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An Evolutionary Property of the Bifurcation Curves for a Positone Problem

with Cubic Nonlinearity

Shao-Yuan Huang* and Shin-Hwa Wang

Abstract. We study an evolutionary property of the bifurcation curves for a positone

problem with cubic nonlinearity

u(z) + Af(u) =0, —-l<z<l,
u(—=1) =u(l) =0,
flu) = —eu® + ou? + Tu + p,

where A > 0 is a bifurcation parameters, € > 0 is an evolution parameter, and o,
p > 0, 7 > 0 are constants. In addition, we improve lower and upper bounds of the

critical bifurcation value & of the problem.

1. Introduction

In this paper we mainly study an evolutionary property of the bifurcation curves for a

positone problem with cubic nonlinearity

u(x) + Af(u) =0, —-1l<uz<l,
(1.1) u(—1) =u(1) =0,
f(u) = —eud + ou?® + Tu + p,

where A > 0 is a bifurcation parameters, ¢ > 0 is an evolution parameter, and o,p > 0,
7 > 0 are constants. Problems about bifurcation curves have been widely studied by
many authors, cf. [1H3}/517,19,10]. For any £ > 0, it is easy to see that there exist a
positive number (. which is the unique positive zero of f(u), and a positive number
v = 0/(3e) < B, which is the unique (positive) inflection point of f(u), such that cubic

polynomial f satisfies

(i) f(0) = p > 0 (positone), f(0) =7 >0, f(u) >0 on (0,5:), and f(B:) =0,
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(ii) f(u) is strictly convex on (0,7) and is strictly concave on (v, ).

0,6:).)

concave on (

Shao-Yuan Huang and Shin-Hwa Wang

(So f is convex-

For any € > 0, on the (X, ||ul|,,)-plane, we study the evolution of bifurcation curves S.
of positive solutions of (|1.1]), defined by

Se = {(\, lualls) : A > 0 and wy is a positive solution of (1.1} .

We say that, on the (A, ||ull

~)-Plane, the bifurcation curve S, is S-shaped if S; is a

continuous curve and there exist two positive numbers A, < A* such that S has exactly

two turning points at some points (A*, [[ur«||,) and (A, [Juy, |l ), and

(i) A < A" and [Jur+|| o,

(i) at (A", [Juxs]lo)

<l lloo

the bifurcation curve S. turns to the left,

(ili) at (s, [|lun,|lo,) the bifurcation curve S, turns to the right.

See Figure [1.1fi) for

example.

Hung and Wang [6, Theorem 2.1] recently proved the global bifurcation of bifurcation

curves Sg of (|1.1)) and gave lower and upper bounds of the critical bifurcation value €.
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Figure 1.1: Global bifurcation of bifurcation curves S; of (1.1)) with varying ¢ > 0.

Theorem 1.1. Consider (1.1) with varying € > 0. Then there exists a critical value

€ =¢&(o, p,T) satisfying
| o3 o3
— | = 0.1924/ —

/J3 /2503
1
(O 70 ) 864
such that the following assertions ( ) holds:
(i) (See Figure [L1]i).) For 0 < e < &, the bifurcation curve S is S-shaped on the
(A llull)-plane. Let (X, ||lux

the bifurcation curve S, satisfying A\, < X* and ||ux«||,,

(1.2)

111

and (s, [|ux be exactly two turning points o
oo * 1100
< |lua,|lo- Then uy, and

uy+ are only two degenerate positive solutions of (1.1)).
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(ii) (See Figure [1.1fii).) For e =&, the bifurcation curve Sz is monotone increasing on
the (A, ||ul| . )-plane. Moreover, (1.1)) has exactly one (cusp type) degenerate positive

solution us.-

(iii) (See Figure [L1|iii).) For e > €, the bifurcation curve S: is monotone increasing on
the (X, ||ull,)-plane. Moreover, all positive solutions uy of (L.1) are nondegenerate.

The paper is organized as follows: Section [2| contains the main result (Theorem [2.1)).
Section [3| contains lemmas needed to prove the main result. Section [3| also contains the
proofs of lemmas in this section except Lemma and (ii), and assertions ,
(3.52) and (3.54). Note that the proofs of Lemmas and [3.10{(ii) and assertions (3.30)),
(3.52) and (3.54) are easy but tedious. Thus, we omit them in this paper and put them

in [4]. Finally, Section 4] contains the proof of the main result.

2. Main result

The main result in this paper is Theorems For 0 < ¢ < &, let (A", |lur+||,) and
(A, [Jua,|l) be the exactly two turning points of the S-shaped bifurcation curve S; sat-
isfying Ax < A" and |lup+||oo < ||un, |- In Theorem we show the variation of the
values of |lux«||,, and ||uy, ||, with varying parameter ¢ € (0,€). In addition, we improve
lower and upper bounds of the critical bifurcation value € given in . Notice that, for
0 < £ < &, the cubic polynomial f(u) = —eu?® 4+ ou? 4+ 7u + p has a unique inflection point
at v = 0/(3¢) < B¢, and there exist two positive numbers p;, py satisfying p; < v < pa,

which are positive zeros of cubic polynomial
(2.1) fu) —uf'(u) = 2eu® — ou® + p.

(The numbers p; and p2 both exist for 0 < € < £, see Lemma stated below.) That is,
both the y-intercepts of the tangent lines to the graph of cubic polynomial f at the points
(p1, f(p1)) and (p2, f(p2)) equal 0. These three values «y, p; and p2 play important roles
in the variation of the values of |Juy-| ., and [luy, ||, with varying parameter ¢ € (0,¢).

Theorem provides more complete structures on the global bifurcation curves S, of
(1.1) with varying parameter ¢ € (0,¢), cf. Theorem

Theorem 2.1. (See Figures [1.1i)~(ii) and 2.1}) Consider (L.1)) with varying € (0,£).

