)− µ(−ϕ)|

≥ sup
x≤−kn

(ψ(x))−1|T n(−ϕ)(x)|

≥ sup
x≤−kn

(ψ(x))−1
(
e−αn(−ϕ)(x) + (−hn)(x)

)
≥ sup

x≤−kn

(ψ(x))−1

(
e−αn(−ϕ)(x) +

ζ(1− e−nα)
1 − e−α

)
≥ ζdnβ

+ (1− e−nα)

(1 + ηdnβ
+ )(1− e−α)

+ (ψ(−kn))−1(−ϕ)(−kn)e−αn.

In consequence, αX(β) ≤ (−β lnd+). Combining cases (I)(II)(III), we get αX(β) ≤
(−β ln c−) ∧ (−β lnd+). This completes the proof.
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We conjecture that Theorem 2.4 also holds for
∫

R
|x|m(x)dx = ∞ and 0 <

β < 1
2 . The following is an interesting example to show αX(β) < αS(β) under∫

R
|x|m(x)dx = ∞ and 0 < β < 1

2 .

Example 2.5. Assume that Zt is an Ornstein-Uhlenbeck process with generator
∂2

2∂x2 − x ∂
∂x . It is well-known that the spectrum of ∂2

2∂x2 − x ∂
∂x is {0,−1,−2, · · ·}

on L2(R, e−x2
dx). Let St = s(Zt), where s(x) =

∫ x
0 e

u2
du. It is clear that St has

the generator L = ∂2

m(x)∂x2 , where m(x) = 2e−2(s−1(x))2. It follows that

lim
|x|→∞

x2m(x) = 0,
∫

R

|x|m(x)dx= ∞.

Also, the spectrum of L is {0,−1,−2, · · · } on L2(R, m(x)dx). Now take c− =
d+ = 0.5, c+ = d− = 1.5. Since Ls−1(x) = −s−1(x) and s−1 ∈ Cβ for 0 <

β < 1, by the proof of Theorem 2.4, we obtain αX(β) ≤ β ln 2. If β ∈ (0, 0.5),
then we have λ = e−1 in Theorem 2.2. By Theorem 2.2, we obtain αS(β) ≥ 1. In
consequence,

αX(β) ≤ β ln 2 < 1 ≤ αS(β), for 0 < β < 0.5.

3. PROOFS OF LEMMAS

For r > 1, let δ−1
r be

δ−1
r = sup

|x|≥r

−ψ(x)
Lψ(x)

= sup
|x|≥r

(1 + η|x|−β)x2m(x)
β(1 − β)

.

Then for any r > 1, there exists a constant cr such that

(8) Lψ(x) ≤ cr − δrψ(x) for any x ∈ R.

Lemma 3.1. For any r > 1, there exists a constant ςr such that

Hψ(x) ≤ ςr + e−δrψ(x), ∀x ∈ R.

Analogously, if ρ±(x) satisfy (2, 3), then

Tψ(x) ≤ θr + γrψ(x), ∀x ∈ R.

where γr is a proper fixed constant with γ r ∈ (e−δr , 1) and θr is a proper constant
depending on γr.
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Proof. Ito’s formula gives

ψ(St) = ψ(x) +Mt +
∫ t

0
(Lψ)(Su)du

with a local martingale Mt. Let σ = inf{t ≥ 0 : St = a or b}. For a < x < b, the
optional stopping theorem shows

Exψ(St∧σ) = ψ(x) +Ex

∫ t∧σ

0
(Lψ)(Su)du.

Taking the derivative of the above both sides, we see

∂

∂t
Exψ(St∧σ) = Ex(Lψ)(St∧σ)1{σ≥t}.

Hence (8) implies

∂

∂t
Exψ(St∧σ) ≤ cr − δrExψ(St∧σ)1{σ≥t}

= cr − δrExψ(St∧σ) + δrExψ(Sσ)1{σ<t}.

Solving this differential inequality, we have

(9) Exψ(St∧σ) ≤ cr(1 − e−δrt)
δr

+e−δrtψ(x)+Ex

(
1 − e−δr(t−σ)

)
ψ(Sσ)1{σ<t}.

Hence

(10) Exψ(St)1{σ≥t} ≤
cr(1 − e−δrt)

δr
+ e−δrtψ(x).

Letting a→ −∞, b→ ∞, we see

Exψ(St) ≤ cr(1− e−δrt)
δr

+ e−δrtψ(x),

because σ ↑ ∞, which concludes the first part of this lemma after setting t =
1, ςr = cr(1−e−δr )

δr
. On the other hand, let b = ρ+(x), a = ρ−(x). Hence σ = τ .

