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Notes on Weierstrass Points of Modular Curves X0(N)

Bo-Hae Im, Daeyeol Jeon* and Chang Heon Kim

Abstract. We give conditions for when the fixed points by the partial Atkin-Lehner

involutions on X0(N) are Weierstrass points as an extension of the result by Lehner

and Newman [18]. Furthermore, we complete their result by determining whether the

fixed points by the full Atkin-Lehner involutions on X0(N) are Weierstrass points or

not.

1. Introduction

Let H be the complex upper half plane and Γ be a congruence subgroup of the full modular

group SL2(Z). Denote by X(Γ) the modular curve obtained by compactifying the quotient

Γ \ H. We can view X(Γ) as a compact Riemann surface analytically. For each positive

integer N , we let Γ0(N) be the Hecke subgroup of SL2(Z) defined by

Γ0(N) =


a b

c d

 ∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)


and let X0(N) := X(Γ0(N)).

We recall the definitions of a Weierstrass point of a compact Riemann surface and its

Weierstrass weight as in [1]. One says that a point P of a compact Riemann surface X of

genus g := g(X) ≥ 2 is a Weierstrass point of X if there is a holomorphic differential ω

(not identically zero) with a zero of order ≥ g at P . If P ∈ X and ω1, ω2, . . . , ωg form a

basis for the holomorphic differentials on X with the property that

0 = ordP (ω1) < ordP (ω2) < · · · < ordP (ωg),
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then the Weierstrass weight of P is the non-negative integer defined by

wt(P ) :=

g∑
j=1

(ordP (ωj)− j + 1).

Note that wt(P ) > 0 if and only if P is a Weierstrass point of X.

The Weierstrass points of modular curves have been studied by many authors: Lehner

and Newman [18] gave conditions for when the cusp at infinity is a Weierstrass point of

X0(N) for N = 4n, 9n and Atkin [2] gave conditions for the case of N = p2n where p

is a prime ≥ 5. Also, Ogg [22], Kohnen [16, 17] and Kilger [14] gave some conditions for

when the cusp at infinity is not a Weierstrass point of X0(N) for certain N . And Ono [23]

and Rohrlich [24] investigated Weierstrass points of X0(p) for various primes p. Recently

in [13] we investigated Weierstrass points on coverings of X0(N).

The Weierstrass points have been illustrated as an important class in number the-

ory. For example, they are connected to supersingular j-invariants and polynomials as

demonstrated, for instance, in the works of Ahlgren and Ono [1] and El-Guindy [9] on

that topic.

The main purpose of this paper is to give some conditions of being the Weierstrass

points of X0(N). To describe our main result in this paper more precisely, we recall

the definition of the Atkin-Lehner involution. We call a positive divisor Q of N with

gcd(Q,N/Q) = 1 an exact divisor of N and denote it by Q ‖ N . For each Q ‖ N , consider

the matrices of the form
(
Qx y
Nz Qw

)
with x, y, z, w ∈ Z and determinant Q. Then such a

matrix defines a unique involution on X0(N) which is called the Atkin-Lehner involution

and denoted by WQ. If Q = N , then WQ is called the full Atkin-Lehner involution, and

otherwise it is said to be a partial Atkin-Lehner involution. Sometimes we regard WQ as

a matrix.

Lehner and Newman [18] have shown that the fixed points by the full Atkin-Lehner

involution on X0(N) are Weierstrass points except possibly for finitely many N which

are listed in Lemma 3.3. In order to obtain the result, they have applied Schöneberg’s

Theorem [25, Satz 1]. Our main result in this paper is to determine explicitly when the

fixed points by the partial Atkin-Lehner involutions on X0(N) are Weierstrass points as

an extension of the result by Lehner and Newman [18]. Also in this paper we give an

algorithm to generate Γ0(N)-inequivalent fixed points by the full Atkin-Lehner involution

and we provide a computational method which can take care of the exceptional cases listed

in Lemma 3.3 which are not covered by Lehner and Newman [18].

This paper is organized as follows. In Section 2, we recall the formula [10, Remark 2]

for the number of fixed points on X0(N) by the Atkin-Lehner involutions and explain

algorithmically how to generate Γ0(N)-inequivalent fixed points of X0(N) by the full

Atkin-Lehner involution WN . In Section 3, we give conditions for when fixed points by
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the Atkin-Lehner involutions are Weierstrass points. We apply the formula [10, Remark 2]

of the number of fixed points on X0(N) by the Atkin-Lehner involutions and Schöneberg’s

Theorem [25, Satz 1], and we give some new formulae for the number of fixed points when

the so-called elliptic condition (Definition 3.9) is satisfied and apply them to obtain the

conditions for Weierstrass points. In Section 4, we consider the exceptional cases which

are not determined solely by Schöneberg’s Theorem [25, Satz 1] and the formula given

in [10, Remark 2], and we give a computational explanation of how to determine whether

they are Weierstrass points or not.

