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Long Time Behavior for a Wave Equation with Time Delay

Gongwei Liu*, Hongyun Yue and Hongwei Zhang

Abstract. In this paper, we consider the wave equation with internal time delay and

source terms

utt(x, t)−4u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) + f(x, u) = h(x)

in a bounded domain. By virtue of Galerkin method combined with the priori esti-

mates, we prove the existence and uniqueness of global solution under initial-boundary

data for the above equation. Moreover, under suitable conditions on the forcing term

f(x, u) and µ1, µ2, the existence of a compact global attractor is proved. Further, the

asymptotic behavior and the decay property of global solution are discussed.

1. Introduction

In this paper, we investigate the following wave equation with time delay term in the

feedback

(1.1)


utt(x, t)−4u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) + f(x, u) = h(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, 0 < t < τ

where Ω is a bounded domain of RN , N ≥ 1 with a sufficiently smooth boundary ∂Ω. Here

f and h are external forcing terms, the source term f(x, u) ≈ |u|α u + |u|β u, α > β ≥ 0,

µ1, µ2 are some constants, τ > 0 represents the time delay, u0, u1, f0 are given functions

belonging to some suitable spaces.

In absence of delay (µ2 = 0), the problem (1.1) becomes

(1.2)

utt(x, t)−4u(x, t) + ut(x, t) + f(x, u) = h(x), x ∈ Ω, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), u(x, t)
∣∣
∂Ω

= 0l
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which was considered by several authors. For example, the existence of the global attractor

in the energy space H1
0 (Ω) × L2(Ω) was well discussed and it was a standard result that

if 0 < α < 2/[N − 2]+, (see [13, 15]). The proof is based on the exponential decay of

the solutions for the case f(x, u) = h(x) = 0 and the compactness of the embedding

H1
0 (Ω) ↪→ L2(Ω). The critical or super critical cases were also considered, see [3, 9, 12].

When the damping term is replaced by the nonlinear term ρ(ut), the similar problem was

also discussed by Chueshov and Lasiecka [4], Nakao [21].

Introducing the delay term µ2ut(x, t − τ) makes the problem different from those

considered in the literatures. Time delay arises in many applications depending not only

on the present state but also on some past occurrences. It may turn a well-behaved system

into a wild one. The presence of delay may be a source of instability. For example, it was

shown in [7, 8, 14, 22, 23, 29] that an arbitrarily small delay may destabilize a system that

is uniformly asymptotically stable in the absence of delay unless additional control terms

have been used.

In [22], the authors examined a system with the linear damping and a delay inside the

domain. More precisely, they considered the following system

(1.3)



utt(x, t)−4u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, 0 < t < τ,

and proved the energy of the problem (1.3) is exponentially stable provided 0 < µ2 < µ1.

On the contrary, it is also showed that in the case µ2 ≥ µ1 that there exists a sequence

of delays for which the corresponding solution is unstable. The method used in [22] is an

observability inequality and a Carleman estimate. The same results were also obtained

when both the damping and the delay act on the boundary. We also refer the readers

to [29], where the authors obtained the same results as in [22] for the one space dimension

by use of the spectral analysis approach.

Recently, in [25], the authors considered abstract semilinear evolution equations with

a time-delay and some source term. They show that, if the C0 semigroup describing

the linear part of the model is exponentially stable, then the whole system retains this

property when a suitable smallness condition on the time-delay is satisfied.

The case of the time-varying delay in wave equation has also been studied by several

authors, see for example, [18, 19,24,26,27] and the references therein.

In the works mentioned above, the authors must used the damping term µ1ut(x, t) to

control the delay term in the priori estimate of the solution and the decay estimate of the

energy. By the way, in [6], the authors improve earlier results in the literature by making
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using of the viscoelastic term to control the time constant delay term.

But, to our best knowledge, there is no results on the existence, energy decay and

the global attractors for the whole system which includes the source term f(u) and non-

homogeneous term h(x). Recently, we considered the well-posedness for a class of wave

equation with past history and a delay [20]. Motivated by there results, in this paper,

we will investigate the problem (1.1) under suitable assumptions. Our main difficulty in

handing this model is that we have the delay term µ2ut(t − τ), which may induce some

instabilities. To overcome this difficulty, we introduce the linear damping term to control

the delay term as usual, we also need some modified energy functional to study the global

attractors and the decay result of the problem (1.1).

The plan of this paper is as follows. In Section 2, we present some notations and

assumptions needed for our work, and then give the main results (Theorems 2.1, 2.5 and

2.6). The proof of Theorem 2.1 is given in Section 3. Section 4 contains some abstract

results in the theory on infinite dimensional dynamical systems that will be used. The

proofs of Theorems 2.5 and 2.6 are given in Sections 5 and 6, respectively.

2. Preliminaries and main results

In this section, we present some assumptions and state the main results. As usual (· , ·)
denotes L2-inner product and ‖ · ‖p denotes Lp-norms. It is well known the norms in H1

0 (Ω)

is given by ‖∇ · ‖2, and the dual space of H1
0 (Ω) is denoted by H−1(Ω). Throughout this

paper, C and Ci are used to denote the generic positive constant. From now on, we shall

omit x and t in all functions of x and t if there is no ambiguity.

We define the phase space

H = H1
0 (Ω)× L2(Ω)

equipped with the norm

‖(u, v)‖2H = ‖∇u‖22 + ‖v‖22 .

Let us state precise assumptions on the term f(x, u) and h(x).

(H1) f(x, u) is measurable in x ∈ Ω for all u ∈ R and continuous in u ∈ R for a.e. x ∈ Ω,

satisfying

(2.1) f(x, 0) = 0, |fu(x, u)| ≤ k(1 + |u|α),

where k > 0 and α satisfies

(2.2) 0 < α ≤ 2

N − 2
if N ≥ 3, or α > 0 if N = 1, 2.

(H2) h ∈ L2(Ω).
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(H3) The initial data f0 satisfies the compatibility condition f0(· , 0) = u1.