Then there exist two positive numbers € and g satisfying

o3 3103 8303 o3
2.2 £< (01764 — =~ <E<KE< ~0.182y/— |,
(2:2) c < \ » ) \/ 1000, === ° = \/ 25000 ( \ p>
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0 E'<wf<g<f<gi<g A

Figure 2.1: Evolutionary bifurcation curves S with varying € € (0,). The two notations

e and A denote the two turning points (A, [|un, [|o) and (A*, |[ur| o), respectively.

such that

(2.3) 1 <|lurlle <7 <p2 < lunll, for0<e<E,

(2.4) p1 <7 =[lur oo <p2 <llurllo fore=E,

(2.5) p1 <7y < |lunllo < P2 < lun,lly for&<e<E,

(2.6) p1 < < |luallo < llua,llo =p2 fore=E,

(2.7) P1 <y < |Junlloo < Junllo <p2 forg<e<eg,

(28)  pileez <lees < Jim el = T flre e = ], < palecs,

where us is defined in Theorem [1.1{(ii).

3. Lemmas

To prove Theorem [2.1], we develop some new time-map techniques. The time-map formula
which we apply to study (T.1)) with f(u) = —eu® + ou? + 7u + p takes the form as follows:

—i ’ ) — u_1/2u= « or Q 1
(3.1) ﬁ_ﬂ/o[zf() Fuw)] ™ ?du=T.(e) for0<a<feife >0,

where F(u) = [ f(t)dt = —teut + Loud + Fru® 4 pu and B is the unique positive zero of
the cubic polynomial f(u) for € > 0; see Laetsch [8]. Note that it can be proved that 7% (c)
is a twice differentiable function of a € (0, ;) for £ > 0, and is differentiable function of

e € (0,00) for @« > 0. The proofs are easy but tedious and hence we omit them. In
addition, by (3.1) and Theorem we note that (i) if 0 < e < &, T.(«) has exactly two
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critical points at [|ux«||,, < [Jux,

oo Where (A7, [lux-l) and (A, [[ux,

~) are exactly two
turning points of the S-shaped bifurcation curve Sg; (ii) if ¢ = £, T.(«) has exactly one
critical point at HUXHOO
bifurcation curve Sz; (iii) if € > €, T:(«) is a strictly decreasing function on (0,00). See

Figure

For the sake of convenience, we let

To3 2503 3103 1303 . o3
E1=4——, E0 =], 3=, €A =4[] ——), €5 = 1] —.
! 270p" 2 864p ° 1000p" ~* 400p” " 27p
Clearly, €1 < €9 < €3 < g4 < g5 for any o, p > 0. In addition, € < e5 = 1/% by (|1.2)). For

T-(a) in (3.1)), we compute that

LT 8- o)
2) 70 =37 | ) e

where (X, HuXHOO) is the unique turning point of the monotone

o1 —300() — wlaf(a) — uf(w)] + [F(a) — F(w)]jad'(a) — uf’(w)
(3.3) T/(a) = WoP% /O Fla) - F(u)? du,
(3.4)
O vy L [ Ad(340+2Ba+12C +42D,)
&Tg(a) = 96\/5504/0 [F(a) — F(u)]5/? du,

where A, = e(a* —u?), By = 0(a® —u?), Cy = 7(a? — u?), D, = p(a — u) and
1
(3.5) O(u) =2F (u) —uf(u) = 6u(35u3 — 20u* + 6p),

cf. [5, (3.4) and p. 230] and [6, p. 1946]. By (3.3)) and (3.4), we obtain that

0., 7 ' 9 1
STl (w(e)) = T (w(e), ') + -T2

o /w 1
©96v2ew Jo  [F(w) — F(u)]?/?

(3.6) x [3A42 + 24, By, + 124,Cyy + 424, D,
4 /
+ 5“2 ()8 ) (304D - 20B,D,, — 12C, D,y — 62
wle

— 4Ay, By, + 34,Cy + 3A% + 2B1) | du,
where w = w(e) is a differentiable function of £ > 0.

Lemma 3.1. (See Figure ) Consider (1.1). Assume that 0 < & < g5 = 2?—7:;. Then

0 (u) = f(u) —uf'(u) = 2eu’® — ou® + p has exactly two positive zeros p; < pa satisfying
p

(3.7) plzé {1+2sin (?—g)] <7:§—€ <pg:g—6 [1+2c0s <§>} < Be,

where
o3 — 54e%p
o3

(3.8) ¢ = arccos < ) € (0, 7).
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Furthermore, 8(u) is a strictly increasing function on (0,p1) U (p2, Be), and is a strictly

decreasing function on (p1,p2).

‘“6(’”.} ﬂe(,u)

-—--T-..-..-—-
:
:
i

RIf----
=
-.q
Q-_ -
"‘F---
s

0

Figure 3.1: Graphs of 8(u) on (0, 5:). (i) O(p2) < 0. (ii) 8(p2) > 0.

Proof. First 6'(u) = f(u) — uf’(u) by (3.5). By (2.1), we compute that

<0 if0<u<y,
210 ()] = [ (w) — uf ()] = 2Beu—o)ud =0 if u=r =0/(3e),
>0 ifu>n~.

It follows that 6'(u) = f(u) — uf’(u) is a strictly decreasing function of u on (0,7), and is

a strictly increasing function of u on [y, 00). We compute that, for 0 < e < €3,

3 3
0'(v) = f(v) =vf'(v) = 6% <52 - 207/)> < 5% <E§ - 2U7p> -

It is easy to see that 6(0) = f(0) > 0 and ¢'(5.) = —ff'(B:) > 0. Thus, for 0 < € < ¢5,
0'(u) = f(u) — uf’(u) has exactly two positive zeros p1 < p2 in (0, 3:). Since

(3.9) cosu = 4 cos® (g) — 3cos (g) and sinu = 3sin (%) — 4sin® (%) ,

and by (3.8]), we compute that

(e (5-5))

1
510 :5482{5482p—0'3+0'3 [4sin3 <§—g> — 3sin (z—gﬂ}
) 1 1 1
= [5452p — 0% — o3sin <¢ ~3 >] =t [5452p — 0%+ 0% cos (b]
) [54€p—0 +o ((73 =0
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and
1
4 (é; [1 + 2 cos (?)]) ) {5452/) —od+o? [4cos3 <§> — 3 cos (?)] }
1
(3.11) =1 [54¢%p — 0® + o° cos ¢]
:5462[545p—0 + o ((73 = 0.