By Px(τ+ ≤ τ−) = x−ρ−(x)
ρ+(x)−ρ−(x)

, Px(τ− ≤ τ+) = ρ+(x)−x
ρ+(x)−ρ−(x)

, we obtain

Ex(1 − eδr(τ−t))1{τ≤t} ≤
(

x − ρ−(x)
ρ+(x) − ρ−(x)

+
ρ+(x) − x

ρ+(x)− ρ−(x)

)
(1 − e−δr ).
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Further, since ρ±(x) satisfy (2, 3) and −|x|β is a convex function for |x| > 1, we
obtain

(11)
lim

x→∞
Ex(1−eδr(τ−1))ψ(Sτ)1{τ≤1}

ψ(x)
≤
{
cβ+(1−c−)
c+−c− +

cβ−(c+−1)
c+−c−

}
(1−e−δr)

<1−e−δr .

Similarly, we have

(12) lim
x→−∞(ψ(x))−1Ex

(
1 − eδr(τ−t)

)
ψ(Sτ)1{τ≤t} < 1− e−δr .

By (9, 11, 12), there exist positive constants J and γr with γr ∈ (e−δr , 1) such that

(13) Exψ(X1) ≤ ςr + γrψ(x), for |x| ≥ J,

Combine (9, 13), we get

Exψ(X1) ≤ θr + γrψ(x), for x ∈ R,

where
θr ≡ ςr ∨ sup

x∈[−J,J]

|Exψ(X1) − γrψ(x)|.

This completes the proof.

Lemma 3.2. If 0 < β < 1, then H : Cβ → Cβ is a compact operator.

Proof. Set B =
{
f ∈ Cβ : ‖f‖β ≤ 1

}
, and choose any sequence {fn}n≥1 ⊂

B. Since

Hf(x) =
∫

R

q(x, y)f(y)m(y)dy,

with a positive continuous kernel q(x, y), then {Hfn}n≥1 forms a relatively compact
family on each compact interval because Hfn is equi-bounded and equi-continuous
(in n) on each fixed compact interval (cf. Ascoli-Arzelá Theorem in [6] page 85).
Therefore we can pick up a subsequence {n(k)}k≥1 for which Hfn(k) converges
to a g ∈ C(R) uniformly on each compact interval. On the other hand, Lemma 3.1
shows

|Hfn(x)| ≤ Hψ(x) ≤ ςr + e−δrψ(x),
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which implies g ∈ Cβ , and

‖Hfn(k) − g‖β

≤ sup
|x|≤R

|Hfn(k)(x)− g(x)|(ψ(x))−1 + sup
|x|>R

|Hfn(k)(x) − g(x)|(ψ(x))−1

≤ sup
|x|≤R

|Hfn(k)(x)− g(x)|(ψ(x))−1 + 2 sup
|x|>R

[
ςr(ψ(x))−1 + e−δr

]
≤ sup

|x|≤R
|Hfn(k)(x)− g(x)|(ψ(x))−1 + 2ςrR−β + 2e−δr .

Choose ε > 0 and fix a sufficiently large r such that 2e−δr < ε. Then choosing a
sufficiently large R such that 2ςrR−β < ε, we have

‖Hfn(k) − g‖β ≤ sup
|x|≤R

|Hfn(k)(x)− g(x)|(ψ(x))−1 + 2ε,

which completes the proof.

Let Kf(x) =
∫ ρ+(x)
ρ−(x)

f(y)pc(x, y)dy = Ex {f(S1) : τ ≥ 1} , ∀f ∈ Cβ .

Lemma 3.3. The following statements are valid.
(i) If 0 < β < 1, then K : Cβ → Cβ is a compact operator.

(ii) ‖T −K‖ ≤ δ, where

δ ≡ sup
x∈R

{
ψ(ρ+(x))O+(x)

ψ(x)
+
ψ(ρ−(x))O−(x)

ψ(x)

}
,

O+(x) = Px

(
τ+ < τ−, τ+ < 1

)
, O−(x) = Px

(
τ− < τ+, τ− < 1

)
.

Proof. To show (i), we apply (10) for σ = τ and t = 1, then

Kψ(x) = Exψ(S1)1{τ≥1} ≤ ςr + e−δrψ(x).