Then we have the following existence result.

Theorem 2.1. Assume that (H1)–(H3) hold, then we have

(i) If (u0, u1, f0) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×H1
0 (Ω, H1(−τ, 0)), then the problem (1.1)

has a regular solution in the class

u ∈ L∞loc((0,∞);H2(Ω) ∩H1
0 (Ω)), ut ∈ L∞loc((0,∞);H1

0 (Ω)),

utt ∈ L∞loc((0,∞);L2(Ω)).

(ii) If (u0, u1, f0) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω, (−τ, 0)), then the problem (1.1) has a weak

solution in the class

u ∈ L∞loc((0,∞);H1
0 (Ω)), ut ∈ L∞loc((0,∞);L2(Ω)), utt ∈ L∞loc((0,∞);H−1(Ω))

satisfying

(2.3) (u, ut) ∈ C([0, T ],H), ∀T > 0.

Moreover, the regular (or weak) solutions depend on the initial data (u0, u1) ∈ H, h ∈
L2(Ω) and f0 ∈ L2(Ω, (−τ, 0)). In particular, problem (1.1) has uniqueness.

Remark 2.2. By combining (2.1) and the mean value theorem, we can deduce that there

exists a constant k0 > 0 such that

(2.4) |f(x, u)− f(x, v)| ≤ k0(1 + |u|α + |v|α) |u− v|

for a.e. x ∈ Ω and u, v ∈ R. Also it follows from (2.2) that H1
0 (Ω) ↪→ L2(α+1)(Ω).

Remark 2.3. The uniqueness of the problem (1.1) defines the evolution operator

S(t) : H → H, S(t)(u0, u1) = (u(t), ut(t)), t ≥ 0,

where (u(t), ut(t)) is the weak solution corresponding to initial data (u0, u1). It turns out

that S(t) satisfies the semigroup properties

S(0) = I and S(t+ s) = S(t)S(s), t, s ≥ 0.

Moreover, the continuous dependence on the initial data in H and the regular (2.3) imply

that S(t) is strongly continuous on H. Then, the long-time dynamic of the problem (1.1)

can be studied by the continuous dynamical system (H, S(t)).
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Remark 2.4. There is no restrictions on µ1 and µ2 in Theorem 2.1, that is, the prob-

lem (1.1) has a unique global solution for arbitrary numbers µ1 and µ2. When a suitable

smallness condition on the time-delay feedback is satisfied (i.e., 0 < |µ2| < µ1), we have

the following Theorems 2.5 and 2.6.

Let λ1 > 0 be the first eigenvalue of −4w = λw in Ω with w = 0 on ∂Ω. Now, we

replace (2.2) by the following condition

(2.5) 0 < α <
2

N − 2
if N ≥ 3, or α > 0 if N = 1, 2.

We set

F (x, u) =

∫ u

0
f(x, s) ds.

In addition, we suppose that there exist constants L0 > 0 and β ∈ [0, λ1) such that

(2.6) − L0 − βu2 ≤ f(x, u)u and − L0 −
β

2
u2 ≤ F (x, u)

for a.e. x ∈ Ω and u ∈ R.

Theorem 2.5. Assume that the hypotheses of Theorem 2.1, 0 < |µ2| < µ1, (2.5) and (2.6)

hold. Then the dynamical system (H, S(t)) corresponds to the problem (1.1) possesses a

compact global attractor A. Moreover, it is characterized by the unstable manifold

A =Mu(N )

of the set of stationary solutions N = {(u, 0) ∈ H | −4u+ f(x, u) = h}.

A typical assumption that implies the conditions (2.6) on f is

lim inf
|s|→∞

f(x, s)

s
> −λ1.

For the decay property of solution u(t) for problem (1.1), we have

Theorem 2.6. Let u(t) be a weak solution in Theorem 2.1 with h = 0. Let all assumptions

in (H1) be satisfied, and 0 < |µ2| < µ1. In addition, we replace (2.6) with

(2.7) − β

2
u2 ≤ F (x, u) ≤ f(x, u)u

for a.e. x ∈ Ω and u ∈ R. Then there exist two positive constants κ, K such that

(2.8) E(u(t)) =
1

2
‖ut(t)‖22 +

1

2
‖∇u(t)‖22 +

∫
Ω
F (x, u(t)) dx ≤ Ke−κt, ∀ t ≥ 0.
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3. Well-posedness

In this section we first prove the existence and uniqueness of regular solutions to prob-

lem (1.1) by using Faedo-Galerkin method as in [10,17]. Then, we extend the same result

to the weak solutions by using the density arguments.

The energy functional corresponding to the system (1.1) is given by

(3.1) E(u(t)) =
1

2
‖ut(t)‖22 +

1

2
‖∇u(t)‖22 +

∫
Ω
F (x, u(t)) dx−

∫
Ω
hu(t) dx.

3.1. Approximate problem

First, we assume u0 ∈ H2(Ω)∩H1
0 (Ω), u1 ∈ H1

0 (Ω) and f0 ∈ L2(Ω, H1(−τ, 0)). Let T > 0

be fixed and denote by Vk the space generated by {w1, w2, . . . , wk} where {wk}∞k=1 is a

basis of H2(Ω) ∩H1
0 (Ω).

We will seek an approximate solution in the form

um(x, t) =
m∑
j=1

gjm(t)wj(x)

satisfying the following approximate equation

(3.2) (u′′m, wj) + (∇um,∇wj) + µ1(u′m, wj) + µ2(u′m(t− τ), wj) + (f(um)− h,wj) = 0

with initial data

(3.3) (um(0), u′m(0)) = (u0m, u1m), u′m(t) = f0m(t), t ∈ [−τ, 0),

where

(3.4)

u0m → u0 in H2(Ω) ∩H1
0 (Ω),

u1m → u1 in H1
0 (Ω),

f0m(t)→ f0(t) in L2(Ω, H1(−τ, 0)).