2. Fixed points by Atkin-Lehner involutions

Let X+Q
0 (N) be the quotient space of X0(N) by WQ. Let g0(N) and g+Q0 (N) be the genera

of X0(N) and X+Q
0 (N) respectively. Then g+Q0 (N) is computed by the Riemann-Hurwitz

formula as follows:

g+Q0 (N) =
1

4
(2g0(N) + 2− ν(Q)),

where ν(Q) := ν(Q;N) is the number of fixed points on X0(N) by WQ. We recall the

formula for ν(Q).

Proposition 2.1. [10, Remark 2] For each Q ‖ N , ν(Q) is given by

ν(Q) =

 ∏
p|N/Q

c1(p)

h(−4Q)

+


(∏

p|N/Q c2(p)
)
h(−Q), if 4 ≤ Q ≡ 3 (mod 4),

0, otherwise

+


∏
p|N/2

(
1 +

(−4
p

))
, if Q = 2,

0, otherwise

+


∏
p|N/3

(
1 +

(−3
p

))
, if Q = 3,

0, otherwise

+


∏
pk|N/Q

(
p[

k
2
] + p[

k−1
2

]
)
, if Q = 4,

0, otherwise

(2.1)

where h(−d) is the class number of primitive quadratic forms of discriminant −d,
(·
·
)

is

the Kronecker symbol and the functions ci(p) are defined as follows: for i = 1, 2,

ci(p) =

1 +
(−Q
p

)
, if p 6= 2 and Q ≡ 3 (mod 4),

1 +
(−4Q

p

)
, if p 6= 2 and Q 6≡ 3 (mod 4),
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c1(2) =



1, if Q ≡ 1 (mod 4) and 2 ‖ N,

0, if Q ≡ 1 (mod 4) and 4 | N,

2, if Q ≡ 3 (mod 4) and 2 ‖ N,

3 +
(−Q

2

)
, if Q ≡ 3 (mod 4) and 4 ‖ N,

3
(

1 +
(−Q

2

))
, if Q ≡ 3 (mod 4) and 8 | N,

c2(2) = 1 +

(
−Q
2

)
, if Q ≡ 3 (mod 4).

Next we give an algorithm to find Γ0(N)-inequivalent fixed points of WN on X0(N).

For a positive integer d congruent to 0 or 3 modulo 4, we denote by Qd the set of

positive definite integral binary quadratic forms

Q(x, y) = [a, b, c] := ax2 + bxy + cy2

with discriminant −d = b2 − 4ac. Then SL2(Z) acts on Qd by

Q ◦ γ(x, y) = Q(px+ qy, rx+ sy)

where γ = ( p qr s ) ∈ SL2(Z). We say that a quadratic form [a, b, c] ∈ Qd is primitive if

gcd(a, b, c) = 1. A primitive positive definite form [a, b, c] is said to be reduced if

(2.2) |b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.

Let Q◦d ⊂ Qd be the subset of primitive forms. Then SL2(Z) also acts on Q◦d. As is well

known, there is a one-to-one correspondence between the set of classes Q◦d/ SL2(Z) and

the set of reduced forms.

Now for a fixed positive integer N we let d be a positive integer such that −d is

congruent to a square modulo 4N . We choose an integer β with −d ≡ β2 (mod 4N).

Then we define

Q◦d,N = {[aN, b, c] ∈ Qd | gcd(a, b, c) = 1}

and

Q◦d,N,β =
{

[aN, b, c] ∈ Q◦d,N | b ≡ β (mod 2N)
}
.

Then Γ0(N) acts on both Q◦d,N and Q◦d,N,β. For Q = [aN, b, c] ∈ Q◦d,N , we define Q|WN =

[cN,−b, a]. We observe that this defines an action of WN on the set Q◦d,N/Γ0(N).

Assume that N ≥ 5 and WN fixes Γ0(N)τ ∈ X0(N) for some τ ∈ H. This means that

( p qr s )WNτ = τ for some ( p qr s ) ∈ Γ0(N). Thus τ satisfies a quadratic equation

NsX2 − (r + qN)X + p = 0,
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whose discriminant D is given by D = (r+qN)2−4psN = (r′−q)2N2−4N where r = r′N .

Since D ≤ 0, we come up with (r′ − q)2N ≤ 4. Since we have assumed that N ≥ 5, we

must have r′ − q = 0 and therefore D = −4N . Thus one has D = 4q2N2 − 4psN = −4N ,

which gives gcd(p, qN) = 1 and hence gcd(s,−2qN, p) = 1 or 2. If gcd(s,−2qN, p) = 2,

then both p and s should be even. It then follows from ps−q2N = 1 that N ≡ 3 (mod 4).

Now we set Qτ := [sN,−2qN, p]. Then we see that

Qτ ∈ Q◦4N,N,0 or
1

2
Qτ ∈ Q◦N,N,N

where the latter case may happen only if N ≡ 3 (mod 4). Let FN be the set of the fixed

points of WN on X0(N) and let

GN :=

Q◦4N,N,0/Γ0(N) ∪Q◦N,N,N/Γ0(N), if N ≡ 3 (mod 4),

Q◦4N,N,0/Γ0(N), otherwise,

where the union is disjoint. Now we define a map φ : FN → GN by

φ(Γ0(N)τ) =

Qτ , if (s,−2qN, p) = 1,

1
2Qτ , if (s,−2qN, p) = 2.