In addition, it is easy to see that ¢ € (0,7) for 0 < € < e5. We observe that, for 0 < ¢ <,

(;775 [14-2005 (?) — g—g [1+28in (? — g)]

(3.12) = \/6‘? [\/gcos (?) — sin (?)]
= % in (g - ?) >0

So by (3.10)—(3.12), we see that (3.7) holds. Thus we obtain that f(u) is a strictly

increasing function on (0,p1) U (p2, B:), and is a strictly decreasing function on (p1,p2).

The proof of Lemma [3.1]is complete. O

Lemma 3.2. Consider (1.1). Assume that 0 < ¢ < e5. Then the following assertions (i)
and (ii) hold:

(i)

2
ops —p _e (0 p2
3.13 3 = and N=—|— = ——— < —1.
( ) P2 2e Do (85p2> 3(p2 — )

(i) (See Figure 3.1fii).) For ez < e < &5, 0(p2) > 0. Moreover, for any o € (p1,p2),
there ezists a unique number @ € (0,p1) such that 0(@) = 6(«a), O(u) < O(a) for
0<u<a, and 6(u) > 0(a) fora<u < a.

Proof. By Lemma we see that 2ep3 — ops + p = 0'(p2) = 0. It follows that p3 =
(op3 — p)/(2¢). Since #'(p2) = 0 and 0 < ¢ < 7, we compute and observe that

= T = 2p5 + 6epj gm — 20p2 gpz

= 6p3(p2 — ) [3(10527) * p% <§8p2>} ‘

So we obtain that N = —epa/(3ep2 — o). In addition, since 0 < ¢ < 7, and by Lemma [3.1]

we see that 5 5
N+1= P29 g |:COS<¢>—1:|<1,
3e(p2 —7)  9e(p2 —7) 3

0
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which implies N < —1. Hence, assertion (i) holds.
We observe that the cubic polynomial 4¢3 — 3t + 9/16 has exactly two positive zeros
(v21 —3)/8 and 3/4. By (3.9)), we compute that

[4cos3 (?) — 3 cos <§)L_62 = cos ¢}€:E2 = f%.

Since cos(¢/3) > cos(n/3) = 1/2 for 0 < ¢ < m, we observe that

(314)  =cos () <cos (gﬁ) < cos @

By (3.13), we see that p = op3 — 2ep3. So

3
:Z for eg < e < 5.

e=¢eg

1 1
0(p2) = 6?2(3517% — 20p5 + 6p) = P [3ep3 — 203 + 6(0p3 — 2ep3)]

_3eps (Ao N _om [5 ¢
= (95 pz)— 5 |5 s |3 (by (3.7))

3 3
opy (5 3 ops
> - = _— = = —
- 2 <6 4> 24 >0

by (3.14). So by Lemma for a € (p1, pa], there exists a unique @ € (0, p;) such that
(@) =0(a), (u) < O(a) for 0 < u < @, and B(u) > O(a) for @ < u < «; see Figure
Hence, assertion (ii) holds. The proof of Lemma is complete. O

For e5 < ¢ < €5, by Lemma there exist two numbers 7, P, € (0,p1) such that
0(7) = 0(v) and 0(py) = 0(p2). We write the formulas of 7 and p, in the following lemma.

Lemma 3.3. Consider (1.1). Assume that ex <€ < e5. Then

—24/18 — 80082(%) cos( + %) — QCOS(%) +35

1—4cos(§+7%)o

N = — d Do — —
! 9 e P2 18 e’
where ¢ is defined in Lemma
(3.15)
190° — 729¢” 24 cos(§) + 44
Yy = arccos (0835p> € (0,m) and z = arccos cos(s) cosé
o

\/2 [9 - 4(:052(%) ’

Proof. Since €2 < e < €5, we have that 0 < y < w. We let

1— 4COS(% + 0o —24/18 — 80082(%) cos(§ + §) — 2008(%) +34

— d I, = —.
9 ;e te 18 c

Ly

To complete the proof, we divide the proof into two steps.
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Step 1. We prove that ¥ = I',. By Lemma (ii), it is sufficient to prove that
0<TI, <~vand#(,)=6(7). We observe that 2/3 < y < 7 because

190 — 72953 67 1

< 2m f <e<
COS _— —_— — — = COS — or € g g
ys 803 256 2 3 2= 5

by (3.15). So we have that

—l—cos 2—7T <cos(g+z)<cos 51 <0 forea<e<e
2 3 373 9 2= >

It follows that

1-4(5H e o

(3.16) O<§<F7<TE:£:7 for eg <e < es.
By (3.9) and (3.15) , we compute and observe that
0(I'y) —0(7)
= 615?5(1—; |:2COS (g + %) + 1] [19038_0732962[) + 4 cos® (g + %) — 3 cos (g + g)]
=gt 200 (5 5) 0] (P o) =0

So by (3.16) and Lemma [3.2[(ii), we see that 7 =T,
Step 2. We prove that p, = I'y,. By Lemma i), it is sufficient to prove that

0 <T'p, <Dy and 6(I'p,) = 0(py). First, we assert that, for e5 < e < €5,

1 3 1
(3.17) 2<F1£cos<(§>§4 and —nggzcos(g—l—g)SO.

Indeed, by (3.14]), the inequalities 1/2 < I'y < 3/4 hold immediately for e9 < & < 5. By
(3.8), we compute and observe that cos¢ < cos ¢‘a:£2 = —9/16 for g3 < € < €5. So by

D).