We note that the approximate problem (3.2)–(3.4) can be reduced to an ordinary

differential equation system and by standard existence theory for ODEs, the problem

admits a local solution um(t) in some interval [0, Tm) with 0 < Tm ≤ T . The following

estimates imply that the local solutions um(t) to the interval [0, T ] for any given T > 0.

3.2. Priori estimates

The first estimate. Multiplying the approximate equation in (3.1) by g′jm, then summing

up the result in j, we deduce that

d

dt

{
1

2

∥∥u′m∥∥2

2
+

1

2
‖∇um‖22 +

∫
Ω
F (x, um) dx−

∫
Ω
hum dx

}
= −µ1

∥∥u′m∥∥2

2
− µ2

∫
Ω
u′m(t− τ)u′m dx.

(3.5)
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For simplicity, we will omit the index m when we study the energy functional, since it can

also be used for existing solutions.

Let us define the modified energy

Ẽ(u(t)) = E(u(t)) + L0 |Ω|+
1

λ1%
‖h‖22 ,

with any constant % > 0.

Since λ1 ‖u‖22 ≤ ‖∇u‖
2
2, it follows from the condition (2.6) that∫

Ω
F (x, u) dx ≥ − β

2λ1
‖∇u‖22 − L0 |Ω| ,

and for such % > 0,

−
∫

Ω
hu dx ≥ −%

4
‖∇u‖22 −

1

λ1%
‖h‖22 .

Then, we deduce that

Ẽ(u(t)) ≥
(

1

2
− β

2λ1
− %

4

)
‖∇u(t)‖22 +

1

2
‖ut(t)‖22 .

Noticing β ∈ [0, λ1), taking % > 0 sufficiently small, we can obtain

(3.6) Ẽ(u(t)) ≥ β0

(
‖∇u‖22 + ‖ut‖22

)
for some positive constant β0 < min {β, 1/2} (in the case β = 0, we choose % = 1 and

β0 = 1/4).

For the last term in (3.5), it follows from Hölder’s inequality that

−µ2

∫
Ω
u′m(t− τ)u′m dx ≤

1

2
|µ2|

∥∥u′m(t)
∥∥2

2
+

1

2
|µ2|

∫
Ω
u′2m(t− τ) dx.

Hence, (3.5) implies that

(3.7)
d

dt
Ẽ(um(t)) ≤

(
|µ1|+

|µ2|
2

)∥∥u′m(t)
∥∥2

2
+

1

2
|µ2|

∫
Ω
u′2m(t− τ) dx.

Integrating (3.7) on [0, t], we obtain

Ẽ(um(t)) ≤ Ẽ(um(0)) +

(
|µ1|+

1

2
|µ2|

)∫ t

0

∫
Ω
u2
ms(s) dxds

+
1

2
|µ2|

∫ t

0

∫
Ω
u2
ms(s− τ) dxds.

(3.8)
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Noticing the past history values of umt(t), t ∈ [−τ, 0], the last term in (3.8) can be rewritten

as follows ∫ t

0

∫
Ω
u2
ms(s− τ) dxds =

∫
Ω

∫ t−τ

−τ
u2
mρ(ρ) dρdx

=

∫
Ω

∫ 0

−τ
u2
mρ(ρ) dρdx+

∫
Ω

∫ t−τ

0
u2
mρ(ρ) dρdx

=

∫
Ω

∫ 0

−τ
f2

0m(ρ) dρdx+

∫
Ω

∫ t−τ

0
u2
mρ(ρ) dρdx

≤
∫

Ω

∫ 0

−τ
f2

0m(ρ) dρdx+

∫
Ω

∫ t

0
u2
mρ(ρ) dρdx.

(3.9)

From (3.6), (3.8) and (3.9), we have

Ẽ(um(t)) ≤ Ẽ(um(0)) +
1

2
|µ2|

∫
Ω

∫ 0

−τ
f2

0m(ρ) dρdx+ 4(|µ1|+ |µ2|)
∫ t

0
Ẽ(um(s)) ds.

From the choice of u0m, u1m and f0m, using Gronwall’s lemma, once T > 0 be given,

∀ t ∈ [0, T ], we can find a positive constant C independent of m such that

Ẽ(um(t)) ≤ C, ∀ t ∈ [0, T ], ∀m ∈ N.

Noticing (3.6), we conclude that

(3.10) ‖∇um(t)‖22 +
∥∥u′m(t)

∥∥2

2
≤ C, ∀ t ∈ [0, T ], ∀m ∈ N.

The second estimate. We first estimate ‖u′′m(0)‖2. Replacing wj by u′′m(t) in (3.2)

and taking t = 0, we obtain∥∥u′′m(0)
∥∥2

2

= −(∇um(0),∇u′′m(0))− µ1(u′m(0), u′′m(0))− µ2(u′m(−τ), u′′m(0))

− (f(· , um(0)), u′′m(0)) + (h, u′′m(0))

≤
(
‖∇um(0)‖2 + |µ1|

∥∥u′m(0)
∥∥

2
+ |µ2|

∥∥u′m(−τ)
∥∥2

2
+ ‖f(· , um(0))‖2 + ‖h‖2

)∥∥u′′m(0)
∥∥

2
.

From the choice of u0m, u1m, h and (3.10), we deduce

(3.11)
∥∥u′′m(0)

∥∥
2
≤ C.

Now, getting derivative of (3.2) with respect to t, we get

(u′′′m, wj) + (∇u′m,∇wj) + µ1(u′′m, wj) + µ2(u′′m(t− τ), wj) + (fu(· , um)u′m, wj) = 0.

Multiplying by g′′jm, summing over j from 1 to m, it follows that

d

dt

(
1

2

∥∥u′′m(t)
∥∥2

2
+

1

2

∥∥∇u′m(t)
∥∥2

2

)
= −µ1

∥∥u′′m(t)
∥∥2

2
− µ2

∫
Ω
u′′m(t− τ)u′′m(t) dx

−
∫

Ω
fu(· , um)u′m(t)u′′m(t) dx.

