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Convergence of the Relative Pareto Efficient Sets

Nguyen Van Tuyen

Abstract. The aim of this paper is to present new results on the convergence of

relative Pareto efficient sets and the lower semicontinuity of relative Pareto efficient

point multifunctions under perturbations. Our results extend some results of Luc et

al. [16, Theorem 2.1], Bednarczuk [4, Theorem 4] and [5, Proposition 3.1], Lucchetti

and Miglierina [17, Proposition 3.1]. Some remarks and examples are provided for

analysing the results obtained and for comparing them with the preceding results.

1. Introduction

Stability analysis is one of the most important and interesting topics and its role has been

widely recognized in optimization theory. In the literature, two classical approaches to

studying stability of vector optimization problems can be found. One is to investigate the

set-convergence of efficient sets of perturbed sets converging to a given set. Another is to

study continuity properties of the optimal multifunctions. For instance, the lower (upper)

semicontinuity of the optimal multifunctions have been examined by Penot [20]. Luc,

Lucchetti and Malivert [16] investigated the stability of vector optimization in terms of

the convergence of the efficient sets. Miglierina and Molho [18, 19] obtained some results

on stability of convex vector optimization problems by considering the convergence of

efficient sets. For more results concerning the use of convexity in stability analysis, we refer

readers to [15, 17]. Various stability results on the optimal multifunctions were presented

in the monographs [15, 21] and papers (see, e.g., [4–8, 12, 14, 20]). Using the so-called

domination property, containment property, and dual containment property, Bednarczuk

[4–8] studied the Hausdorff upper semicontinuity, the C-Hausdorff upper semicontinuity

and the lower (upper) semicontinuity of the efficient solution map and the efficient point

multifunctions. Recently, by using the approach of Bednarczuk [4, 6] and introducing the

new concepts of local containment property, K-local domination property and uniformly

local closedness of a multifunction around a given point, Chuong, Yao, and Yen [12] have
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obtained further results on the lower semicontinuity of efficient point multifunctions taking

values in Hausdorff topological vector spaces.

In the present paper we study the stability of a vector optimization problem using the

notion of relative Pareto efficiency. By using the approach of [16] we obtain results on the

set-convergence of the relative Pareto efficient sets. Our results can be seen as an exten-

sion of [16, Theorem 2.1] and [17, Proposition 3.1] from the weak Pareto efficient sets to

the relative Pareto efficient sets. To obtain a result on the lower semicontinuity of relative

Pareto efficient point multifunctions under perturbations for cones with possibly empty

interior, we propose new concepts called relative containment property, relative lower semi-

continuity and relative upper Hausdorff semicontinuity of a multifunction around a given

point. Our results generalize and strengthen the corresponding ones in [4, 5].

The rest of paper is organized as follows. In Section 2 we establish the upper conver-

gence in the sense of Kuratowski-Painlevé of the relative Pareto efficient sets. Section 3

concerns the lower convergence in the sense of Kuratowski-Painlevé of the relative Pareto

efficient sets. Section 4 introduces new concepts called relative containment property, rel-

ative lower semicontinuity, and relative upper Hausdorff semicontinuity of a multifunction

around a given point, and derives some sufficient conditions for the lower semicontinuity

of relative Pareto efficient point multifunctions under perturbations for cones with pos-

sibly empty interior. Some topological properties of the relative Pareto efficient set are

examined, and examples for analyzing the obtained results are provided.

2. Upper convergence of relative Pareto efficient sets

Let Z be a Banach space. For a set A ⊂ Z, the following notations will be used throughout:

intA, clA (or A), bdA, riA and aff(A) mean the interior, closure, boundary, relative

interior and affine hull of A in Z. By N (z) we denote the set of all neighborhoods of

z ∈ Z. The origin in Z is denoted by 0Z . The closed unit ball in Z is abbreviated to B.

The closed ball with center z and radius ρ is denoted by B(x, ρ).