(3.18)

24T + 44 cos¢p _ 24(3) — 44(5%) 27
1

— 1< 4cos® <§>—3cos (g) =cosz = \/9——4F% \/[—2 BT
(3

Clearly, the cubic polynomial 4¢3 — 3t — [ where | € [—1,—27/128] has two positive zeros
m € (0,1/2] and ny € [1/2,/3/2]. Since cos(z/3) > cos(w/3) = 1/2, and by (3.18), we
see that 1/2 < cos(z/3) < +/3/2. This implies that 7/2 < (2 +7)/3 < 27/3. So we obtain
that —1/2 <T'9 < 0. Thus assertion holds. By , we observe that

1 1\% /-1
p2 — Lp, =41 + 18—8F%F2>4<2>—|— 18—8<2> <2):0,

(-2v/B=8MI 2N +3) 0 5(ar, 43

.. =
P2 18¢ - 18¢

> 0.
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Thus, 0 < T',, < po. In addition, by (3.8]), (3.9) and (3.15)), we observe that

o3 — 54e?
(3.19) ﬂ?—ﬂ}:cw¢:447ﬁgﬁj
(3.20) gg_3p2:_mﬁzz—Adel—aM¥p+1mﬁ

03(9 — 412)/2(9 — 4T'})
By (3.19) and (3.20), we compute and find that
o(4T1 4 /18 — 8T,
0(Ty) — 0(p2) = 7 i)

262443
x{—um3@r§—3n)+2@ﬁrl—2mﬁ¥p+5&ﬁ

+ o]

o (4T + /18 — 8T2Ty)

26244¢3
3 2
54
X LJOU3<J€p>-+2&ﬁfl—29ﬂk%9+5403

o3
—4@&%&—&M§p+rwﬂ}
=0.
So by Lemma [3.2[(ii), we see that P, = I'p,. The proof of Lemma [3.3]is complete.

For the sake of convenience, we let

K@)Eé[l+2$n(§—g>}, L@)Eé[l+2ﬁﬁ<§)y

R(e) = 1i8 [—2\/5 9 — 4 cos? (;f:) cos (g + g) — 2cos <§> +3

)

where ¢ and z are defined in Lemmas [3.1] and [3.3| respectively. By Lemmas [3.1] and
it is easy to see that p; = K(g)o/e, po = L(e)o/e and p, = R(g)o/e. We estimate the

numbers Py, p1 and p2 in the following lemma.

Lemma 3.4. Consider (1.1)). Assume that eo < ¢ < 5. Then the following assertions

(i)—(iv) hold:
(i) K(e) is a strictly increasing function of € on [e2,€5).
(ii) L(e) is a strictly decreasing function of € on [e2,¢€5).

(iii) R(e) is a strictly increasing function of € on [g2,€5).
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(iv) Foreg <e < ey,

3 21) 370 < < 230 < 230 - < 2610 < 3960 < < 4170
' P2 = 7952 = 700e © P = 10002~ 1000 P2 10006

Proof. Since 0 < ¢/3 < 7/3 and by (3.8)), we compute and observe that, for 9 < & < €5,

OK(e)  2sin(Z —9) S0 ang L) _ 2sin($) o

de 9y/e2 — &2 Oe 9/t — &2

So assertions (i) and (ii) hold. We note that ¢’(p2) = 0 by Lemmal[3.1} Since 6(p,)—0(p2) =
0 and 0 < Py < p2, and by (3.5)), we compute and find that

p,  90(u)

0= 2 105) 0] = 05 22 + O P

(3.22)

Since 0'(py) > 0 by Lemma and by (3.22)), we see that 9p,/de > 0 for g9 < & < 5.
By Lemma we further see that R(e) = ep,/o is a strictly increasing function of £ on

[e2,€5). So assertion (iii) holds. Finally, by assertions (i)—(iii), we compute that

<O.2320 %> K(eg)o <= K(e)o < K(eq)o (z 0.26()0) 7
5 € 5 € £

<0.3967a %> L(eq)o <y K(e)o < L(eg)o (z 0.4166a> 7
5 5 5 5 €

<0.1207a %> R(ez)o <p, = R(e)o < R(eq)o <% 0.18300) .
£ 5 £ 5 €

So (3.21]) holds for 3 < e < g4. That is, assertion (iv) holds. The proof of Lemma is
complete. 0

Lemma 3.5. Consider (1.1). Then T.(y) < 0 for 0 < e < &1 and T.(p2) < 0 for
0<e<es.

Proof. Let

_ ¢ _2 5_1 4 1 2
G(a)/o to (t)dt—5ea ide +2pa.

Suppose that 6(y) < 0, see Figure [B.1]i). We note that §(u) > 6(v) for 0 < u < 7. So

by Lemma and (3:2), T/(y) < 0. Suppose that 6(v) > 0, see Figure [3.1ii). Since
v = 0/(3¢), we see that, for 0 < e < ey,

v g\3 02 p (2 7o
= L8 (XY =50 () +10p| =2 (22— 22 ) <
0 =5 [88 (35) b7 (35) + Op] 262 <5 270 ) =
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So by [5, (3.11)], we see that

1 G() <0.

0 < e R O ) R S

Thus T.(y) < 0 for 0 < £ < 1. In addition, T.(p2) < 0 for 0 < & < €9, see [6, the proof of
Lemma 3.8]. The proof of Lemma is complete. O

Lemma 3.6. Consider (L.1). Then, for 0 < u < a < B,

deay 3o p

Ay < 2%B,, By< —20
CT 30 Y Y T 25(a )

P
Aa, Da > @Aa, Da > WBQ

Proof. We compute and find that, for 0 < u < a < S,

4
ﬂBa — A, = E(oz —u)?(a? + 2ua + 3u?) > 0,
3o 3

30 1
— Ay — By == —u)?
2e(av+u) “ 20(a v)

D, — 45%14& = é(i&oﬂ + 2ua + u?) (o — u)? > 0,

P _ P 2
D, — WBO‘ = Q(Qoﬁ—u)(a—u) > 0.

> 0,

The proof of Lemma [3.6]is complete. O

Lemma 3.7. Consider (1.1). Then there exist € € (e1,e5) and € € (e2,e5) such that

<0 for0<e<eEg, <0 for0<e<eE,
(323) Té(’y) =0 for e = a and Té(pg) =0 fo'r £ =¢,
>0 forg<e<es >0 forg<e<es.