(3.12)
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As the proof of (3.9), we have∫ t

0

∫
Ω
u2
mss(s− τ) dxds =

∫
Ω

∫ t−τ

−τ
u2
mρρ(ρ) dρdx

≤
∫

Ω

∫ 0

−τ
f2

0mρ(ρ) dρdx+

∫
Ω

∫ t

0
u2
mρρ(ρ) dρdx.

Since α
2(α+1) + 1

2(α+1) + 1
2 = 1, by the generalized Hölder’s inequality, assumption (2.1)–

(2.2), and the estimate (3.10), we have

−
∫

Ω
fu(· , um)u′m(t)u′′m(t) dx ≤ k

∫
Ω

(1 + |um(t)|α)
∣∣u′m(t)

∣∣ ∣∣u′′m(t)
∣∣ dx

≤ k
(
|Ω|α/[2(α+1)] + ‖um(t)‖α2(α+1)

)∥∥u′m(t)
∥∥

2(α+1)

∥∥u′′m(t)
∥∥

2

≤ C1

(∥∥u′′m(t)
∥∥2

2
+
∥∥∇u′m(t)

∥∥2

2

)
.

Similar as the proof of (3.10), using the initial data (3.3) and (3.4), it follows from (3.12)

that

Fm(t) ≤ Fm(0) + |µ2|
∫

Ω

∫ 0

−τ
f2

0mρ(ρ) dρdx+ C2

∫ t

0
Fm(s) ds,

with C2 = C2(C1, µ1, µ2) > 0, where

Fm(t) =
∥∥u′′m(t)

∥∥2

2
+
∥∥∇u′m(t)

∥∥2

2
.

Using Gronwall’s lemma, once T > 0 be given, ∀ t ∈ [0, T ], there exists a positive constant

C independent of m such that

(3.13)
∥∥u′′m(t)

∥∥2

2
+
∥∥∇u′m(t)

∥∥2

2
≤ C.

The first and second a priori estimates permit us to obtain a subsequence of (um)

which from now on will be also denoted by (um) and a function u satisfying

um ⇀ u weak star in L∞loc(0,∞;H1
0 (Ω)),(3.14)

u′m ⇀ u′ weak star in L∞loc(0,∞;H1
0 (Ω)),(3.15)

u′′m ⇀ u′′ weak star in L∞loc(0,∞;L2(Ω)).(3.16)

Since H1
0 ↪→ L2(Ω) is compact, thanks to Aubin-Lions theorem, we have that

um → u strongly in L∞loc(0,∞;L2(Ω)),

and consequently, making use of Lion’s lemma, we obtain

(3.17) f(x, um) ⇀ f(x, u) weakly in L∞loc(0,∞;L2(Ω)).
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Convergence (3.14)–(3.17) permit us to pass to the limit the approximate problem, as

usual, we multiply the approximate equation (3.2) by test function θ(t) ∈ D(0, T ), and by

integration over [0, T ], after passing to the limit, we obtain

(3.18)

∫ T

0

{(utt, wj) + (∇u,∇wj) + µ1(ut, wj) + µ2(ut(t− τ), wj) + (f(u)− h,wj)} θ(t) dt = 0.

Since (wj) is a basis of H2(Ω)∩H1
0 (Ω), replacing wj by v ∈ D(Ω), from (3.18), we deduce

that

utt(x, t)−4u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) + f(x, u) = h(x) in D ′(Ω× (0, T )).

Moreover, since u′′, f(x, u) ∈ L2
loc(0,∞);L2(Ω)) and u′ ∈ L2

loc(−τ,∞;L2(Ω), we have

4u ∈ L2
loc((0,∞);L2(Ω)) and hence

utt(x, t)−4u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) + f(x, u) = h(x) in L2
loc(Ω× (0, T )).

The proof of Theorem 2.1(i) is finished.

Weak solution. In order to obtain the existence of weak solutions we use standard

arguments of density. Indeed, we have obtained regular solutions under regular initial

data (u0, u1) ∈ H2(Ω) ∩ H1
0 (Ω) × H1

0 (Ω) and f0 ∈ H1
0 (Ω, H1(−τ, 0)). If we take initial

data (u0, u1) ∈ H1
0 (Ω)×L2(Ω) and f0 ∈ L2(Ω×(−τ, 0)), there exists a sequence (un0 , u

n
1 ) ∈

H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω) and fn0 ∈ H1
0 (Ω, H1(−τ, 0)) such that

un0 → u0 in H1
0 (Ω), un1 → u1 in L2(Ω), fn0 → f0 in L2(Ω× (−τ, 0)).

Hence, the uniform estimates on the corresponding regular solutions (un, unt ) imply the

existence of a subsequence (still denote (un, unt )) which converges to a weak solution (u, ut)

of the problem (1.1) satisfying (2.3).

Continuous dependence and uniqueness. First we consider the case of the regular

solutions. Let u(t) and v(t) be two regular solutions of the problem (1.1) with respect to

the initial data {u0, u1, h1, f01} and {v0, v1, h2, f02} respectively. Then setting w = u− v,

we have that w is a regular solution of the problem

(3.19) wtt −4w + µ1wt + µ2wt(t− τ) + f(u)− f(v) = h1 − h2,

with Dirichlet boundary condition and initial data

(3.20) w(0) = u0 − v0, wt(0) = u1 − v1.

Hence, we can multiply (3.19) with wt in L2(Ω) and integrate over Ω. Then we obtain

1

2

d

dt

{
‖wt‖22 + ‖∇w‖22

}
= −

∫
Ω

(f(· , u)− f(· , v))wt dx− µ1 ‖wt‖22

− µ2

∫
Ω
wtwt(t− τ) dx+

∫
Ω

(h1 − h2)wt dx.

(3.21)
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To simply notations, let

G(t) =
1

2

(
‖wt‖22 + ‖∇w‖22

)
,

and the norm of the initial data is bounded by some R > 0. Then for any given T > 0,

we use CR,T to denote some positive constants which depend on R and T .