Since pc(x, y) is a a continuous kernel, the compactness of K can be proved exactly
in the same manner as the proof of H . To show (ii), observe

Tf(x) −Kf(x) = Exf(Sτ )1{τ<1}

= f(ρ+(x))O+(x) + f(ρ−(x))O−(x).

Therefore we have

‖Tf −Kf‖β ≤ ‖f‖β sup
x∈R

{
ψ(ρ+(x))O+(x)

ψ(x)
+
ψ(ρ−(x))O−(x)

ψ(x)

}
,
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which completes the proof.

Remark 3.4. Set E = {x ∈ R : ρ−(x) ≥ 1 or ρ+(x) ≤ −1}.

c1 = sup
x∈E

{
ψ(ρ+(x))O+(x)

ψ(x)
+
ψ(ρ−(x))O−(x)

ψ(x)

}
.

We remark that

O+(x) < Px

(
τ+ < τ−

)
=

x− ρ−(x)
ρ+(x)− ρ−(x)

,

O−(x) < Px

(
τ− < τ+

)
=

ρ+(x) − x

ρ+(x)− ρ−(x)
.

Therefore the convexity of ψ(x) for |x| ≥ 1 implies

ψ(ρ+(x))O+(x) + ψ(ρ−(x))O−(x)

≤ ψ

(
ρ+(x)(x− ρ−(x))
ρ+(x) − ρ−(x)

+
ρ−(x)(ρ+(x)− x)
ρ+(x) − ρ−(x)

)
= ψ(x),

hence c1 ≤ 1. On the other hand, generally we have

ψ(ρ+(x))O+(x)
ψ(x)

+
ψ(ρ−(x))O−(x)

ψ(x)
≤ ψ(ρ+(x)) ∨ ψ(ρ−(x))

ψ(x)
Px(τ < 1).

Now set

c2 = sup
x∈A

{
ψ(ρ+(x)) ∨ ψ(ρ−(x))

ψ(x)
Px(τ < 1)

}
,

A =
{
x ∈ R : ρ−(x) < 1, ρ+(x) > −1

}
.

Suppose A is bounded. Then supx∈APx(τ < 1) < 1, therefore if we choose an
appropriate η, we can assume without loss of generality c2 < 1. This is because

ψ(ρ+(x)) ∨ ψ(ρ−(x))
ψ(x)

→ 1, uniformly on A as η ↑ ∞.

Since δ ≤ c1 ∨ c2, a sufficient condition for δ < 1 is

sup
x/∈A

{
ψ(ρ+(x))Px (τ+ < τ−)

ψ(x)
+
ψ(ρ−(x))Px(τ+ < τ−)

ψ(x)

}
< 1.
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Under the condition (1), the operator L on L2(R, m(x)dx) has a discrete spec-
trum (cf. Theorem 2 of [4] page 252 or Theorem 1-2 of [3] page 140-143). The
largest eigenvalue is 0 and the eigenfunction is a constant. Let −α(< 0) be the
second largest eigenvalue and ϕ(x) be its eigenfunction. It is also well known that
ϕ(x) has only one zero on R and for simplicity we let ϕ(0) = 0. Thus, without
loss of generality, we assume ϕ(x) is positive on (0,∞) and negative on (−∞, 0)
in the sequel. The following lemma is consulted from [4].

Lemma 3.5 ϕ(x) is increasing on (0,∞) and has the following asymptotic
behavior depending on the condition of m.

(i) If
∫∞
1 x2m(x)dx < ∞, then ϕ(x) = c1 + c2x + o(1) as x → ∞, where

c1, c2 ≥ 0 and c1 + c2 > 0. Conversely, for any c1, c2 ≥ 0 with c1 + c2 > 0,
there exists a unique eigenfunction ϕ(x) satisfying ϕ(x) = c 1 + c2x + o(1)
as x→ ∞.

(ii) If
∫∞
1 x2m(x)dx = ∞ and

∫∞
1 xm(x)dx < ∞, then ϕ(x) = c1 + o(1) as

x→ ∞ with c1 > 0.

(iii) If
∫∞
1 xm(x)dx = ∞, then ϕ(x) ↑ ∞ and ϕ(x) = o(

√
x) as x→ ∞.

Proof. At first, we will claim that ϕ ′(x) > 0 for every x > 0. Assume
ϕ′(b) = 0 for some b > 0. Since ϕ′′(x) = −αϕ(x)m(x) < 0, we have ϕ′(b+δ) < 0
for some small δ > 0. The above also implies that ϕ′(x) is decreasing. Then
ϕ′(x) < ϕ′(b+ δ) if x ≥ b+ δ. Therefore, for x ≥ b+ δ,

ϕ(x) = ϕ(b+ δ) +
∫ x

b+δ
ϕ′(u)du ≤ ϕ(b+ δ) + ϕ′(b+ δ)(x− b− δ).