Then we can easily check that φ is well-defined.

On the other hand, given a quadratic form Q ∈ Q◦4N,N,0/Γ0(N) or Q ∈ Q◦N,N,N/Γ0(N)

we can find a fixed point Γ0(N)τ ∈ X0(N) such that Q = φ(Γ0(N)τ). Thus the map φ is

surjective.

Now we deduce from [11, Proposition in p. 505] that the natural maps

Q◦4N,N,0/Γ0(N)→ Q◦4N/SL2(Z),

Q◦N,N,N/Γ0(N)→ Q◦N/ SL2(Z) (when N ≡ 3 (mod 4))
(2.3)

are well-defined and bijective.

From [10], we have the following formula for the number of fixed points of WN on

X0(N):

ν(N) = #FN = δNh(−4N),

where h(−4N) denotes #Q◦4N/ SL2(Z) and

δN =


2, if N ≡ 7 (mod 8),

4
3 , if N ≡ 3 (mod 8) and N > 3,

1, otherwise.

Since it is well-known that

(2.4) h(−4N) =

h(−N), if N ≡ 7 (mod 8),

3h(−N), if N ≡ 3 (mod 8) and N > 3,
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we have #FN = #GN , and hence φ is a bijection.

Now we will find Γ0(N)-inequivalent fixed points in FN by finding Γ0(N)-inequivalent

quadratic forms in GN which can be obtained by pulling back the reduced forms in

Q◦4N/ SL2(Z) and Q◦N/ SL2(Z) through the maps (2.3). Before providing an algorithm,

we need the following lemma.

Lemma 2.2. For a fixed positive integer N we let d be a positive integer such that −d
is congruent to a square modulo 4N . We choose an integer β with −d ≡ β2 (mod 4N).

Then the following statements are true.

(1) Given a primitive quadratic form Q ∈ Q◦d there exists a quadratic form [a, b, c] which

is SL2(Z)-equivalent with Q and gcd(a,N) = 1.

(2) Let K be a solution to the linear congruence equation 2aX + b ≡ −β (mod 2N) and

set [A,B,C] := [a, b, c] ◦
(
K −1
1 0

)
. Then [A,B,C] belongs to Qd,N,β.

Proof. (1) follows from [7, Lemma 2.3 and Lemma 2.25].

(2) First we note that b and β have the same parity since −d = b2 − 4ac and −d ≡ β2

(mod 4N). Thus we obtain that 2 = gcd(2a, 2N) | (−β − b), which guarantees that

the linear congruence 2aX + b ≡ −β (mod 2N) is solvable. Since B = −2aK − b ≡ β

(mod 2N) and C = a, we must have

−4Aa = −4AC = −d−B2 ≡ β2 −B2 ≡ 0 (mod 4N),

which yields that N | A since gcd(a,N) = 1. Hence one has [A,B,C] ∈ Qd,N,β, as

desired.

Now we summarize the procedures explained in the above as the following algorithm.

Algorithm 2.3. The following steps implement an algorithm to find Γ0(N)-inequivalent

fixed points of WN :

Step 1. Set (d, β) = (4N, 0) or (d, β) = (N,N) (when N ≡ 3 (mod 4)).

Step 2. Starting from a reduced form Qred satisfying (2.2) we first find a quadratic form

[a, b, c] which is SL2(Z)-equivalent with Qred and gcd(a,N) = 1.

Step 3. Set [A,B,C] := [a, b, c] ◦
(
K −1
1 0

)
where K is a solution to the linear congruence

equation 2aX + b ≡ −β (mod 2N). Then [A,B,C] belongs to Qd,N,β.

Step 4. Let τ = −B+
√
−d

2A . Then Γ0(N)τ gives a fixed point of WN .
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3. Weierstrass point on X0(N) arising from the fixed points of Atkin-Lehner

involutions

First, we recall Schöneberg’s Theorem [25, Satz 1] as follows.

Theorem 3.1. [25] Let g be the genus of the modular curve X(Γ) of a congruence subgroup

Γ of SL2(Z) and let M be an element of the normalizer of Γ in SL2(R) and p be the exponent

of M modulo Γ. Let g∗ be the genus of the quotient space X(Γ)/ 〈M〉 by the subgroup 〈M〉
generated by M modulo Γ. Then τ is a Weierstrass point on X(Γ) provided that

g∗ 6= bg/pc.

(bxc denotes the largest integer not greater than x.)

By using the formula in Proposition 2.1 and Schöneberg’s Theorem [25, Satz 1], we

have the following:

Lemma 3.2. Let τ be a fixed point of WQ on X0(N) with g0(N) > 1. If ν(Q) > 4, then

τ is a Weierstrass point of X0(N).

Proof. By Theorem 3.1, τ is a Weierstrass point of X0(N) if

g0(N)− 2g+Q0 (N) > 1

which is equivalent to that ν(Q) > 4.