It remains to estimate each term on the right-hand side of (3.21). It follows from the

generalized Hölder’s inequality that∫
Ω

(f(· , u)− f(· , v))wt dx ≤ k0

∫
Ω

(1 + |u|α + |v|α) |wwt| dx

≤ k0

(
|Ω|α/[2(α+1)] + ‖u‖α2(α+1) + ‖v‖α2(α+1)

)
‖w‖2(α+1) ‖wt‖2

≤ CR,TG(t)

and ∫
Ω

(h1 − h2)wt dx ≤ ‖h1 − h2‖22 + CR,TG(t).

Hence (3.21) becomes that

(3.22)
d

dt
G(t) ≤ CR,TG(t) + ‖h1 − h2‖22 +

(
µ1 +

|µ2|
2

)
‖wt‖22 +

|µ2|
2

∫
Ω
w2
t (t− τ) dx.

Moreover,∫ t

0

∫
Ω
w2
t (s− τ) dxds ≤

∫
Ω

∫ 0

−τ
(f01(ρ)− f02(ρ))2 dρdx+

∫
Ω

∫ t

0
w2
ρ(ρ) dρdx.

Integrating (3.22) on [0, t], we obtain

G(t) ≤ A+B

∫ t

0
G(s) ds, t ∈ [0, T ],

where

A = ‖h1 − h2‖22 T +G(0) + ‖f01 − f02‖2L2(Ω×(−τ,0)) , B = CR,T + 2(|µ1|+ |µ2|).

Hence, Gronwall’s inequality yields that

G(t) ≤ AeBt,

which implies that

(3.23) ‖(w,wt)‖2H ≤ CR,T
(
‖(w(0), wt(0))‖2H + ‖h1 − h2‖22 + ‖f01 − f02‖2L2(Ω×(−τ,0))

)
for all t ∈ [0, T ], which shows that the regular solutions of the problem (1.1) depend

continuously on the initial data. In particular, the problem (1.1) has a unique solution.

The same conclusion holds for weak solution by density arguments. This ends the

proof of Theorem 2.1.
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4. Nonlinear dynamical systems

In this section, for sake of further references we collect several known results on properties

of dynamical systems in mathematical physics. They can be found in, for instance, Babin

and Vishik [2], Chueshov and Lasiecka [4], Hale [15] or Temam [28]. Below we follow more

closely the book by Chueshov and Lasiecka [5].

A compact set A ⊂ H is a global attractor for a dynamical system (H,S(t)), if it is

fully invariant and uniformly attracting, that is S(t)A = A for all t ≥ 0, and for every

bounded subset B ⊂ H,

lim
t→+∞

distH(S(t)B,A) = 0,

where distH is the Hausdorff semidistance in H.

A bounded set B ⊂ H is an absorbing set for S(t) if for any bounded set B ⊂ H, there

exists tB = tB(B) ≥ 0 satisfying

S(t)B ⊂ B, ∀ t ≥ tB,

which characterizes S(t) as a dissipative semigroup.

A semigroup S(t) is asymptotically smooth in H if for any bounded positive invariant

set B ⊂ H, there exists a compact set K ⊂ B such that

lim
t→∞

distH(S(t)B,K) = 0.

Then the following is well-known, see for instance, [2, 5, 15].

Theorem 4.1. A dissipative dynamical system (H,S(t)) has a compact global attractor if

and only if it is asymptotically smooth.

We present here a more recent method by Chueshov and Lasiecka [5] to verify the

asymptotic smoothness property. See also [16].

Theorem 4.2. Suppose that for any positively bounded invariant B ⊂ H and for any

ε > 0, there exists T = T (ε,B) such that

‖S(T )x− S(T )y‖H ≤ ε+ φT (x, y), ∀x, y ∈ B,

where φT : B ×B → R satisfies

(4.1) lim inf
n→∞

lim inf
m→∞

φT (zn, zm) = 0

for any sequence (zn)n∈N in B. Then S(t) is asymptotically smooth in H.
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Define the unstable manifold Mu(Y ) emanating from the set Y ⊂ H such that there

exists a full trajectory γ = {z(t) : t ∈ R} with the properties

z(0) = z0 and lim
t→−∞

distH(z(t), Y ) = 0.

Finally, we recall the properties of the gradient systems. A dynamical system (H,S(t))

is said to be gradient if there exists a strict Lyapunov function for (H,S(t)) on the whole

phase space H, that is, (a) a continuous functional Φ(z) such that the function t →
Φ(S(t)z) is non-increasing for any z ∈ H, (b) the equation Φ(S(t)z) = Φ(z) for all t > 0

implies that S(t)z = z for all t > 0.

Now, we give the following well-known result on the existence and structure of global at-

tractors for asymptotically compact gradient dynamical system, see for instance, Chueshov

and Lasiecka [5], Fatori et al. [11].

Theorem 4.3. Assume that (H,S(t)) is a gradient dynamical system which, moreover, is

asymptotically smooth. In addition, assume the Lyapunov function Φ(z) associated with

the system, satisfying

(i) Φ(z) is bounded from above on any bounded subset of H;

(ii) the set ΦR = {z ∈ H | Φ(z) ≤ R} is bounded for every R;

(iii) the set N of stationary of (H,S(t)) is bounded.

Then (H,S(t)) has a compact global attractor characterized by A =Mu(N ).

5. Global attractor

In order to prove Theorem 2.5 we will apply the abstract results presented in the previous

section. The first step is to prove that the dynamical system (H, S(t)) is gradient under the

conditions in Theorem 2.5. The second is to verify the quasi-stable on bounded positively

invariant sets.

Inspired by [24], we define the modified energy functional as

E(t) :=
1

2
‖ut(t)‖22 +

1

2
‖∇u(t)‖22 +

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)u2

s(s) dxds

+

∫
Ω
F (· , u(t)) dx−

∫
Ω
hu(t) dx,

(5.1)

where ξ and σ are suitable positive constants to be determined later.
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5.1. Gradient system

We will verify the conditions in Theorem 4.3 in the following Lemmas 5.1–5.3.