From this, we see ϕ(x) < 0 if x is large enough. However, this is a contradiction.
Hence ϕ′(x) can not have zeroes on [0,∞). Apparently ϕ′(0) > 0, hence ϕ′(x) > 0
for every x ≥ 0. This shows that ϕ(x) is increasing on (0,∞). Now let

h(x) =
ϕ′(x)
ϕ(x)

, for x > 0.

Then
ϕ(x) = ϕ(1)e

∫ x
1 h(y)dy for x ≥ 1.

Since

(14) h′(x) = −αm(x) − h(x)2 < 0,
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we obtain that h(x) is positive and decreasing to 0 as x → +∞. In fact, since
h(x) > 0, we see there exists a constant c0 ≥ 0 such that h(x) → c0, as x → ∞.
Thus, (14) implies

h(x) − h(y) =
∫ y

x

(αm(z) + h(z)2)dz,

hence letting y → ∞, we have

(15) h(x)− c0 =
∫ ∞

x
(αm(z) + h(z)2)dz.

Therefore ∫ +∞

1

h(x)2dx <∞

holds, which in particular implies c0 = 0. On the other hand, since

ϕ′′(x) = −αm(x)ϕ(x) < 0 and ϕ′(x) > 0,

the limit ϕ′(x) → c ≥ 0 exists as x→ ∞. And it is clear that

ϕ(x)
x

→ c, as x→ +∞.

Suppose the condition (i) holds. Let f, g be the solutions of integral equations

(16) f(x) = 1 − α

∫ ∞

x
(y − x)f(y)m(y)dy,

(17) g(x) = x − α

∫ ∞

x
(y − x)g(y)m(y)dy,

respectively. The existence of f, g can be shown as follows. Let f0(x) = 1 and
fn(x) =

∫∞
x (y−x)fn−1(y)m(y)dy. Under the condition (i), fn(x) is well-defined

for any n ≥ 0. Moreover, it follows that fn(x) ≤ 1
n!B(x)n for any fixed x because

fn(x) =
∫ ∞

x
(y − x)fn−1(y)m(y)dy

≤ 1
(n− 1)!

∫ ∞

x
(y − x)B(y)n−1m(y)dy

≤ 1
(n− 1)!

∫ ∞

x
yB(y)n−1m(y)dy

= − 1
(n− 1)!

∫ ∞

x

B(y)n−1dB(y)

=
1
n!
B(x)n for any n ≥ 0,
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where B(x) =
∫∞
x ym(y)dy. Thus, (16) can be solved by

f(x) = 1 +
∞∑

n=1

(−α)nfn(x).

Similarly, under the condition (i), (17) can be solved by letting

g0(x) = x, gn(x) =
∫ ∞

x
(y − x)gn−1(y)m(y)dy, g(x) = x+

∞∑
n=1

(−α)ngn(x).

Since f and g satisfy φ′′(x) = −αm(x)φ(x) and they are linearly independent, we
have

ϕ(x) = c1f(x) + c2g(x)

with some constants c1, c2. This completes the proof of the statement (i). Suppose
the condition (ii) holds. Then c = 0, because, otherwise(c > 0), ϕ(x) ∼ cx, as
x→ ∞, and ϕ ∈ L2(R, m(x)dx) will imply∫ ∞

1
y2m(y)dy <∞,

which contradicts the condition (ii). Now ϕ′(x) = α
∫∞
x yϕ(y)m(y)dy, which

implies, for x ≥ N

ϕ(x) = ϕ(N ) +
∫ x

N
ϕ′(y)dy

= ϕ(N ) + α

∫ x

N

(y −N )ϕ(y)m(y)dy+ α(x−N )
∫ ∞

x

ϕ(y)m(y)dy

≤ ϕ(N ) + αϕ(x)
∫ x

N

(y −N )m(y)dy+ α(x−N )
∫ ∞

x

ϕ(y)m(y)dy,

since ϕ is increasing. Choosing sufficiently large N so that

α

∫ x

N

(y −N )m(y)dy ≤ α

∫ ∞

N

ym(y)dy < 1,

we see that
ϕ(x) ≤ A+B(x −N )