Note that ν(N) = δNh(−4N) and there exist only finitely manyN such that h(−4N) ≤
4. By using these facts, Lehner and Newman [18] have shown that the fixed points of WN

are Weierstrass points on X0(N) except possibly for finitely many N . However they didn’t

specify such possible N ’s, and hence we list them in Lemma 3.3. By Proposition 3.11 which

we will prove later, we have the following:

Lemma 3.3. The fixed points of WN are Weierstrass points on X0(N) with g0(N) > 1

except possibly for the following values for N :

22, 28, 30, 33, 34, 37, 40, 42, 43, 45, 46, 48, 52, 57, 58, 60, 64, 67, 70, 72, 73,

78, 82, 85, 88, 93, 97, 100, 102, 112, 130, 133, 142, 148, 163, 177, 190, 193,

232, 253.

All of the forty possible exceptions in Lemma 3.3 turn out to be true exceptions (see

Section 4).

From now on, if Q ‖ N and N = QM , we always assume M > 1. By Proposition 2.1

and Lemma 3.2 we have the following results.
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Lemma 3.4. Let 2 ‖ N and N = 2M . Then we have the following.

(1) ν(2) = 0 if and only if M has a prime factor p with p ≡ 7 (mod 8) or prime factors

q, r with q ≡ 3 (mod 8) and r ≡ 5 (mod 8).

(2) If ν(2) 6= 0, then

ν(2) = δ0,s22s0+s1 + δ0,s12s0+s2 ,

where s0, s1 and s2 are the numbers of prime factors p of M with p ≡ 1 (mod 8),

p ≡ 3 (mod 8) and p ≡ 5 (mod 8) respectively, and δi,j is the Kronecker delta

function.

Proof. Since h(−8) = 1,

ν(2) =
∏
p|M

(
1 +

(
−8

p

))
+
∏
p|M

(
1 +

(
−4

p

))
.

Since (
−8

p

)
=

1, if p ≡ 1, 3 (mod 8),

−1, if p ≡ 5, 7 (mod 8),

and (
−4

p

)
=

1, if p ≡ 1 (mod 4),

−1, if p ≡ 3 (mod 4),

our result follows.

Lemma 3.5. Let 3 ‖ N and N = 3M . Then we have the following.

(1) ν(3) = 0 if and only if 8 |M or M has a prime factor p with p ≡ 5 or 11 (mod 12).

(2) If ν(3) 6= 0, then

ν(3) = 2s+1,

where s is the number of prime factors p of M with p ≡ 1 or 7 (mod 12).

Proof. If 8 |M , then ν(3) = 0 because
(−3

2

)
= −1. Suppose 8 -M . Since h(−12) = 1,

ν(3) =
∏
p|M

(
1 + (−1)p−1

(
−3

p

))
+
∏
p|M

(
1 +

(
−3

p

))
.

Since (
−3

p

)
=

1, if p ≡ 1, 7 (mod 12),

−1, if p ≡ 5, 11 (mod 12)

for an odd prime p, the condition of ν(3) > 0 follows. If ν(3) > 0, then

ν(3) = 2
∏
p|M

(
1 +

(
−3

p

))
= 2s+1.
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Lemma 3.6. Let 4 ‖ N and N = 4M . Then W4 has always a fixed point on X0(N).

Let s and t denote the numbers of prime factors p of M with p ≡ 1 (mod 4) and p ≡ 3

(mod 4) respectively. Then we have the following:

ν(4) =


∏
pk‖M

(
p[

k
2 ] + p[

k−1
2 ]
)
, if t > 0,∏

pk‖M

(
p[

k
2 ] + p[

k−1
2 ]
)

+ 2s, if t = 0.

Proof. It follows directly from Proposition 2.1.

By using Lemmas 3.4, 3.5 and 3.6, we have the following result:

Theorem 3.7. Let Q ‖ N and N = QM . Suppose ν(Q) > 0. Then the fixed points of

WQ are Weierstrass points of X0(N) for each of the followings:

(1) Q = 2; s0 > 1 and s1 = s2 = 0, s0 + s1 > 2 or s0 + s2 > 2 where s0, s1 and s2 are

the numbers of prime factors p, q and r of M with p ≡ 1 (mod 8), q ≡ 3 (mod 8)

and r ≡ 5 (mod 8) respectively.

(2) Q = 3; s > 1 where s is the number of prime factors p of M with p ≡ 1, 7 (mod 12).

(3) Q = 4; M is not a square-free integer with M 6= 9 or M is square-free and 6s+ 4t >

11 where s and t are the numbers of prime factors p and q of M with p ≡ 1 (mod 4)

and q ≡ 3 (mod 4) respectively.

Proof. (1) and (2) follow immediately from Lemmas 3.4 and 3.5.

For (3), if M is not a square-free integer with M 6= 9, then one can check easily that

ν(4) > 4 by Lemma 3.6. If M is square-free, then by Lemma 3.6

ν(4) =

2s+t, if t > 0,

2s+1, if t = 0.