Remark 3.8. We shall prove £ < € in Lemma [3.10

Proof of Lemma 3.7, We divide the proof into five steps.
Step 1. We prove the first inequality of (3.23]). By (3.6]), we have that

8 1 v P1 (u)
3.24 —T!(y) = / du,
(3.24) 0= = 96y Jo TF() — F@)P?
where Pi(u) = —9A2 + 184, B, — 78A,D, — 8B? + 80B,D,, + 24D? + 48C,D,. By
Lemma [3.6] we obtain that, for 0 < u < 7,
dey 4 3e2p 3e2p T
(325) A»y < 30 B»y < §B'Y and D'Y > ?ny > ?B’Y = %B—y
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Since C, > 0 for 0 < u < v, and by (3.25)), we observe that, for 0 < u < 7,

4 7
Pi(u) > —9A, <9BV> +18A4,B, — 18A,D, — 8B2 + 80B, D, + 24D, < By)

90
122
= 14A,B, — 784, D, — 8B + 8B D,

15
4 , 1228
> 141473«/ — 78 (9B7> D’y — 837 + T5

L 236
(14A ~8B,+ DV)

2 4
> B, [14A7 8B, 4 29 <7Bv>] B, (14A il Bw>

B,D,

5 \90 225
2B,

T 20252

(v — u)(14175¢%u® + 342e%0u? + 114e0?u + 380°) > 0.

So by -, ggTE’ ) >0 fore; <e<ez By Lemma E 5[ and Theorem . (iii), we see
that T/, (v) < 0 and T/_(y) > 0. Then there exists £ € (£1,¢5) such that the first inequality

of (3.23) holds.

Step 2. We prove that V' (u) > 0 where

V(u) = 6(20N + 7)Ap, Dy, + 3(1+ 4N) A2, +2(1 — 8N) Ay, By,

(3.26) ,
— 24N D2, + 8B,,N(By, — 10D,,),

and N is defined in . Let u* € (0, p2) be given. To prove that V(u*) > 0, we discuss
two cases: (B, 10Dp2 ‘ _- <0and (By, —10Dy,)| _. . > 0.

Case 1. Assume that (B, — 10Dp2)‘u:u* < 0. By (3.13) and Lemma we observe
that, for u = u*,

V(u*) > 6(20N + 7)Ap, Dp, + 3(1 +4N) A2 +2(1 — 8N) Ay, By,

p 30
2

(3.27) N N
= A, KmN 4 g Q0N Gp > Dy, +3(1+ 4N)A,,
Ep2 5]92
60N
+ B, | .
( ep2 ) pQ}

In addition, since op3 = 2ep3 + p and N < 0 by (3.13]), we compute and observe that

600N 6pN
120N +42 — 0~ — 2P0 = 2 [(7e + 20Ne)p} — 10N (op3) — N
Ep2 Epy €

\ o

3
row

(3.28)
(Tep3 — 11Np) > 0.

@‘@
[\JeV)
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By (3.13), (3.27), (3.28) and Lemma we observe that, for u = u*,

V(u¥) 60cN  6Np p 4epa
——= > | 120N + 42 — — B +3(1+4N)| —B
Ay, ( ep2 eps 3op3 7 ( ) 30 P2
N
+ <2 — 16N + 60) B,,
EP2
 2p+ dop} —epd)
3eaps(p2 —7)

sz 6/(p2) =0.

It follows that V(u*) > 0 because A,, > 0 for u = u* € (0, p2).
Case 2. Assume that (B, — 10D,,)| _,+ > 0. Since

u=
30

P
I — A, <D for 0 <u<
2e(p2 + u) p2 pz 1O U=p2

B Do < Ap2 and ?p%

by Lemma [3.6] we observe that, for u = u*,

V(u*) > 6(20N + 7)Ap, Dy, + 3(1 +4N)A2 +2(1 — 8N)A,, By,

p 30
. —24ND —A N(B,, — 10D — A
(3 29) D2 (46]7% P2) +8 ( D2 O p2) |:2€(p2 +U*) P2:|
= Asz(U*)J
where
6pN 1200 N
U = |120N + 42 — — D 3(1+4N)A
(U) |: + 5]9% 5(]72 _’_u):| p2 + ( + ) P2
120 N
4+ 12—-16N + —— | B,,.
[ e(p2 + U)] P2
We assert that
(3.30) U(u) >0 for u e (0,p2).

Indeed, by Lemmas [3.2fi) and [3.4{iv), we apply elementary analytic techniques to prove
that 9°U(u)/0u® < 0 for u € (0,pz), 84U(u)/8u4|u:p2 > 0, B‘Q’U(u)/aug"u:p2 < 0,
82U(u)/8u2}u:p2 > 0, and 8U(u)/8u‘u:p2 < 0. So U(u) is a strictly decreasing func-
tion of w on (0, p2). Clearly, U(p2) = 0. Thus, assertion holds. The complete proofs
are easy but rather lengthy, and hence we put them in [4]. So by and , we
obtain that V (u*) > (Ap, ’u:u*) U(u*) > 0.

Thus, in either Cases 1 or 2, we obtain that V(u*) > 0, which implies that V(u) > 0
for u € (0, p2).

Step 3. We prove the second inequality of (3.23). We recall the function V (u) defined

in (3.26) and the number N defined in (3.13]). By ({3.6]), we have that

o, . 1 P2 Py(u)
(3.31) asTf(pQ)‘%\/éepQ/o F(pa) — F@)pe "
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where Pa(u) = V(u) +12C), [(1 + N)A,, —4ND,,]. By Step 2, we see that V' (u) > 0 for
0 < u < p2. By (3.13), Lemmas and we observe that, for 0 < u < po,

Py(u) > 12C,, [(1 + N)A,, —4AND,,] > 12C,, [(1 + N)A,, — 4N (4;3%2)}
2

124,.C
= 2P [(1+ N)eps — Np
B g2 () 25),
Eps 3p2 — 3y 2e 3p2 — 3y
2Ap2 Cp,0 2Ap2 Cp,0

= 2P (2eph — ops + p) = 0'(pa) = 0.

e2p3(p2 — ) e2p3(p2 — )

So 2 LT/ (p2) > 0 by (3.31). Thus T”(pg) is a strictly increasing function of € on (e9,¢5).