Recall that the relative interior riA of a convex set A is defined as the interior of A

with respect to the closed affine hull of A. It is well known that riA is nonempty for

every nonempty convex set A in finite dimensions. Further properties of relative interiors

of convex sets in Banach spaces can be found in [10,11].

Suppose that C is a convex cone in Z. Then, C induces a partial order in Z as follows:

z1, z2 ∈ Z, z1 ≤ z2 if z2 − z1 ∈ C.

Definition 2.1. Let A be a nonempty subset in Z. We say that

(i) z ∈ A is a Pareto efficient of A with respect to C if

A ∩ (z − C) = {z} ;
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(ii) z ∈ A is a relative Pareto efficient (or Slater efficient) of A with respect to C if

A ∩ (z − riC) = ∅

provided that riC 6= ∅;

(iii) z ∈ A is a weakly Pareto efficient of A with respect to C if

A ∩ (z − intC) = ∅

provided that intC 6= ∅.

The set of efficient points defined in Definition 2.1 are denoted by Min(A | C),

ReMin(A | C) and WMin(A | C)), respectively.

Remark 2.2. (a) Observe that if intC 6= ∅, then riC = intC and

WMin(A | C) = ReMin(A | C).

(b) If riC 6= ∅ and C \ (−C) 6= ∅, then 0 /∈ riC. Thus

Min(A | C) ⊂ ReMin(A | C).

The opposite inclusion does not hold in general. However, if A is a rotund set, i.e.,

A is convex and the boundary of A does not contain line segments, then we have

Min(A | C) = ReMin(A | C).

Proposition 2.3. Suppose that riC 6= ∅ and 0 /∈ riC. If A is a rotund set, then

ReMin(A | C) = Min(A | C).

Proof. By Remark 2.2(b), it suffices to prove that ReMin(A | C) ⊂ Min(A | C). Suppose

to the contrary that there is an element z ∈ ReMin(A | C)\Min(A | C). Then there exists

z ∈ A such that z − z ∈ (−C \ (− riC ∪ {0})). From z, z ∈ A and the rotundity of A it

follows that

(z, z] := {x ∈ Z | x = z + α(z − z), α ∈ (0, 1]}

does not lie entirely in the boundary of A. Hence there exist α ∈ (0, 1] such that x := z+

α(z−z) ∈ intA. From α(z−z) ∈ (−C\(− riC∪{0})) we have x−z ∈ (−C\(− riC∪{0})).
Since x ∈ intA, we can find e ∈ − riC such that x+ e ∈ A. Then

x+ e− z = (x− z) + e ⊂ (−C \ (− riC ∪ {0}))− riC

⊂ −C − riC ⊂ − riC

or, equivalently, x+e ∈ (z−riC). Thus (x+e) ∈ A∩(z−riC), contrary to z ∈ ReMin(A |
C). The proof is complete.
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Corollary 2.4. (see [19, Proposition 4.3]) Let C be a convex pointed cone with intC 6= ∅.
If A is a rotund set, then

WMin(A | C) = Min(A | C).

We now recall some concepts of convergence of a sequence of sets. Let (An) be a

sequence of subsets in Z and A ⊂ Z be a nonempty subset.

• The convergence in the sense of Kuratowski-Painlevé:

The Kuratowski-Painlevé lower and upper limits of (An) are defined as

Lim inf An :=
{
z ∈ Z

∣∣ z = lim
n→∞

zn, zn ∈ An for all large n
}
,

Lim supAn :=
{
z ∈ Z

∣∣ z = lim
n→∞

zk, zk ∈ Ank
for some (Ank

) ⊂ (An)
}
.

Clearly, Lim inf An ⊂ Lim supAn. If Lim supAn ⊂ A ⊂ Lim inf An, then we say that

(An) converges to A in the sense of Kuratowski-Painlevé and we denote An
K−→ A.

The condition Lim supAn ⊂ A will be called upper Kuratowski-Painlevé convergence,

whereas the condition A ⊂ Lim inf An will be called lower Kuratowski-Painlevé con-

vergence. The closedness of Lim supAn and Lim inf An implies that if An
K−→ A, then

A is a closed subset. When the limits are considered in the weak topology on Z, we

denote the lower and the upper limits above by w−Lim inf An and w−Lim supAn.