One can check easily that ν(4) > 4 if and only if 6s+ 4t > 11.

Now we deal with the case when Q > 4. For that we need the following result.

Proposition 3.8. Let Q ‖ N and N = QM . If Q > 3, then the following statements are

equivalent.

(1) WQ has a fixed point on X0(N).

(2) WQ can be defined by a matrix of the form
(
Qx y
Nz −Qx

)
with det(WQ) = Q.

(3) X2 ≡ −Q (mod N) has a solution.
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(4)
(−Q
p

)
= 1 for any odd prime p |M , and Q ≡ 3 (mod 4) if 4 ‖M and Q ≡ 7 (mod 8)

if 8 |M .

Proof. (1)⇒(2): Suppose WQ =
(
Qx y
Nz Qw

)
with det(WQ) = Q and WQ has a fixed point

on X0(N). Then there exists τ ∈ H such that WQτ = γτ for some γ ∈ Γ0(N). Since

γ−1WQ defines the same partial Atkin-Lehner involution, one may assume that WQτ = τ

by changing coefficients x, y, z, w of WQ. Then the matrix WQ is elliptic, and hence

|x+ w|
√
Q < 2. Since Q > 3, x+ w = 0 and the result follows.

(2)⇒(3): Suppose WQ =
(
Qx y
Nz −Qx

)
with det(WQ) = Q. Then det(WQ) = −(Qx)2 −

Nyz = Q, and hence Qx is a solution of X2 ≡ −Q (mod N).

(3)⇒(2): Suppose X2 ≡ −Q (mod N) has a solution, say x0. Since gcd(Q,M) = 1,

one can choose Q′ so that QQ′ ≡ 1 (mod M). Then QQ′x0 is a solution of X2 ≡ −Q
(mod N) which is divisible by Q. Letting x = Q′x0, (Qx)2 = −Q − Nyz for some y, z,

and hence the matrix
(
Qx y
Nz −Qx

)
has det(WQ) = Q.

(2)⇒(1): Since WQ =
(
Qx y
Nz −Qx

)
with det(WQ) = Q is elliptic, it has a fixed point in

H, and hence has one on X0(N).

(3)⇔(4): It follows from [6, Theorem 9.13].

Definition 3.9. For Q ‖ N , if one of the equivalent statements of Proposition 3.8 is

satisfied, then we call that (N ;Q) satisfies the elliptic condition.

From Propositions 2.1 and 3.8, we have the following:

Lemma 3.10. Let Q ‖ N and N = QM . Suppose Q > 4 and (N ;Q) satisfies the elliptic

condition. Then the following holds: Let s be the number of prime divisors of M and

αN =


1, if 2 - N or 2 ‖ N,

2, if 4 ‖ N,

3, if 8 | N.

(1) If Q ≡ 7 (mod 8) or Q ≡ 3 (mod 8) and N is odd, then

ν(Q) = 2s(αNh(−4Q) + h(−Q)).

(2) If Q ≡ 1 (mod 4) and N is even, then

ν(Q) = 2s−1h(−4Q).

(3) If Q is even, or Q ≡ 3 (mod 8) and N is even, or Q ≡ 1 (mod 4) and N is odd,

then

ν(Q) = 2sh(−4Q).
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Proof. If Q is even, then M is odd, and hence c1(p) = 2 for all p | M . Thus ν(Q) =

2sh(−4Q). This equality holds for the cases of Q ≡ 1 (mod 4) and N is odd because

M is odd. If Q ≡ 1 (mod 4) and N is even, then M is even and c1(2) = 1. Thus

ν(Q) = 2s−1h(−4Q). Consider the case Q ≡ 3 (mod 4). If N is odd, then so is M , and

c1(p) = c2(p) = 2 for all p |M . Thus ν(Q) = 2s(h(−4Q) +h(−Q)). If Q ≡ 7 (mod 8) and

N is even, then M is even, and c1(2) = 2αN , c2(2) = ci(p) = 2 for all odd prime p | M
and i = 1, 2. Thus ν(Q) = 2s(αNh(−4Q) + h(−Q)). If Q ≡ 3 (mod 8) and N is even,

then M is even, and c2(2) = 0, c1(p) = 2 for all p |M . Thus ν(Q) = 2sh(−4Q).

For getting the condition that ν(Q) > 4, we need to determine the values for Q

with small h(−Q) and h(−4Q). Recall that if dK is the (fundamental) discriminant

of an imaginary quadratic field K, then h(dK) is equal to the class number of K, i.e.,

h(dK) = h(OK) where OK is the ring of integers of K and h(OK) is the order of the ideal

class group of OK . On the other hand, if d = f2dK is the discriminant of a primitive

quadratic form with f > 1, then h(d) = h(O) where O is the order of conductor f in

K (cf. [7]). Note that d is a fundamental discriminant if and only if one of the following

statements holds:

• d ≡ 1 (mod 4) and d is square-free,

• d = 4m where m ≡ 2 or 3 (mod 4) and m is square-free.

The complete list of fundamental discriminants of class number 1 is as follows:

(3.1) − 3,−4,−7,−8,−11,−19,−43,−67,−163.

