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Log-concavity of the Fennessey-Larcombe-French Sequence

Arthur L.B. Yang and James J.Y. Zhao*

Abstract. We prove the log-concavity of the Fennessey-Larcombe-French sequence

based on its three-term recurrence relation, which was recently conjectured by Zhao.

The key ingredient of our approach is a sufficient condition for log-concavity of a

sequence subject to certain three-term recurrence.

1. Introduction

The objective of this paper is to prove the log-concavity conjecture of the Fennessey-

Larcombe-French sequence, which was posed by Zhao [17] in the study of log-balancedness

of combinatorial sequences.

Let us begin with an overview of Zhao’s conjecture. Recall that a sequence {ak}k≥0 is

said to be log-concave if

a2k ≥ ak+1ak−1, for k ≥ 1,

and it is log-convex if

a2k ≤ ak+1ak−1, for k ≥ 1.

We say that {ak}k≥0 is log-balanced if the sequence itself is log-convex while
{
ak
k!

}
k≥0 is

log-concave.

The Fennessey-Larcombe-French sequence {Vn}n≥0 can be given by the following three-

term recurrence relation [9]

(1.1) n(n+ 1)2Vn+1 = 8n(3n2 + 5n+ 1)Vn − 128(n− 1)(n+ 1)2Vn−1, for n ≥ 1,

with the initial values V0 = 1 and V1 = 8. This sequence was introduced by Larcombe,

French and Fennessey [8], in connection with a series expansion of the complete elliptic

integral of the second kind, precisely,∫ π/2

0

√
1− c2 sin2 θ dθ =

π
√

1− c2
2

∞∑
n=0

(
1−
√

1− c2
16

)n
Vn.
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The Fennessey-Larcombe-French sequence is closely related to the Catalan-Larcombe-

French sequence, which was first studied by E. Catalan [1] and later examined and clarified

by Larcombe and French [7]. Let {Pn}n≥0 denote the Catalan-Larcombe-French sequence,

and the following three-term recurrence relation holds:

(n+ 1)2Pn+1 = 8(3n2 + 3n+ 1)Pn − 128n2Pn−1, for n ≥ 1,

with P0 = 1 and P1 = 8. As a counterpart of Vn, the numbers Pn appear as coefficients

in the series expansion of the complete elliptic integral of the first kind, precisely,∫ π/2

0

1√
1− c2 sin2 θ

dθ =
π

2

∞∑
n=0

(
1−
√

1− c2
16

)n
Pn.

Many interesting properties have been found for the Catalan-Larcombe-French sequence

and the Fennessey-Larcombe-French sequence, and the reader may consult references [5–

9,15].

Recently, there has arisen an interest in the study of the log-behavior of the Catalan-

Larcombe-French sequence. For instance, Xia and Yao [14] obtained the log-convexity of

the Catalan-Larcombe-French sequence, and confirmed a conjecture of Sun [12]. By using

a log-balancedness criterion due to Došlić [4], Zhao [16] proved the log-balancedness of the

Catalan-Larcombe-French sequence.

Zhao further studied the log-behavior of the Fennessey-Larcombe-French sequence,

and obtained the following result.

Theorem 1.1. [17] Both {nVn}n≥1 and
{

Vn
(n−1)!

}
n≥1

are log-concave.

She also made the following conjecture.

Conjecture 1.2. The Fennessey-Larcombe-French sequence {Vn}n≥1 is log-concave.

Note that the Hadamard product of two log-concave sequences without internal zeros

is still log-concave, see [11, Proposition 2]. Since both {n}n≥1 and
{

1
(n−1)!

}
n≥1

are log-

concave, Conjecture 1.2 implies Theorem 1.1.

In this paper, we obtain a sufficient condition for proving the log-concavity of a se-

quence satisfying a three-term recurrence. Then we give an affirmative answer to Conjec-

ture 1.2 by using this criterion. By further employing a result of Wang and Zhu [13, Theo-

rem 2.1], we derive the monotonicity of the sequence
{

n
√
Vn+1

}
n≥1 from the log-concavity

of {Vn}n≥1.

2. Log-concavity derived from three-term recurrence

The aim of this section is to prove the log-concavity of the Fennessey-Larcombe-French

sequence based on its three-term recurrence relation.
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We first give a sufficient condition for log-concavity of a positive sequence subject to

certain three-term recurrence. It should be mentioned that the log-behavior of sequences

satisfying three-term recurrences has been extensively studied, see Liu and Wang [10],

Chen and Xia [3], Chen, Guo and Wang [2], and Wang and Zhu [13]. However, most

of these studies have focused on the log-convexity of such sequences instead of their log-

concavity. Our criterion for determining the log-concavity of a sequence satisfying a three-

term recurrence is as follows.

Proposition 2.1. Let {Sn}n≥0 be a positive sequence satisfying the following recurrence

relation:

(2.1) a(n)Sn+1 + b(n)Sn + c(n)Sn−1 = 0, for n ≥ 1,

where a(n), b(n) and c(n) are real functions of n. Suppose that there exists an integer n0

such that for any n > n0,

(i) it holds a(n) > 0, and

(ii) either b2(n) < 4a(n)c(n) or Sn
Sn−1

≥ −b(n)+
√
b2(n)−4a(n)c(n)
2a(n) .

Then the sequence {Sn}n≥n0
is log-concave, namely, S2

n ≥ Sn+1Sn−1 for any n > n0.

Proof. Let r(n) = Sn/Sn−1. It suffices to show that r(n) ≥ r(n + 1) for any n > n0. On

one hand, the conditions (i) and (ii) imply that

a(n)r2(n) + b(n)r(n) + c(n) ≥ 0, for n > n0.