Lemma 5.1. The dynamical system (H, S(t)) associated to the problem (1.1) is gradient

under the assumptions of Theorem 2.1.

Proof. Let us take the functional Φ as the modified energy E defined in (5.1). Then for

z0 = (u0, u1) ∈ H, we claim that Φ(S(t)z0) is non-increasing.

Indeed, differentiating E(t) and using (1.1), we obtain

E ′(t) = −µ1 ‖ut‖22 − µ2(ut(t− τ), ut) +
ξ

2
‖ut‖22

− ξ

2
e−στ

∫
Ω
u2
t (t− τ) dx− σξ

2

∫ t

t−τ
e−σ(t−s)

∫
Ω
u2
s(s) dxds.

Noticing

(5.2) − µ2(ut(t− τ), ut) ≤
µ2

2
‖ut‖22 +

|µ2|
2

∫
Ω
u2
t (t− τ) dx,

we deduce that

E ′(t) ≤
(
|µ2|
2
− µ1 +

ξ

2

)
‖ut‖22 +

(
|µ2|
2
− ξ

2eστ

)∫
Ω
u2
t (t− τ) dx

− σξ

2

∫ t

t−τ
e−σ(t−s)

∫
Ω
u2
s(s) dxds.

(5.3)

Notice that eστ → 1+ as σ → 0+. Then, by the continuity of the set of real number, if we

choose σ > 0 sufficiently small, there exists a positive constant ξ > 0 such that

(5.4) eστ |µ2| < ξ < µ1,

which implies that

(5.5)
|µ2|
2
− µ1 +

ξ

2
< 0,

and

(5.6)
|µ2|
2
− ξ

2eστ
< 0.

Inserting (5.5) and (5.6) into (5.3), we obtain E ′(t) ≤ 0, which implies d
dtΦ(S(t)z0) ≤ 0,

∀ t > 0.

Now, assume Φ(S(t)z0) = Φ(z0) for all t > 0, then ‖ut(t)‖22 = 0, t > −τ , which implies

u(t) = u0 for all t ≥ 0. Hence, S(t)z0 = (u0, 0) is a stationary solution, which implies that

Φ is a strict Lyapunov functional. Therefore (H, S(t)) is gradient.
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Lemma 5.2. The Lyapunov functional Φ is bounded from above on any bounded subset

of H and the set ΦR = {z ∈ H | Φ(z) ≤ R} is bounded for every R.

Proof. Let B 3 (u, ut) be any bounded subset of H. Since Φ is defined as the modified

functional given in (5.1), noticing

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)u2

s(s) dxds ≤ τµ1CB,

where we have used (5.3). It is easy to check that Φ(z) is bounded from above on bounded

subset B of H.

Now let z(t) = (u(t), ut(t)) ∈ H be any weak solution to (1.1) such that Φ(z(t)) ≤ R.

It follows from (3.6) that

β0

(
‖∇u‖22 + ‖ut‖22

)
−M ≤ Φ(z(t)) = E(u(t)) ≤ R,

where M = L0 |Ω|+ 1
λ1%
‖h‖22, and then ‖z(t)‖2H ≤ (R+M)β−1

0 . Therefore ΦR is bounded

in H.

Lemma 5.3. The set N = {(u, 0) ∈ H | −4u+ f(· , u) = h} of the stationary solutions

of the problem (1.1) is bounded in H.

Proof. The proof of this lemma is evident, see also [11]. In fact, from the first equation of

(1.1) we obtain

‖∇u‖22 = −
∫

Ω
f(· , u)u dx+

∫
Ω
hu dx.

From the condition (2.6) and since λ1 ‖u‖22 ≤ ‖∇u‖
2
2,

−
∫

Ω
f(x, u)u dx ≤ β

λ1
‖∇u‖22 + L0 |Ω| ,

and for any % > 0, ∫
Ω
hu dx ≤ %

4
‖∇u‖22 +

1

λ1%
‖h‖22 ,

it follows that (
1− β

λ1
− %

4

)
‖∇u‖22 ≤

1

λ1%
‖h‖22 + L0 |Ω| .

Hence we obtain that N is bounded in H if taking % > 0 sufficiently small.

5.2. Asymptotic smoothness

Lemma 5.4 (Stabilizability). Suppose the assumptions of Theorem 2.5 hold. Given a

bounded set B ⊂ H, let z1 = (u, ut) and z2 = (v, vt) be two weak solution of problem (1.1)

with z1(0) = (u0, u1) and z2(0) = (v0, v1) are in set B. Then

(5.7)
∥∥z1(t)− z2(t)

∥∥2

H ≤ CBe
−γt + CB

∫ t

0
e−γ(t−s) ‖w‖22(α+1) ds
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for any t ≥ 0, where w = u− v and γ, CB are positive constants on the size of B but not

on t.

Proof. We set w = u− v, then (w,wt) = z1(t)− z2(t) solves the problem

(5.8) wtt −4w + µ1wt + µ2wt(t− τ) + f(x, u)− f(x, v) = 0,

in the weak sense, with the initial condition

(w(0), wt(0)) = z1(0)− z2(0).

Step 1. By density we can assume the solution have higher regularity so that we can

multiply equation (5.8) by wt in L2(Ω), and integrate over Ω. Proceeding as in the proof

of Theorem 2.1, we obtain

G′(t) = −µ1 ‖wt‖22 − µ2(wt(t− τ), wt) +

∫
Ω

(f(· , u)− f(· , v))wt dx

+
ξ

2
‖wt‖22 −

ξ

2
e−στ

∫
Ω
w2
t (t− τ) dx− σξ

2

∫ t

t−τ
e−σ(t−s)

∫
Ω
w2
s(s) dxds,

where we denote

(5.9) G(t) =
1

2
‖wt(t)‖22 +

1

2
‖∇w(t)‖22 +

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)w2

s(s) dxds.