By Lemma and Theorem 1.1 . iii), we see that T/ (p2) < 0 and T/, (p2) > 0. Then the
second inequality of (3.23) holds. The proof of Lemma is complete. O

Next, in Lemmas [3.10 and |3.11] stated below, we prove that T/ (vy) > 0, T/, (p2) < 0,
T!,(p2) > 0, and Ta”(pg) > 0 for some € € [e9,e4] satisfying T”(p2) = 0. First of all, we

observe that

(3.32) /
T = () Hau0) and oo ) i)
where
e = 6[F<(§>_—lﬁf>]3/2’ o) = S
Clearly, Hy(u,a) > 0 and H3(u,a) > 0 for 0 < u < o. Then we compute that
(3.33) / Ho(u,0) du = va —uly(u,a) and / Ha(u, o) du = IQS"_“& ,
where
Ii(u,a) = 3= [ 15eu® — (39ea — 14o)u® — (87ea? — 420a)u — 2790 + 1540’0 — 210p] ,
L(u,a) = 1—5 [6au® 4 (12ac — 5b)u” + (48aa® — 20ba)u — 96aa® + 40ba” — 15d] .

To prove Lemmas [3.10] and in the following lemma, we further study some properties
of Hi(u, ), Hs(u, ), I (u, ) and Is(u, ).

Lemma 3.9. Consider (1.1). For ey < e < &5, the following assertions (i)—(vii) hold:
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(i) For0<a < 2% Hy(u,q) is a strictly decreasing function of u on [0 21”]

50e 7 » 50e
(ii) For 0 <u < f.)%)”, Hy(u,«) is a strictly decreasing function of ac on [%, ?Tg]

(ili) For 0 < a < 25%)", I (u, &) is a strictly increasing function of u on (0,u(a)) and is

strictly decreasing function of u on (u(a),00), where

~ 1
() = £ |40 — 3920 + /14(~171%0? 4 5Teca + 140—2)} > 0.

Furthermore, u(«) is a strictly decreasing function of o on (é, ?Tg]’ and u(vy) = 7.

390 glg]

(iv) Foru >0, I1(u,«) is a strictly decreasing function of a on [1005, =oe | -

270 ]

(v) For 19" <a< e Hs(u,«) is a strictly decreasing function of u on [O, 90

50e

390 glg]

(vi) For 0 <u < 22 Hs(u,q) is a strictly increasing function of v on [ 2171

100e

390 210]

(vil) I3(0, ) is a negative and strictly decreasing functions of o on [1005, =5 |-

The proof of Lemma is easy but rather lengthy, and hence it is given in [4]

Assume that g3 < € < g5 and w € {v,p2}. By Lemma there exists w € (0, p1)
such that (w) = O(w). Let {a;};—, and {5;}}_, be uniform partitions of [0,w] and [w, w],
respectively. By Lemma we see that w € {v,p2} C ["a, %(1)?) By and , we
observe that

(3.34)
, 1 2 1 Qg1 Bi+1
T.(w) = m Z (/ Hiy(u,w)Hs(u,w) du + A Hy(u,w)Hs(u,w) du)
i1 Bit+1
2 Z < (i1, w / . Hj(u,w)du+ Hq (B, w) Hy(u,w) du)
-0 o Bi
~1
= Z [ O‘H—lyﬁn (\/ Bn — 042+111 az—i—hﬁn V Bn — Oéill(aiw@n)>
=0
+ Hi(8s82) (VB = B L (Bis1: ) = v/Ba = Bl (8. )|
Similarly,

(3.35)

n—1

Tg,(w) < 2\/1§w ; |:H1 az;ﬁn (\/ O‘z—&—lIl Olz-l—lyﬂn V Bn — Oéz'Il(Oéi;Bn))
+ Hi(Bis,Ba) (VBa = Bt ly(Bi1, Bn) = /B = B (8, B2) )|
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We note that if a; and §; are given for ¢ = 0,1,...,n, the sums

Z [Hl (cit1, Bn) (\/ Bn — cip1l1 (g1, Bn) — / Bn — Oéifl(ai,ﬁn))

(3.36) i=0
+ Hy(Bis ) (VBa = B h(Biv1, Ba) = /B — Bila (i ) )|

and

—

n—

[Hl (ci, Bn) (\/ Bn — aivrli(aiy, Bn) — /Bn — cili (o, 5n)>
+ Hi(Bis1: 80) (Vo = Bt (B, ) = /B — Bil(Bis ) )|

can be computed but difficult because the numbers «; and g; for ¢ = 0,1,...,n may
be complex, see Lemmas and We choose suitable numbers n, af, ., 55, Bis,
satisfying

(3.37) par

. 210 . 210 )
Ogaigai§a¢*<%, and ogﬁigﬁig,&;*<% fori=0,1,...,n,

such that by Lemma [3.9)i)—(iv), it is easy to compute and obtain the upper and lower
bounds of Hi(«, ), Hi(Bi, Bn), I1(cy, Br), and I1(f;, Br). Then we apply these upper
and lower bounds to determinate that the sum is positive or the sum is
negative. So by and (3.35)), we see that T/(w) > 0 or T/(w) < 0. Therefore, we

have the following Lemma [3.10
Lemma 3.10. Consider (1.1)). The following assertions (i)—(iii) holds.

(i) If € = €4, then T/, (p2) > 0.

(ii) If e = €3, then T. () > 0 and T.,(p2) < 0.