This is accomplished independently by Heegner [12], Baker [3] and Stark [26]. The non-

fundamental discriminants of class number 1 are as follows:

(3.2) − 12,−16,−27,−28.

Thus h(−Q) = 1 if and only if Q ∈ S1, where

S1 = {3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163} .

The determination of fundamental discriminants of class number 2 was done again by

Baker [4] and Stark [27].

Now consider the condition that ν(Q) > 4. Due to (2.4) and Lemma 3.10, it suffices to

determine the values for Q such that h(−Q) = 1 and h(−4Q) = 2, 3, 4. For the purpose,

we refer to a paper by Klaise [15] in which all the orders of class number 2 and 3 are
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determined and an algorithm to find all orders of class number up to 100 is suggested. Let

S2 = {5, 6, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 37, 58} ,

S3 = {11, 19, 23, 27, 31, 43, 67, 163} ,

S4 = {14, 17, 20, 21, 24, 30, 32, 33, 34, 36, 39, 40, 42, 45, 46, 48, 49,

52, 55, 57, 60, 63, 64, 70, 72, 73, 78, 82, 85, 88, 93, 97, 100, 102,

112, 130, 133, 142, 148, 177, 190, 193, 232, 253}.

By using the result in [15] and some computations of the orders of class number 4 we

have the following:

Proposition 3.11. The list of Q with h(−4Q) = 2, 3, 4 is completely determined as

follows:

h(−4Q) = i if and only if Q ∈ Si for i = 2, 3, 4.

By Proposition 3.11, we have the following result:

Theorem 3.12. Let Q ‖ N and N = QM . Suppose that Q > 4 and (N,Q) satisfies the

elliptic condition. Let s denote the number of prime divisors of M .

(1) When Q ≡ 7 (mod 8) or Q ≡ 3 (mod 8) and N is odd,

(a) if Q 6= 7, then all the fixed points of WQ on X0(N) are Weierstrass points, and

(b) if Q = 7 and 4 | N or s > 1, then all the fixed points of W7 on X0(N) are

Weierstrass points.

(2) When Q ≡ 1 (mod 4) and N is even,

(a) if Q /∈ S2∪S4, then all the fixed points of WQ on X0(N) are Weierstrass points,

and

(b) if Q ∈ S2 and s > 2 or Q ∈ S4 and s > 1, then all the fixed points of WQ on

X0(N) are Weierstrass points.

(3) In other cases,

(a) if Q /∈ S2, then all the fixed points of WQ on X0(N) are Weierstrass points,

and

(b) if Q ∈ S2 and s > 1, then all the fixed points of WQ on X0(N) are Weierstrass

points.
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Proof. (1) From Lemma 3.10, we need to consider Q such that h(−4Q) + h(−Q) = 2. By

Proposition 3.11, one can check that the only Q = 7 such that h(−4Q) + h(−Q) = 2. In

the case of Q = 7, if 4 | N or s > 1, then ν(7) > 4, and hence the result follows.

(2) From Lemma 3.10, we need to consider Q such that h(−4Q) ≤ 4. By Proposi-

tion 3.11, one can check that there doesn’t exist Q ≡ 1 (mod 4) such that h(−4Q) = 1, 3,

and hence the result follows.

(3) From Lemma 3.10, we need to consider Q such that h(−4Q) ≤ 2. However by

Proposition 3.11 one can check that there doesn’t exist such a Q so that h(−4Q) = 1 in

these cases. Therefore the result follows.

4. Computations for the exceptional cases

In this section, we completely determine when the fixed points of the full Atkin-Lehner

involution WN are Weierstrass points on X0(N) including the exceptional cases listed in

Lemma 3.3. From now on, we always assume that N is one of those integer values. Let

τ ∈ H∗ := H ∪ P1(Q) and [τ ] := Γ0(N)τ ∈ X0(N). Let {f1, f2, . . . , fg} be a basis of the

cuspform space S2(N) of weight 2 on Γ0(N), where g is the genus of X0(N). Then the

differentials ωi := fi dz form a basis for the holomorphic differentials on X0(N). Then

the order ord[τ ](ωi) has certain relation with ord[τ ](fi) depending on the types of [τ ]

(see [20]). In particular, [τ ] is an ordinary point, i.e., it is non-cuspidal and non-elliptic,

then ord[τ ](ωi) = ord[τ ](fi). We will compute the Weierstrass weight of [τ ] by using the fi.

In general, it is very difficult to construct fi explicitly, and hence we will use the Fourier

expansions at the infinite cusp ∞ of the fi which can be easily computed by using the

computer algebra system Sage [28].