Using Hölder’s inequality, it follows that

G′(t) ≤
(
|µ2|
2
− µ1 +

ξ

2

)
‖wt‖22 +

(
|µ2|
2
− ξ

2eστ

)∫
Ω
w2
t (t− τ) dx

+

∫
Ω

(f(· , u)− f(· , v))wt dx−
σξ

2

∫ t

t−τ
e−σ(t−s)

∫
Ω
w2
s(s) dxds.

(5.10)

Step 2. Now we consider the functions

Gε(t) = G(t) + εφ(t), ε > 0,

where ε > 0 will be fixed later and

(5.11) φ(t) =

∫
Ω
w(t)wt(t) dx.

It is easy to check that there exists a constant C1 such that

(5.12) |Gε(t)−G(t)| ≤ εC1G(t), ∀ t ≥ 0, ε > 0.

Step 3. In what follows we show the estimate of φ′(t). By differentiating the function

in (5.11), using equation (5.8) in the weak sense, subtracting and adding G(t), we get

φ′(t) = −G(t) +
3

2
‖wt‖22 −

1

2
‖∇w‖22 − µ1(wt, w)− µ2(wt(t− τ), w)

−
∫

Ω
(f(· , u)− f(· , v))w dx+

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)w2

s(s) dxds.
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We derive from Young’s inequality that

−µ1(wt, w) ≤ δµ1

λ1
‖∇w‖22 +

µ1

4δ
‖wt‖22

and

−µ2(wt(t− τ), w) ≤ δ |µ2|
λ1
‖∇w‖22 +

|µ2|
4δ

∫
Ω
w2
t (t− τ) dx,

where δ > 0 is a small constant which will be chosen later. Hence, we arrive at

φ′(t) ≤ −G(t) +

(
3

2
+
µ1

4δ

)
‖wt‖22 −

(
1

2
− δµ1

λ1
− δ |µ2|

λ1

)
‖∇w‖22 +

|µ2|
4δ

∫
Ω
w2
t (t− τ) dx

−
∫

Ω
(f(· , u)− f(· , v))w dx+

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)w2

s(s) dxds.

Further, since α
2(α+1) + 1

2(α+1) + 1
2 = 1, by the generalized Hölder’s inequality, assump-

tions (2.4) and (2.5), there exists a constant CB (may be different from line to line)∣∣∣∣∫
Ω

(f(· , u)− f(· , v))wt dx

∣∣∣∣
≤ k0

∫
Ω

(1 + |u|α + |v|α) |w| |wt| dx

≤ k0

(
|Ω|α/[2(α+1)] + ‖u‖α2(α+1) + ‖v‖α2(α+1)

)
‖w‖2(α+1) ‖wt‖2

≤ CB ‖w‖2(α+1) ‖wt‖2
≤ ε

2
‖wt‖22 + CB ‖w‖22(α+1) ,

(5.13)

since L2(α+1)(Ω) ↪→ L2(Ω), similarly,∣∣∣∣∫
Ω

(f(· , u)− f(· , v))w dx

∣∣∣∣ ≤ CB ‖w‖22(α+1) .

Combining this estimates with (5.10), we obtain

G′ε(t) ≤ −εG(t) +

[
|µ2|
2
− µ1 +

ξ

2
+ ε

(
2 +

µ1

4δ

)]
‖wt‖22 − ε

(
1

2
− δµ1

λ1
− δ |µ2|

λ1

)
‖∇w‖22

+

(
|µ2|
2
− ξ

2eστ
+ ε
|µ2|
4δ

)∫
Ω
w2
t (t− τ) dx+ CB ‖w‖22(α+1)

− ξ

2
(σ − ε)

∫ t

t−τ

∫
Ω
eσ(s−t)w2

s(s) dxds.

First, we fix δ > 0 sufficiently small such that

1

2
− δµ1

λ1
− δ |µ2|

λ1
≥ 0,

then we choose ε1 ≤ σ sufficiently small, thanks to (5.5) and (5.6), it follows

(5.14) G′ε(t) ≤ −εG(t) + CB ‖w‖22(α+1) , ∀ t ≥ 0, ∀ ε ∈ (0, ε1].
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Step 4. Now we take ε0 = min {1/(2C1), ε1} and select ε ≤ ε0. Then (5.12) implies

that

(5.15)
1

2
G(t) ≤ Gε(t) ≤

3

2
G(t), ∀ t ≥ 0.

By a standard combination of (5.14) and (5.15), we conclude

G′ε(t) ≤ Gε(0)e−
2ε
3
t + CB

∫ t

0
e−

2ε
3

(t−s) ‖w(s)‖22(α+1) ds.

Using (5.15) again we obtain

G(t) ≤ 3G(0)e−
2ε
3
t + 2CB

∫ t

0
e−

2ε
3

(t−s) ‖w(s)‖22(α+1) ds.

By the definition (5.9), we obtain (5.7) with γ = 2ε/3.

Lemma 5.5. Under the assumptions of Theorem 2.5, the dynamical system (H, S(t))

corresponding to problem (1.1) is asymptotically smooth.

Proof. We apply Theorem 4.2. Let B be a bounded positively invariant subsect of H with

respect to S(t). For initial data z1
0 , z2

0 in set B, we write

S(t)zi0 = (ui(t), uit(t)), i = 1, 2.

Given ε > 0, we choose T sufficiently large such that CBe
− γ

2
T < ε, where CB is given in

Lemma 5.4.

We claim that there exists a constant CBT > 0 such that

(5.16)
∥∥S(T )z1

0 − S(T )z2
0

∥∥
H ≤ ε+ φT (z1

0 , z
2
0), ∀ z1

0 , z
2
0 in B,

where

(5.17) φT (z1
0 , z

2
0) = CBT

(∫ T

0

∥∥u1(s)− u2(s)
∥∥ϑ

2

)1/4

for some constant ϑ > 0.