If w − Lim supAn ⊂ A ⊂ Lim inf An, we say that (An) converges to A in the sense

of Mosco and we write An
M−→ A.

Let x ∈ Z and let A, B be nonempty subsets in Z. Define

d(x,A) = inf
a∈A

d(x, a) (d(x, ∅) =∞);

e(A,B) = sup
a∈A

d(a,B) (e(∅, B) = 0, e(∅, ∅) = 0, e(A, ∅) =∞);

h(A,B) = max {e(A,B), e(B,A)} ;

eρ(A,B) = e(A ∩ Bρ, B), Bρ = B(0, ρ);

hρ(A,B) = max {eρ(A,B), eρ(B,A)} .

• The convergence in the sense of Wijsman:

We say that (An) converges to A in the sense of Wijsman if

lim
n→∞

d(An, x) = d(A, x), ∀x ∈ Z,

where d(A, x) = infa∈A d(a, x). Clearly, d(x,A) = d(A, x).
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• The convergence in the sense of Hausdorff :

We say that the sequence (An) ⊂ Z converges to A in the sense Hausdorff if

lim
n→∞

h(An, A) = 0.

The condition limn→∞ e(An, A) = 0 will be called upper Hausdorff convergence,

whereas the condition limn→∞ e(A,An) = 0 will be called lower Hausdorff conver-

gence.

• The convergence in the sense of Attouch-Wets:

We say that the sequence (An) ⊂ Z converges to A in the sense Attouch-Wets if

lim
n→∞

hρ(An, A) = 0

for all ρ > 0. We can split this notion of convergence into an upper part and a lower

part as follows

lim
n→∞

eρ(An, A) = 0,

and

lim
n→∞

eρ(A,An) = 0.

Sonntag and Zălinescu [22] have shown that the upper convergence in the sense of

Attouch-Wets is equivalent to

lim inf
n→∞

d(An, B) ≥ d(A,B),

for each nonempty bounded set B. Here d(A,B) stands for infa∈A infb∈B d(a, b),

where we agree that d(A,B) := +∞ if and only if at least one of the two sets is

empty.

For the relationships between the various notions of set convergence recalled here, see,

e.g., [1, 22]. It is well known that, if Z is a finite dimensional space, the above quoted

notions of set-convergence coincide whenever we consider a sequence (An) of closed sets.

Lemma 2.5. Suppose that C ⊂ Z is a convex set with nonempty relative interior. Then

z ∈ riC if and only if for every y ∈ C, there exists µ > 1 such that

(1− µ)y + µz ∈ C.

Proof. (⇒) Let z ∈ riC and y be an arbitrary element belong to C. For each µ > 1, put

xµ = (1 − µ)y + µz. We have xµ ∈ aff(C) for all µ > 1. Since z ∈ riC, there is a δ > 0
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such that B(z, δ) ∩ aff(C) ⊂ C. As xµ = z − (µ − 1)(y − z), xµ belongs to B(z, δ) with

µ > 1 and µ− 1 sufficiently small. Thus

xµ ∈ B(z, δ) ∩ aff(C)

⊂ B(z, δ) ∩ aff(C)

⊂ C,

with µ− 1 sufficiently small, as required.

(⇐) Suppose that z satisfies the condition: for every y ∈ C, there exists µ > 1 such

that

(2.1) (1− µ)y + µz ∈ C.

Select a point x ∈ riC. By (2.1), (1 − µ)x + µz ∈ C. Thus there is y ∈ C satisfying

y = (1 − µ)x + µz. Consequently, z = (1 − λ)x + λy, where 0 < λ = 1
µ < 1. By [11,

Lemma 3.1], we have z ∈ riC. The proof is complete.

Let (Cn) be a sequence of convex cones in Z, and C ⊂ Z be a convex cone. For brevity,

in the sequel we write ReMinA, ReMinAn, MinA, MinAn, WMinA, and WMinAn in-

stead of ReMin(A | C), ReMin(An | Cn), Min(A | C), Min(An | Cn), WMin(A | C), and

WMin(An | Cn), respectively.