(i) e<e<e.
Proof. We prove the assertion (i). Since the proof of assertion (ii) is similar and rather
lengthy, we put the proof in [4] and omit it here. Assertion (iii) follows immediately by
Theorem [I.1] Lemma [3.7] and assertion (ii). We note that o/(3e4) = v < pa < 210/(50e4)

by Lemmas and (iv). Let {a;}7, and {B;}:_, be uniform partitions of [0, p,] and
[Py, p2], respectively. This implies that

D _ Do +
ag =0, a; = %, ag =Py = o, f1 = ¥7 B2 = p2.
By Lemma [3.4] and direct computations, we have that
o 3960 L(g4)o 0.39670 3970 210

3.38 — < = <ps= R~ = — < ,
(3:38) &2 <Toooe, =P <P2T e1 P2 = 1000, * 50e,

1830  _ _ R(gq)o 0.18300 1840 210
3.39 = Pox < Py = & < py = < —
(3.39) 1000e, PSP = 7 e P2 = 10002, = 506,
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from which it follows that, for i = 0,1, 2,

Do . gt 2o
ipo« + (1 — 7)Pax «_ip3+ (1 —d)p5  2lo
3.41 0< =6 < B3; < B = < .
( ) 2 ﬂl — ﬁl — /BZ 2 5054
So by Lemma [3.9[(iii),
(3.42) a1 < aj <u(py) < U(p2) < U(pax) < Brx < B1 < By

because we compute and find that
i(pa) > (p3) o 67745027 1483 - 230 .
u u = —_ =
P2y = P2 =5, 500000 1000 250e4 ¥
i(pa) < Ti(pa) o 4268453 361 < 5790 5
u u = —_ — = .
P2) = Wip2s 45¢ey 31250 250 2000¢e4 b

By Lemma (3.34)), (3.36), (3.38)—(3.42), we assert that

22T, (p2) 2 Hi(0, B5) [v/Ba — aihi(ad, B5) = VB2 110, B2
(343) + Hl 042*7 62* |:\/ 62* 61[1 61762 V /3; - 041*]1(0[{1 62*)}
- Hl (ﬁl*a 52*) \/ B; - ﬁl*ll (51*5 BQ*)

The proof of assertion (3.43)) can be seen below. Assume that k = 7/,/gp. Clearly, k > 0.
We compute that

(3.4 (o ) [V = aTh(ef,55) — VA 0.500)] = i),
(3.45)  Hi(ae, Bas) [mh (B2, 83) — /Bs — an (o, Box) } - (Up;@(k),
(3.46) Hy(Brs, Bax) /B3 — Breli (Brs, Box) = 02)4 3(k),
where

10404/15(1893263429+/19 + 11939328+/11)

ar(h) = 7(956758909+/13 + 1907100000k)3/2
an(k) = 21/2(26009511424+/47 — 2857000131+/2743)
273(5695037+/13 + 11580000k )3/2 ’
B 841661983552+/215
a3(k):

7(701986729v/13 + 142584000k)3/2”
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We further compute that, for £ > 0,
11 2/3
pe®| - P
~ 5.3 x 10"k 4 6.4 x 10"
(956758909+/13 + 19071 x 105k)(5695037+/13 + 11580000k)

29 2/3 1.4 x 10k + 1.6 x 1016
Zai(k)| - laz(k))? =
(305914073+/13 + 60964800k) (3476171/13 + T06875k)

(>0),

o (> 0),

from which it follows that by (3.43)—(3.46)), for & > 0,

T (o) > ai(k) — az(k) —las(k) _ (Hai(k) — as(k)) + (Bar(k) — as(k)) -
2V2ps(0p) 2V2ps(0p)
So T, (p2) > 0 for € = 4.
Finally, we prove our assertion . Since H(u,p2) > 0 for 0 < u < py and

H(u,p2) <0 for py < u < p2 by (3.32)), we observe that

(3.47) /041 Hy(u,w) du = /By — axTi(on, B2) — /B211(0, B2) > 0
By Lemma (111 iv) and - -, we observe that

(3.48) I1(0, B2) < 11(0, Bax) = —% <

(3.49) (e Bor) 2 Tifes, B2) 2 Tifeuse, 55) = o2l >,
(3.50) 1(BresB2e) > 161, B2) > 155, 55) = ol D01

By (3.49) and (3.50)), we further observe that

VB2« = Bi (BT, B3) — /B3 — arsdi(af, Bas)
< VB2 — B1li(B1, B2) — /B2 — arli(au, B2)
(3.51) < \/Bf = Breli(Buss Box) — v/ Bow — @i L1 (1, B3)

1/4 [ 3034838883 1893263429
= p(13 3/4( ) /215 — —————— /38| < 0.
p(13) o 591500000000 147875000000

So by (3.34) and (B.47)—(B.51]), we observe that
2V2poT.(p2) > Hi(au, B2) [\/ﬁh a1, B2) — \/511(0,52)]
+ Hi(ao, [\/ﬂh B, B2) — \/ﬂh(al,&)}
— Hy(B1, 8)\/Ba = Bl (B, B)
> Hy(ak, 53) [mh (at, B5) — /Banl1 (0 52*}
+ Hi(oz., o) | /B = B0 (7. B3) = /B3 — anula(af, B |
— Hi(B1x, B2:)/B5 = Breli (Bres Bos).
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So assertion (3.43) holds. The proof of Lemma is complete. O

Lemma 3.11. Consider (1.1)) withe =& € (e9,e5) defined in Lemma . Then TZ (p2) >
0.

Proof. By Lemma [3.10(i), € € (2,24). By elementary analysis and Lemma [3.4[iv), we
assert that for e < e <e4 and 0 < u < po,

183 21

Top F'w2) = Fu)] <p2f(p2) — uf(u) < 15[F(p2) — F(w)].