Indeed, applying Gagliardo-Nirenberg interpolation inequality we obtain∥∥u1(t)− u2(t)
∥∥

2(α+1)
≤ Cθ

∥∥∇u1(t)−∇u2(t)
∥∥θ

2

∥∥u1(t)− u2(t)
∥∥1−θ

2

with θ = N
2 (1− 1

α+1).

Then we can rewrite (5.7) as∥∥z1(t)− z2(t)
∥∥2
H

≤ CBe−γt + CB

(∫ T

0

(∥∥∇u1(s)
∥∥
2

+
∥∥∇u2(s)

∥∥
2

)4θ
dsl

)1/2(∫ T

0

∥∥u1(t)− u2(t)
∥∥4(1−θ)
2

ds

)1/2
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for t < T . Since u1, u2 ∈ L∞loc((0,∞);H1
0 (Ω), we deduce that there exists CBT > 0 such

that

∥∥z1(T )− z2(T )
∥∥
H ≤ CBe

− γ
2
T + CBT

(∫ T

0

∥∥u1(t)− u2(t)
∥∥4(1−θ)

2
ds

)1/4

,

which implies that (5.16) and (5.17) hold.

It remains to show that φT satisfies (4.1). Indeed, given a sequence of initial data (zn0 ) in

B, we denote S(t)(zn0 ) = (un(t), unt (t)). Since (un(t), un(t)) is bounded in C([0, T ], H1
0 (Ω)×

L2(Ω)), T > 0, then from the compact embedding of H1
0 (Ω) ⊂ L2(Ω), the Aubin’s lemma

implies that there exists a subsequence (unk) that converges strongly in C([0, T ], L2(Ω)).

Therefore we see that

lim
k→∞

lim
l→∞

∫ T

0
‖unk(s)− unl(s)‖ϑ2 ds = 0,

which shows (4.1) holds. The asymptotic smoothness property of (H, S(t)) follows from

Theorem 4.2.

5.3. Proof of Theorem 2.5

Lemmas 5.1 and 5.4 show that (H, S(t)) is a gradient dynamical system which, moreover,

is asymptotically smooth. Then the global existence of a global attractor A =Mu(N ) to

problem (1.1) follows from Theorem 4.3, Lemmas 5.2 and 5.3.

6. Decay property

In this section, we study the decay property of solution to (1.1) with h ≡ 0.

Proof of Theorem 2.6. Similar to the proof of (3.6), it follows

(6.1) E(u(t)) ≥ β0

(
‖∇u‖22 + ‖ut‖22

)
.

As in (5.1), we define the modified energy functional as

E(t) :=
1

2
‖ut(t)‖22 +

1

2
‖∇u(t)‖22 +

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)u2

s(s) dxds+

∫
Ω
F (· , u(t)) dx.

Now we consider the functions

Eε(t) = E(t) + εϕ(t), ε > 0,

where ε > 0 will be fixed later and

(6.2) ϕ(t) =

∫
Ω
u(t)ut(t) dx.
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Similarly, there exists a constant C2 > 0 such that

(6.3) |Eε(t)− E(t)| ≤ εC2E(t), ∀ t ≥ 0, ε > 0.

Now we show that there exists a constant ε1 > 0 such that

(6.4) E ′ε(t) ≤ −εE(t), ∀ t ≥ 0, ∀ ε ∈ (0, ε1].

Indeed, taking derivative of (6.2), using the equation in (1.1), adding and subtracting E(t)

into the expression, we obtain

ϕ′(t) = −E(t) +
3

2
‖ut‖22 −

1

2
‖∇u‖22 − µ1(ut, u)− µ2(ut(t− τ), u)

+

∫
Ω

(F (· , u)− f(· , u)u) dx+
ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)w2

s(s) dxds.

From (2.7), we have ∫
Ω

(F (· , u)− f(· , u)u) dx ≤ 0.

Hence, as in the proof of Lemma 5.4, for any δ > 0, we see that

ϕ′(t) ≤ −E(t) +

(
3

2
+
µ1

4δ

)
‖ut‖22 −

(
1

2
− δµ1

λ1
− δ |µ2|

λ1

)
‖∇u‖22

+
|µ2|
4δ

∫
Ω
u2
t (t− τ) dx+

ξ

2

∫ t

t−τ

∫
Ω
eσ(s−t)u2

s(s) dxds.

Once the positive constants σ and ξ being fixed such that (5.4)–(5.6) are satisfied.

Here we denote the positive constants C3, C4 by

−C3 =
|µ2|
2
− µ1 +

ξ

2
, −C4 =

|µ2|
2
− ξ

2eστ
.

Moreover, noticing the estimate E ′(t) in (5.3), we have

E ′ε(t) ≤ −εE(t)−
[
C3 − ε

(
3

2
+
µ1

4δ

)]
‖ut‖22 −

(
1

2
− δµ1

λ1
− δ |µ2|

λ1

)
‖∇u‖22

−
(
C4 − ε

|µ2|
4δ

)∫
Ω
u2
t (t− τ) dx− ξ

2
(σ − ε)

∫ t

t−τ

∫
Ω
eσ(s−t)u2

s(s) dxds.

Choosing δ > 0 sufficiently small such that

1

2
− δµ1

λ1
− δ |µ2|

λ1
≥ 0,

then we choose ε1 ≤ σ sufficiently small such that C3−ε1

(
3
2 + µ1

4δ

)
≥ 0 and C4−ε |µ2|4δ ≥ 0.

This ends the proof of (6.4).
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Now let us put ε0 = min {1/(2C2), ε1}, for all ε ≤ ε0, follows from (6.3)

(6.5)
1

2
E(t) ≤ Eε(t) ≤

3

2
E(t).

Combining (6.4) and (6.5), we obtain

(6.6) E(t) ≤ 3E(0)e−
2ε
3
t, t ≥ 0.

This finishes the proof of Theorem 2.6 with κ = 2ε/3 and K = 3E(0).
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