Theorem 2.6. Let (Cn) and C be convex cones in Z with nonempty relative interior. If

(i) An
K−→ A,

(ii) Lim supCcn ⊂ (riC)c, where Cc := Z \ C,

then

Lim sup ReMinAn ⊂ ReMinA.

Proof. Arguing by contradiction, assume that there is x ∈ Lim sup ReMinAn \ ReMinA.

By x ∈ Lim sup ReMinAn and (i), we see that for each k ∈ N there exist xk ∈ ReMinAnk

such that limk→∞ xk = x and x ∈ A. Since x /∈ ReMinA, there exists a ∈ A satisfying

x− a ∈ riC or, equivalently,

(2.2) x− a /∈ (riC)c.

We claim that x− a /∈ Lim sup(riCn)c. Indeed, if this is false, then there exists

(2.3) zk ∈ (riCk)
c
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satisfying limk→∞ zk = x − a, where (riCk) is a subsequence of (riCn). By (2.3) and

Lemma 2.5, for each k ∈ N there exists yk ∈ Ck such that

(2.4) (1− µ)yk + µzk /∈ Ck

for all µ > 1. Substituting µ = 1 + 1
m into the left side of (2.4) we obtain

(2.5) − 1

m
yk +

(
1 +

1

m

)
zk /∈ Ck,

for all m ∈ N. Letting m→∞ in (2.5), we have

(2.6) zk ∈ cl(Cck), ∀ k ∈ N.

Passing (2.6) to the limit as k →∞ yields x− a ∈ Lim sup[cl(Ccn)]. Furthermore,

Lim sup[cl(Ccn)] = Lim supCcn ⊂ (riC)c.

Thus x− a ∈ (riC)c, contrary to (2.2). Since Lim sup(riCnk
)c ⊂ Lim sup(riCn)c, x− a /∈

Lim sup(riCnk
)c. The inclusion a ∈ A and the assumption (i) imply that there exist

an ∈ An satisfying limn→∞ an = a. Thus limk→∞ ank
= a, where ank

∈ Ank
for all k ∈ N.

From limk→∞(xk − ank
) = x − a /∈ Lim sup(riCnk

)c we see that there exists k0 ∈ N such

that xk0 − ank0
/∈ (riCnk0

)c or, equivalently, xk0 − ank0
∈ riCnk0

, contradicting the fact

that xk0 ∈ ReMinAnk0
. The proof is complete.

If riC 6= ∅ and intC = ∅, then the condition (ii) in Theorem 2.6 cannot be replaced

the condition “Lim supCcn ⊂ cl(Cc).” To see this, we consider the following example.

Example 2.7. Let Z = R2, C = R+ × {0}, A = [−1, 1]× {0},

An =

{
z = (z1, z2) ∈ R2

∣∣ z2 = − 1

n
z1,−1 ≤ z1 ≤ 1

}
,

and Cn = C, ∀n ∈ N. It is easy to see that An
K−→ A and Lim supCcn = cl(Cc) = R2. We

have ReMinAn = An for all n ∈ N and ReMinA = {(−1, 0)}. Clearly,

Lim sup ReMinAn = A ( ReMinA.

However, when (Cn) and C are cones with nonempty interior, then we have the fol-

lowing result.

Corollary 2.8. Let (Cn) and C be convex cones in Z with nonempty interior. If

(i) An
K−→ A,

(ii) Lim supCcn ⊂ cl(Cc),
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then

Lim sup WMinAn ⊂WMinA.

Proof. It is easy to see that cl(Cc) ⊂ (intC)c. This and (ii) imply that Lim supCcn ⊂
(intC)c. An analysis similar to that in the proof of Theorem 2.6 shows that

Lim sup WMinAn ⊂WMinA.

The proof is complete.

Remark 2.9. In [17, Proposition 3.1], the authors derived sufficient conditions for the upper

convergence of weakly Pareto efficient sets under perturbations of the feasible region only.