Following the work of Rohrlich [24] as summarized on [23, p. 113], we have the following

result:

Lemma 4.1. Let [τ ] be a point of X0(N), and let {f1, f2, . . . , fg} be a basis of the cusp

form space S2(N) of weight 2 on Γ0(N). Then [τ ] is a Weierstrass point of X0(N) if and

only if the vanishing order of WN (f1, . . . , fg)(dz)
g(g+1)/2 at [τ ] is nonzero, where

WN (f1, . . . , fg) =

∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 · · · fg

f ′1 f ′2 · · · f ′g

. . . . . . . . . . . . . . . . . . . . . . . . . .

f
(g−1)
1 f

(g−1)
2 · · · f

(g−1)
g

∣∣∣∣∣∣∣∣∣∣∣∣
is the Wronskian of f1, f2, . . . , fg. In particular, if [τ ] is an ordinary point, then it is a

Weierstrass point if and only if WN (f1, . . . , fg)(τ) = 0.
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Now we estimate the value f
(j−1)
i (τ) using the Fourier expansion of fi =

∑∞
n=1 ai(n)qn

at ∞ where z ∈ H and q = e2πiz. Note that

(4.1) f
(j−1)
i (τ) =

∞∑
n=1

(2πin)j−1ai(n)qn
∣∣∣
z=τ

.

Since
∣∣e2πiτ ∣∣ = e−2π Im(τ), we need to find τ ′ ∈ [τ ] whose imaginary part is as big as possible

for the fast convergence of the right side of (4.1). We will consider an algorithm to find

τ ′ ∈ [τ ] so that Im(τ ′) is the biggest. Note that Im(α(τ)) = Im(τ)
|cτ+d| for α =

(
a b
c d

)
∈ Γ0(N).

Thus it suffices to find a pair (c, d) with c ≡ 0 (mod N) and gcd(c, d) = 1 so that |cτ + d|
is the smallest. Let τ = x+ iy with x, y ∈ R. Since |cτ +d|2 = (cx+d)2 + (cy)2 ≤ 1, there

are only finitely many such pairs (c, d) because |c| ≤ 1
|y| and |cx+ d| ≤ 1.

We summarize the procedures explained in the above as the following algorithm.

Algorithm 4.2. The following steps implement an algorithm to find τ ′ ∈ [τ ] so that

Im(τ ′) is the biggest.

Step 1. Set m = [1/|y|] the largest integer not greater than 1/|y|.

Step 2. For each c with −m ≤ c ≤ m and c ≡ 0 (mod N), set lc = [−1 − cx] and

uc = [1− cx].

Step 3. Pick a pair (c0, d0) so that |c0τ + d0| is the smallest among |cτ + d| where

−m ≤ c ≤ m and lc ≤ d ≤ uc with gcd(c, d) = 1.

Step 4. Set τ ′ = Im(τ)
|c0τ+d0| .

We list the genera of X0(N) and the fixed points of WN in Table 4.1 by using Algo-

rithms 2.3 and 4.2. By using Lemma 4.1, we can confirm that there are no Weierstrass

points onX0(N) arising from the fixed points ofWN . We have used Sage [28], Maple [19],

and Mathematica [29] for the numerical computations.

Table 4.1: Fixed points by WN on X0(N).