Since the proof of assertion (3.52)) is easy but rather lengthy, and hence we put the proof
in [4] and omit it here. By Lemma we see that 6(p2) — 0(u) > 0 for 0 < u < P, and
0(p2) — 6(u) < 0 for P < u < pa. Since TZ(pz) = 0, and by Lemma [B.1] (3.3) and (3.52),

we have that

2V2p3TY (p2)

(3.52)

3 [0(p2) — 0(w)][p2f (p2) — P2 pof) p2 —u@’(u) "
24 [F(p2) — WP” A Pl Fu)pe

3 /21\ (P2 B(p2) — O(u) 3 /183 0 (u)
‘2(m)[;[F<> Flupre ™ 2<um) meﬂd“

P2 o0 —ub (u
* /0 [Z;E(p(fz F(U)](?’/)2 de (v @2)

(353) 63 [ [P 4(py) — O(u) (7 0p2) — O(u)
20 {/ [F(p2) — F(u)]?/? a /pg [F(p2) — F(u)]?/? du}
549 63\ [Pz O(p2) — O(u) P2 pob' (p2) — ub’ (u)
(200 20) /p [F(p2) — F(u)]3/? dut /0 [F(p2) — F(u)]3/?2 .
_ 63, 81 /7 O(pa)—0(w) . % p20'(p2) — ub'(u) "
— T (p2) + /}72 i d —i—/o d

20 ° 200 (p2) = F(u)]*/? [F(p2) = F(u)]*?

_ 81 0(p2) — 6(u) " P2 —ub' (u) "
‘%wégwwﬂ—ﬂmwfi+l Flp) — F)P? ™

We assert that, for e5 < € < &4,

81 (P2 4 -0 P2 —uf’
L I Y (e R
) 200 J5, o)~ F@P? ™ o TP — P
’ 81 _ — . o 12(0, pos
— oo Hi(P2x, p2x) /D3 — D2:11 (D5, p2x) — H3(p1*,p2)2(7*2) >0
200 N
for some positive numbers p1,, pa2«, P35, P2« and pj satisfying p1, < p; and
30 < <7t < 230 230 < 390 390 <y < 4170
95 SPe <P <Py S 550 < qgg; SP2 P2 <P S qgppn

Since the proof of assertion is rather lengthy and is similar to the proof of asser-
tion (i) of Lemma we put the proof in [4] and omit it here. So by (3.53)) and (3.54]),
we see that T (p2) > 0. The proof of Lemma is complete. O
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4. Proof of the main result

By Theorem for 0 < e < &, the S-shaped bifurcation curve S. has exactly two

turning points (A" [ux- 1) and (A, [lux, [,) satisfying A, < A" and fluxe L, < flur. |l
see Figure [L.I[i). Thus by (3.1)), for 0 < & < &, T.(a) has exactly two (positive) critical
points at a; (= [lux-llos) < o (= [Jua. lloo)-

Proof of Theorem 2.1 Let 0 < ¢ < &. Since 6(p1)—6(u) > 0 for 0 < u < p; by Lemma 3.1}
and by (3.2)), we see that T/(p1) > 0 for € > 0. By Lemma [3.10{iii), £ < £ < Z. Assume
that &€ < e < €. Since T.(y) > 0 by Lemma we see that either v < a7 or af < 7.
By [8, Lemma 3.2], we obtain that either T.(«) is a strictly increasing function of a on
(0,7], or T:(«) is a strictly increasing and then strictly decreasing function of « on (0, ~].
So we further obtain that v < a_ . It follows that

(4.1) p<a <y<al for0<e<§g
(4.2) p<y=a. <af fore=E¢
(4.3) pr<vy<aZ <al forg<e<©

By Lemma it is easy to see that aZ < ps < af for 0 < e <&. For ¢ = &, we see that
either po = aZ or py = af. By Lemma we see that po = af. We note that o= and
o are continuous functions of € on (0,) by [6, Remark 2.2]. By Lemma it is easy
to see that ps is a continuous function of € on (0,£). Since T.(p2) > 0 for € < ¢ < € by
Lemma we observe that aZ < af < ps for € < e < €. So we have that

(4.4) pr<al <ps<al for0<e<§,
(4.5) p1<a. <alf =py fore=F¢,
(4.6) pr<a. <al <py fore<e<gé.

Thus, by (£.1)—-(4.6), inequalities (2.3)—(2.7) hold. By [6, Remark 2.2], we see that

lim, =+ [Jur||,, = lim. = ||u>\*HOO = Hu/\H . Assume that py = Hu/\H for e = €.
By Theorem u(iii) we see that TL(py) = TL( Hu H = 0 for € = &, which is a contradic-

tion to Lemma So pa > Hu H for e = €. Similarly, by Lemma n we observe that
v < Hu/\HOO for e = €. In addition, by Lemma K(g) < K(65) =1/3 for ey <& < &5.
This implies that p; = K(€)o /e < a/(3§) =~ for ¢ = €. Thus, ) holds.

Finally, we prove € < 4/ 285?&]3;3 By (2.7) and (2.8), it is sufﬁ(nent to prove that T/ (a) > 0

for0 < a<pyand e= 28536703;). By Lemmas and we compute that

o 33203 0.3910 210 . 8303
po = —L ~ < — ife= .
€ 10000p € 50¢e 2500p
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By Lemmal[3.9[i), Hi(u, a) is a strictly decreasing function of u on [0, o] for 0 < a < ps. So
by (3.2), (3.32) and Lemmas and we observe that, for 0 < o < py and e = 4/ %ﬁfp,

T!(a) = 2\;20[2 /a Hi(u,a)Hy(u, o) du

1
> Hy(a,«) Huadu—l—Haoz/Huozdu]
2v/20? [ 1( / 2 ) 1 2 )
H(a,« /
= H u, a
Q\faQ 2(
Hl(a7a> 3 2
= ———" 1279 a” — 154a“0c + 210
35v/203/2 [ /)
Hl(aa Oé) 3 2
—— 7 [279¢0> — 154 210 )
= 352032 [279za o’ +210p] ,_sose
_ 1573043V2pH; (@, «) -
© 174441681a3/2
since
: 308
9 <0 f0<a<gs,
——(27920° — 1540”0 + 210p) = (837ea — 3080) { = 0 if a = 3087,
(6%
: 308
>0 ifa> 837‘5’.

Hence, € < ”%7 which implies that (2.2]) holds. This completes the proof of Theo-
rem 2.1 O
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