If Cn = C for all n ∈ N and intC 6= ∅, then the condition (ii) in Corollary 2.8 is fulfilled.

Thus our result is an extension of [17, Proposition 3.1].

Theorem 2.10. Let Cn and C be convex cones in Z with nonempty relative interior. If

(i) An
K−→ A,

(ii) Lim supCcn ⊂ (riC)c,

(iii) for every bounded subset of
⋃∞
n=1 ReMinAn is relatively compact,

then

lim inf
n→∞

d(ReMinAn, B) ≥ d(ReMinA,B),

for each bounded subset B.

Proof. The conclusion of the theorem is trivial if lim infn→∞ d(ReMinAn, B) = +∞. Thus

it suffices to consider the case lim infn→∞ d(ReMinAn, B) is finite. Suppose on the con-

trary that there is some bounded subset B ⊂ Z and some positive number γ > 0 such

that

lim inf
n→∞

d(ReMinAn, B) < γ < α,

where α := d(ReMinA,B). By taking a subsequence of (An) if necessary we may assume

that d(ReMinAn, B) < γ for all n ∈ N. Then, for each n ∈ N, there exists yn ∈ ReMinAn

satisfying d(yn, B) < γ. Hence the sequence (yn) is bounded. By the inclusion (yn) ⊂⋃∞
n=1 ReMinAn and the assumption (iii), without loss of generality, we can assume that

the sequence (yn) converges to y0 ∈ Z. By the assumption (i), we have y0 ∈ A. From

d(y0, B) ≤ γ < α = d(ReMinA,B)

it follows that y0 /∈ ReMinA. Thus there exists a ∈ A satisfying y0 − a ∈ riC or,

equivalently,

(2.7) y0 − a /∈ (riC)c.
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Similar as the proof of Theorem 2.6, inclusion (2.7) gives y0 − a /∈ Lim sup(riCn)c. The

inclusion a ∈ A and the assumption (i) imply that there is a sequence (an), an ∈ An such

that limn→∞ an = a. Consequently,

lim
n→∞

(yn − an) = y0 − a /∈ Lim sup(riCn)c.

Thus there exists n0 ∈ N satisfying yn0 − an0 /∈ (riCn0)c or, equivalently,

yn0 − an0 ∈ riCn0 ,

contradicting the fact that yn0 ∈ ReMinAn0 . The proof is complete.

Corollary 2.11. Let Cn and C be convex cones in Z with nonempty interior. If

(i) An
K−→ A,

(ii) Lim supCcn ⊂ (intC)c,

(iii) for every bounded subset of
⋃∞
n=1 ReMinAn is relatively compact,

then

lim inf
n→∞

d(WMinAn, B) ≥ d(WMinA,B),

for each bounded subset B.

Remark 2.12. Theorem 2.10 can be seen as an extension of [16, Theorem 2.1] from the

weak Pareto efficient sets to the relative Pareto efficient sets. Moreover, if intC 6= ∅,
then intC = riC and cl(Cc) ⊂ (intC)c. Thus the condition “Lim supCcn ⊂ (intC)c” in

Corollary 2.11 is weaker than the condition “Lim supCcn ⊂ cl(Cc)” in [16, Theorem 2.1].

Theorem 2.13. Let Z be a reflexive Banach space, let (Cn) and C be convex cones with

nonempty relative interior. If

(i) w − Lim supAn ⊂ A ⊂ w − Lim inf An,

(ii) w − Lim sup(riCn)c ⊂ (riC)c,

then

lim inf
n→∞

d(ReMinAn, x) ≥ d(ReMinA, x), ∀x ∈ Z.

Proof. Let x be an arbitrary element in Z. As in the proof of Theorem 2.10, we need only

to consider the case where lim infn→∞ d(ReMinAn, x) is finite. Arguing by contradiction,

assume that

lim inf
n→∞

d(ReMinAn, x) < d(ReMinA, x)
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for some x ∈ Z. By taking a subsequence of (An) if necessary we can find yn ∈ ReMinAn

and a positive number γ satisfying

d(yn, x) < γ < d(ReMinA, x), ∀n ∈ N.