N g(X0(N)) fixed points by WN

22 2 1√
−22 ,−

6
13 +

√
−22
286

28 2 1
2
√
−7 ,−

8
11 +

√
−7

154

30 3 1√
−30 ,

8
17 +

√
−30
510 , 4

13 +
√
−30
390 , 2

11 +
√
−30
330

33 3 1√
−33 ,

1
2 +

√
−33
66 , 9

14 +
√
−33
462 ,−2

7 +
√
−33
231

34 3 1√
−34 ,

9
19 +

√
−34
646 ,−4

5 +
√
−34
170 , 45 +

√
−34
170
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37 2 1√
−37 ,

1
2 +

√
−37
74

40 3 1
2
√
−10 ,−

6
11 +

√
−10
220 ,− 8

13 +
√
−10
260 , 57 +

√
−10
140

42 5 1√
−42 ,

11
23 +

√
−42
966 , 1117 +

√
−42
714 ,− 2

13 +
√
−42
546

43 3 1√
−43 ,−

3
4 +

√
−43
172 , 34 +

√
−43
172 , 12 +

√
−43
86

45 3 1
3
√
−5 ,

1
2 +

√
−5
30 , 1114 +

√
−5

210 ,
4
7 +

√
−5

105

46 5 1√
−46 ,

12
25 +

√
−46

1150 ,
3
5 +

√
−46
230 ,−3

5 +
√
−46
230

48 3 1
4
√
−3 ,−

13
19 +

√
−3

228 ,−
7
13 +

√
−3

156 ,−
1
7 +

√
−3
84

52 5 1
2
√
−13 ,−

13
17 +

√
−13
442 , 47 +

√
−13
182 ,−4

7 +
√
−13
182

57 5 1√
−57 ,

1
2 +

√
−57
114 ,−15

22 +
√
−57

1254 ,−
4
11 +

√
−57
627

58 6 1√
−58 ,

15
31 +

√
−58

1798

60 7 1
2
√
−15 ,

15
23 +

√
−15
690 , 1419 +

√
−15
570 , 1017 +

√
−15
510

64 3 1
8
√
−1 ,−

9
17 +

√
−1

136 ,−
4
5 +

√
−1
40 , 45 +

√
−1
40

67 5 1√
−67 ,−

3
4 +

√
−67
268 , 34 +

√
−67
268 , 12 +

√
−67
134

70 9 1√
−70 ,

18
37 +

√
−70

2590 ,
15
19 +

√
−70

1330 ,
12
17 +

√
−70

1190

72 5 1
6
√
−2 ,

9
19 +

√
−2

228 ,−
2
17 +

√
−2

204 ,
3
11 +

√
−2

132

73 5 1√
−73 ,

1
2 +

√
−73
146 , 47 +

√
−73
511 ,−4

7 +
√
−73
511

78 11 1√
−78 ,

20
41 +

√
−78

3198 ,
19
29 +

√
−78

2262 ,−
16
19 +

√
−78

1482

82 9 1√
−82 ,

21
43 +

√
−82

3526 ,
5
7 +

√
−82
574 ,−5

7 +
√
−82
574

85 7 1√
−85 ,

1
2 +

√
−85
170 , 1322 +

√
−85

1870 ,−
2
11 +

√
−85
935

88 9 1
2
√
−22 ,−

12
23 +

√
−22

1012 ,−
12
19 +

√
−22
836 ,−10

13 +
√
−22
572

93 9 1√
−93 ,

1
2 +

√
−93
186 ,−23

34 +
√
−93

3162 ,
11
17 +

√
−93

1581

97 7 1√
−97 ,

1
2 +

√
−97
194 ,−6

7 +
√
−97
679 , 67 +

√
−97
679

100 7 1
10
√
−1 ,−

22
29 +

√
−1

290 ,
6
13 +

√
−1

130 ,
7
13 +

√
−1

130

102 15 1√
−102 ,

26
53 +

√
−102
5406 ,−25

37 +
√
−102
3774 , 1923 +

√
−102
2346

112 11 1
4
√
−7 ,−

15
29 +

√
−7

812 ,
13
23 +

√
−7

644 ,−
7
11 +

√
−7

308

130 17 1√
−130 ,

33
67 +

√
−130
8710 ,−25

31 +
√
−130
4030 , 1623 +

√
−130
2990

133 11 1√
−133 ,

1
2 +

√
−133
266 ,−15

26 +
√
−133
3458 , 1113 +

√
−133
1729

142 17 1√
−142 ,

36
73 +

√
−142

10366 ,−
10
11 +

√
−142
1562 , 1011 +

√
−142
1562

148 17 1
2
√
−37 ,−

31
41 +

√
−37

3034 ,−
10
19 +

√
−37

1406 ,
10
19 +

√
−37

1406

163 13 1√
−163 ,−

3
4 +

√
−163
652 , 34 +

√
−163
652 , 12 +

√
−163
326

177 19 1√
−177 ,

1
2 +

√
−177
354 , 4162 +

√
−177

10974 ,
10
31 +

√
−177
5487
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190 27 1√
−190 ,

48
97 +

√
−190

18430 ,−
26
43 +

√
−190
8170 , 2629 +

√
−190
5510

193 15 1√
−193 ,

1
2 +

√
−193
386 ,− 8

11 +
√
−193
2123 , 8

11 +
√
−193
2123

232 27 1
2
√
−58 ,−

30
59 +

√
−58

6844 ,
23
37 +

√
−58

4292 ,
23
31 +

√
−58

3596

253 23 1√
−253 ,

1
2 +

√
−253
506 ,−31

34 +
√
−253
8602 ,−14

17 +
√
−253
4301

Among the values of N in Table 4.1, we give a list of some Weierstrass points which can

be determined by Schöneberg’s Theorem [25, Satz 1] or the cases when the 0 or ∞-cusps

are Weierstrass points in the following table. We refer to [5,21] for computing the genera

of the quotient spaces of X0(N) by involutions. In the following table, U =
(

1 1
2

0 1

)
and µ

is the unique hyperelliptic involution of X0(37).

Table 4.2: Some Weierstrass points on X0(N).

N g(X0(N)) some Weierstrass points

22 2 fixed points by W11

28 2 fixed points by W7

30 3 fixed points by W15

33 3 fixed points by W11

37 2 fixed points by µ

40 3 fixed points by
( −10 1
−120 10

)
42 5 fixed points by W14

46 5 fixed points by W23

48 3 fixed points by
( −6 1
−48 6

)
58 6 fixed points by W29

60 7 fixed points by W15, W20, W5U and W5W4UW4

64 3 0 and ∞ cusps

70 9 fixed points by W14 and W35

72 5 fixed points by U

78 11 fixed points by W26 and W39

82 9 fixed points by W41

88 9 fixed points by W11U and W11W8UW8

100 7 0 and ∞ cusps, fixed points by W4, U and W4UW4

102 15 fixed points by W17 and W51
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112 11 fixed points by W7, W7U and W7W16UW16

130 17 fixed points by W26 and W65

133 11 fixed points by W19

177 19 fixed points by W59

190 27 fixed points by W19 and W95

232 27 fixed points by W29UW8UW8

253 23 fixed points by W11
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