∫ ∞

x

ϕ(y)m(y)dy

with some A,B > 0. An iteration shows that ϕ(x) is bounded under the condition
(ii). This completes the proof of the statement (ii). ϕ(x) ↑ ∞ can be accomplished
by the identity (15), since∫ x

1
h(y)dy = α

∫ x

1
dy

∫ ∞

y
m(z)dz +

∫ x

1
dy

∫ ∞

y
h(z)2dz

≥ α

∫ x

1
(y − 1)m(y)dy+ α(x− 1)

∫ ∞

x
m(y)dy.
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Finally, the proof of ϕ(x) = o(
√
x) as x→ ∞ is given below. Under the condition∫∞

1 ym(y)dy = ∞, we have ϕ′(x) → 0, therefore

ϕ′(x) = α

∫ ∞

x
ϕ(y)m(y)dy

≤ α

(∫ ∞

x
ϕ(y)2m(y)dy

∫ ∞

x
m(y)dy

)1
2

.

However, the condition m(x)x2 → 0 implies∫ ∞

x
m(y)dy = o(x−1).

This combined with ϕ ∈ L2(m) shows

ϕ′(x) = o(x−
1
2 ).

Since

ϕ(x) = ϕ(0) +
∫ x

0
ϕ′(y)dy,

we easily see that ϕ(x) = o(
√
x), as x→ ∞ holds.

Lemma 3.6. Assume

(18) 0 < lim inf
x→∞

ρ−(x)
x

≤ lim sup
x→∞

ρ+(x)
x

<∞,

(19) 0 < lim inf
x→−∞

|ρ+(x)|
|x| ≤ lim sup

x→−∞
| |ρ

−(x)|
|x| <∞.

Then we have
Tϕ(x) = e−αϕ(x) + g(x), ∀x ∈ R,

with
inf

x:x>0,ρ−(x)>0
{g(x)} > 0, inf

x:x<0,ρ+(x)<0
{−g(x)} > 0.

Proof. Firstly, we will claim Exτ → 0 as x→ ∞. Observe

Exτ =
ρ+(x)− x

ρ+(x)− ρ−(x)

∫ x

ρ−(x)
(y − ρ−(x))m(y)dy

+
x− ρ−(x)

ρ+(x)− ρ−(x)

∫ ρ+(x)

x
(ρ+(x)− y)m(y)dy.
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Therefore if ρ−(x) > 0, we see

Exτ ≤
(

max
z∈[ρ−(x),ρ+(x)]

(z2m(z))
)

(ρ+(x)− ρ−(x))
∫ ρ+(x)

ρ−(x)
y−2dy

=
(

max
z∈[ρ−(x),ρ+(x)]

(z2m(z))
)

(ρ+(x)− ρ−(x))2

ρ+(x)ρ−(x)
.

Then (1) and (18) show that the right hand side converges to 0 as x → ∞. This
completes the claim. Secondly, consider

Exϕ(S1∧τ) = e−αϕ(x) + Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{τ≤1}.

Therefore

g(x) = Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{τ≤1}.

Let ε ∈ (0, 1). Then ρ−(x) > 0 implies

Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{τ≤1} = Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{τ≤ε}

+Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{ε<τ≤1}

> Ex

(
1 − e−α(1−τ )

)
ϕ(Sτ )1{τ≤ε}

>
(
1 − e−α(1−ε)

)
Exϕ(Sτ )1{τ≤ε}

>
(
1 − e−α(1−ε)

)
ϕ(ρ−(x))Px(τ ≤ ε).

Since

Px (τ ≤ ε) = 1− Px(τ > ε)

≥ 1− Exτ

ε
→ 1 as x→ ∞,

we obtain infx:x>0,ρ−(x)>0{g(x)} > 0. Similarly, infx:x<0,ρ+(x)<0{−g(x)} > 0
follows from (19). This completes the proof.
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string, Izvestiia Vysshikh Učhebnykh Zavedenii Matematika, 2 (1958), 136-153.

4. S. Kotani and S. Watanabe, Krein’s spectral theory of strings and generalized diffusion
processes, Lecture Notes in Mathematics, 923 (1982), 235-259.

5. U. Krengel, Ergodic theorems, Walter de Gruyter, New York, 1985.

6. K. Yosida, Function Analysis, Springer-Verlag, Berlin Heidelberg, 1980.

Feng-Rung Hu
Department of Mathematic Education,
National Taichung Teachers College,
140 Min-Sheng Road,
Taichung 40302, Taiwan
E-mail: fengrung@mail.ntctc.edu.tw