By the reflexivity of Z and the boundedness of (yn), there exists a subsequence of (yn)

weakly converges to y0 ∈ Z. From (i) we obtain y0 ∈ A. Hence

d(y0, x) ≤ γ < d(ReMinA, x).

This implies that y0 /∈ ReMinA. Thus there exists a ∈ A such that y0 − a ∈ riC. By the

assumption (i), there is a sequence (an), an ∈ An for n large enough satisfying

w − lim
n→∞

an = a.

We claim that there exists n0 such that yn − an ∈ riCn for all n ≥ n0. Indeed, otherwise

there exists (ynk
− ank

) ⊂ (yn − an) satisfying ynk
− ank

∈ (riCnk
)c for all k ∈ N. From

w − limk→∞(ynk
− ank

) = y0 − a we have

y0 − a ∈ w − Lim sup(riCn)c ⊂ (riC)c.

Thus y0 − a ∈ (riC)c, which contradicts the fact that y0 − a ∈ riC. This completes the

proof.

3. Lower convergence of relative Pareto efficient sets

Let Z be a Banach space, ∅ 6= A ⊂ Z and let C ⊂ Z be a closed convex cone with 0 /∈ riC.

Put Θ = riC ∪ {0}.

Definition 3.1. We say that the relative domination property, denoted by (RDP), holds

for a set A ⊂ Z if

A ⊂ ReMinA+ Θ.

Remark 3.2. (a) The relative domination property is an extended version of the weak

domination property (see [15, Definition 4.9]). If intC 6= ∅, then Θ = intC ∪ {0}
and the relative domination property coincides with the weak domination property.

(b) It is easy to check that Θ = riC ∪ {0} is a correct cone.

(c) From ReMinA = Min(A | Θ) and the correctness of Θ we see that (RDP) holds for

every nonempty compact set A.

In this section we assume that Cn = C for all n ∈ N, where C is a closed convex cone

with nonempty relative interior and 0 /∈ riC.
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Theorem 3.3. Suppose that the following conditions hold:

(i) An
K−→ A,

(ii) (RDP) holds for (An) for all n large enough,

(iii)
⋃∞
n=1 ReMinAn is relative compact.

Then ReMinA is nonempty and ReMinA ⊂ Lim inf ReMinAn.

Proof. We first show that ReMinA is nonempty. Put A0 = Lim sup ReMinAn. Then A0

is a closed subset in Z. By the nonemptyness of A and the inclusion A ⊂ Lim inf An,

An is nonempty for all n large enough. By the assumptions (ii) and (iii), it follows that

A0 is a nonempty compact set. By the correctness of Θ and the compactness of A0,

ReMinA0 = Min(A0 | Θ) is nonempty. We claim that ReMinA0 ⊂ ReMinA. On the

contrary, suppose that there exists e ∈ ReMinA0 \ ReMinA. Then there is a ∈ A such

that

(3.1) e ∈ a+ riC.

By the assumption (i), there is a sequence (an) such that an ∈ An for all n and limn→∞ an =

a. The assumption (ii) implies that there exists en ∈ ReMinAn satisfying an ∈ en + Θ

for all n large enough. Consequently, an ∈ en + C for all n large enough. In view of (iii)

we may assume that the sequence (en) converges to some e0 ∈ Z. It is easy to see that

e0 ∈ A0 and a ∈ e0 + C. From this and (3.1) it follows that

e ∈ e0 + C + riC ⊂ e0 + riC.

Consequently, e ∈ e0 + riC, which contradicts the minimality of e. Thus ReMinA0 ⊂
ReMinA and ReMinA is nonempty.

We now claim that ReMinA ⊂ Lim inf ReMinAn. Taking any a ∈ ReMinA. The

assumption (i) implies that there is a sequence (an) such that an ∈ An for all n ∈ N and

limn→∞ an = a. Since (RDP) holds for An, there exists en ∈ ReMinAn such that

(3.2) an ∈ en + Θ.