Since {Sn}n≥0 is a positive sequence, so is {rn}n≥1. Thus, the above inequality is equiva-

lent to the following

(2.2) a(n)r(n) + b(n) +
c(n)

r(n)
≥ 0, for n > n0.

On the other hand, dividing both sides of (2.1) by Sn, we obtain

(2.3) a(n)r(n+ 1) + b(n) +
c(n)

r(n)
= 0.

Combining (2.2) and (2.3), we get

a(n)r(n+ 1) ≤ a(n)r(n), for n > n0.

By the condition (i), we have r(n+1) ≤ r(n) for any n > n0. This completes the proof.

We are now able to give the main result of this section, which offers an affirmative

answer to Conjecture 1.2.
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Theorem 2.2. Let {Vn}n≥0 be the Fennessey-Larcombe-French sequence given by (1.1).

Then, for any n ≥ 2, we have V 2
n ≥ Vn−1Vn+1.

Proof. By the recurrence relation (1.1), we have V1 = 8, V2 = 144, V3 = 2432 and

V4 = 40000. It is easy to verify that V 2
2 ≥ V1V3 and V 2

3 ≥ V2V4.
We proceed to use Proposition 2.1 to prove that V 2

n > Vn−1Vn+1 for n > 3, namely

taking n0 = 3. For the sequence {Vn}n≥0, the corresponding polynomials a(n), b(n), c(n)

appearing in Proposition 2.1 are as follows:

a(n) = n(n+ 1)2,

b(n) = −8n(3n2 + 5n+ 1),

c(n) = 128(n− 1)(n+ 1)2.

It is clear that a(n) > 0 for any n > 3. By a routine computation, we get

b2(n)− 4a(n)c(n) = 64(n6 + 6n5 + 15n4 + 26n3 + 25n2 + 8n) > 0, for n > 3.

It suffices to show that

(2.4)
Vn
Vn−1

≥
−b(n) +

√
b2(n)− 4a(n)c(n)

2a(n)
, for n > 3.

This inequality also implies the positivity of Vn since its right-hand side is positive for any

n > 3. (Note that b(n) is negative.) However, it is difficult to directly prove (2.4). The

key idea of our proof is to find an intermediate function h(n) such that

Vn
Vn−1

≥ h(n) ≥
−b(n) +

√
b2(n)− 4a(n)c(n)

2a(n)
, for n > 3.

Let

(2.5) h(n) =
16(n3 − n2 + 1)

n3 − n2
, for n ≥ 2,

and we shall show that this function fulfills our purpose. This will be done in two steps.

First, we need to prove that

(2.6) h(n)−
−b(n) +

√
b2(n)− 4a(n)c(n)

2a(n)
≥ 0, for n > 3.

A straightforward computation shows that the quantity on the left-hand side is equal to

32(4n6 + 7n5 + n4 + n3 + 9n2 + 8n+ 2)

(n4 − n2)(n+ 1)(n5 + 2n4 + n2 + 8n+ 4 + (n2 − n)
√
n6 + 6n5 + 15n4 + 26n3 + 25n2 + 8n)

,

which is clearly positive for n > 3.
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Secondly, we need to prove that

(2.7)
Vn
Vn−1

≥ h(n), for n > 3.

For convenience, let g(n) = Vn/Vn−1. We use induction on n to prove that g(n) ≥ h(n)

for n > 3. By the recurrence relation (1.1), we have

(2.8) g(n+ 1) =
8(3n2 + 5n+ 1)

(n+ 1)2
− 128(n− 1)

ng(n)
, n ≥ 1,

with the initial value g(1) = 8. It is clear that g(3) = 152/9 = h(3) and g(4) = 625/38 >

49/3 = h(4) by (2.5) and (2.8). Assume that g(n) > h(n), and we proceed to show that

g(n+ 1) > h(n+ 1). Note that

g(n+ 1)− h(n+ 1) =
8(3n2 + 5n+ 1)

(n+ 1)2
− 128(n− 1)

ng(n)
− 16(n3 + 2n2 + n+ 1)

n(n+ 1)2

=
8(n3 + n2 − n− 2)

n(n+ 1)2
− 128(n− 1)

ng(n)

=
8(n3 + n2 − n− 2)g(n)− 128(n− 1)(n+ 1)2

n(n+ 1)2g(n)
.

By the induction hypothesis, we have g(n) > h(n) > 0 and thus

g(n+ 1)− h(n+ 1) >
8(n3 + n2 − n− 2)h(n)− 128(n− 1)(n+ 1)2

n(n+ 1)2g(n)

=
128(2n2 − n− 2)

n3(n− 1)(n+ 1)2g(n)
> 0.

Combining (2.6) and (2.7), we obtain the inequality (2.4). This completes the proof.

Wang and Zhu [13, Theorem 2.1] showed that if {zn}n≥0 is a log-concave sequence

of positive integers with z0 > 1, then
{

n
√
zn
}
n≥1 is strictly decreasing. Applying their

criterion to the Fennessey-Larcombe-French sequence, we obtain immediately the following

result.

Proposition 2.3. The sequence
{

n
√
Vn+1

}
n≥1 is strictly decreasing.

Proof. Let {zn}n≥0 be the sequence given by zn = Vn+1. It is clear that z0 = V1 = 8 > 1.

Moreover, by Theorem 2.2, the sequence {zn}n≥0 is log-concave. Thus,
{

n
√
zn
}
n≥1 is

strictly decreasing by [13, Theorem 2.1].
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