By the assumption (iii) we may assume that (en) converges to some e ∈ A. We shall show

that e = a. Indeed, assume that e 6= a. Letting n → ∞ in (3.2) we obtain a − e ∈ C.

From limn→∞(an − en) = a− e 6= 0 we have

0 6= an − en ∈ Θ,

for all large enough n. Consequently,

0 6= an − en ∈ riC,
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for all large enough n. Let x be an arbitrary element in C. Then there exists µ > 1

satisfying

(3.3) (1− µ)x+ µ(an − en) ∈ C, ∀n ∈ N.

Letting n→∞ in (3.3), by the closedness of C we obtain (1− µ)x+ µ(a− e) ∈ C. Thus

a − e ∈ riC, which contradicts the fact that a ∈ ReMinA. Thus a = e. From this and

e ∈ Lim inf ReMinAn we have a ∈ Lim inf ReMinAn. Thus

ReMinA ⊂ Lim inf ReMinAn.

The proof is complete.

Remark 3.4. We see that ReMinA = Min(A | Θ), where Θ = {0} ∪ riC. However,

Theorem 3.3 cannot be deduced from [16, Theorem 3.4]. To see this, we consider the

following example.

Example 3.5. Let Z = R3 and C = R2
+ × {0}. We have

riC =
{
z = (z1, z2) ∈ R2 | z1 > 0, z2 > 0

}
and Θ = {0} ∪

{
z = (z1, z2) ∈ R2 | z1 > 0, z2 > 0

}
. It is easy to see that

Lim sup Θ = cl Θ = C ( Θ.

Consequently, the condition (iv) in [16, Theorem 3.4] does not hold. Thus Theorem 3.4

in [16] is not applicable to this case. Meanwhile, Theorem 3.3 works well.

Theorem 3.6. Suppose that the following conditions hold:

(i) An
K−→ A,

(ii) (RDP) holds for (An) for all n large enough,

(iii) if an ∈ An is such that limn→∞ an exists and

en ∈ ReMinAn ∩ (an −Θ),

then (en) admits a convergent subsequence.

(iv) for any ρ > 0, ReMinA ∩ B(0, ρ) is relatively compact.

Then for each ρ > 0 we have

lim
n→∞

eρ(ReMinA,ReMinAn) = 0.
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Proof. We will follow the proof scheme of [16, Theorem 3.3]. If the conclusion of our

theorem does not hold, then there exist ρ > 0, ε > 0 and a subsequence (Ank
) of (An)

such that

eρ(ReMinA,ReMinAnk
) > ε, ∀ k ∈ N.

Thus for each k ∈ N there is ek ∈ ReMinA ∩ Bρ satisfying

(3.4) d(ek,ReMinAnk
) > ε.

By the assumption (iv), (ek) admits a subsequence converging to some e ∈ Z and then by

(3.4) there exists k0 such that

(3.5) d(e,ReMinAnk
) >

ε

2
, ∀ k > k0.

By Theorem 3.3, ReMinA ⊂ Lim inf ReMinAn. Thus, for each k, there exists a sequence

(eki ) such that eki ∈ ReMinAni for all i ∈ N and limi→∞ eki = ek. Consequently, for each

k ∈ N, there is a sequence (eki(k)) such that eki(k) ∈ ReMinAni(k)
and

d(ek, e
k
i(k)) <

1

k
.

Clearly, (eki(k)) converges to e, contrary to (3.5).

Remark 3.7. The results in Sections 2 and 3 can be generalized to the intrinsic rela-

tive Pareto efficient sets and quasi relative Pareto efficient sets. For details about these

concepts we refer the reader to [2, 3].

4. The relative containment property and the lower semicontinuity of relative

Pareto efficient point multifunctions

Let A be a nonempty subset in a Banach space Z and B ⊂ A. Suppose that C ⊂ Z is a

convex cone.

Definition 4.1. We say that the domination property (DP) holds for (A,B) ⊂ Z × Z, if

A ⊂ B + C.

Definition 4.2. We say that the containment property (CP) holds for (A,B) ⊂ Z × Z,

if for each W ∈ N (0Z) there exists V ∈ N (0Z) such that

[A \ (B +W )] + V ⊂ B + C.

The domination property has been used by many authors (see, e.g., [4–9,15,21]). The

containment property was first introduced by Bednarczuk in [4]. On the relationships

between (CP) and (DP) were established in [8].

The following definition gives a weaker form of the notion containment property.
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Definition 4.3. We say that the relative containment property ((RCP) for brevity) holds

for (A,B) ⊂ Z × Z if for each W ∈ N (0Z) there exists V ∈ N (0Z) such that

[A \ (B +W )] + [V ∩ aff(C)] ⊂ B + C.

If intC 6= ∅, then the relative containment property coincides with the containment

property. But it does not hold in general.

Example 4.4. Let A =
{

(z1, z2) ∈ R2 | 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1
}

, C = R+ × {0} and B =

MinA. We have

MinA = {0} × [0, 1] and MinA+ C =
{

(z1, z2) ∈ R2 | 0 ≤ z1, 0 ≤ z2 ≤ 1
}
.

It is easy to see that A ⊂ MinA+C. Thus (DP) holds for (A,MinA). But (CP) does not

hold for this pair. Indeed, take W = B(0R2 , 1
2). We have

A \ (MinA+W ) =

{
(z1, z2) ∈ R2

∣∣ 1

2
≤ z1 ≤ 1, 0 ≤ z2 ≤ 1

}
.

Hence for any V ∈ N (0R2) then [A \ (MinA + W )] + V ( MinA + C. We now claim

that (RCP) holds for (A,MinA). Let W = B(0R2 , ε) be an arbitrary neighborhood of the

origin. An easy computation shows that

A \ (MinA+W ) =
{

(z1, z2) ∈ R2 | ε ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1
}

and affC = R× {0} .

Choose V = B(0R2 , ε2) ∈ N (0R2). Then [A\ (MinA+W )]+ [V ∩affC] ⊂ MinA+C. Thus

(RCP) holds for (A,MinA).

The next result shows that if the relative containment property holds for (A,MinA),

then MinA is dense in ReMinA.

Proposition 4.5. Let A be a nonempty subset in Z and C ⊂ Z be a pointed convex cone

with riC 6= ∅. If (RCP) holds for (A,MinA), then

MinA ⊂ ReMinA ⊂ cl MinA.

Proof. Due to Remark 2.2(b), to finish the proof it suffices to show that

ReMinA ⊂ cl MinA.

Arguing by contradiction, assume that there is z ∈ ReMinA\cl MinA. Since z ∈ ReMinA,

we have

(4.1) (z − riC) ∩A = ∅.
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We claim that

(4.2) (z − riC) ∩ (MinA+ C) = ∅.

Otherwise, there exist θ ∈ riC, a ∈ MinA and c ∈ C such that z− θ = a+ c. This implies

that

a = z − (θ + c) ⊂ z − (riC + C) ⊂ z − riC.

Thus a ∈ (z − riC) ∩ A, contrary to (4.1). Since z /∈ cl MinA, there exists W ∈ N (0Z)

such that z /∈ (MinA + W ). Since (RCP) holds for (A,MinA) there exists V ∈ N (0Z)

such that

[A \ (MinA+W )] + [V ∩ aff(C)] ⊂ MinA+ C.

Thus z + [V ∩ aff(C)] ⊂ MinA + C. Clearly, (z − riC) ∩
(
z + [V ∩ aff(C)]

)
6= ∅. Hence

(z − riC) ∩ (MinA+ C) 6= ∅, contrary to (4.2).

Remark 4.6. (a) Proposition 4.5 generalizes Proposition 3.1 of [5] to the relative Pareto

efficient case.

(b) Note that the set ReMinA may not be closed even in case that A is closed. Indeed,

let

A =
{
z = (z1, z2) ∈ R2 | z2

1 + z2
2 ≤ 1

}
∪ {(−2, 0)} and C = R+ × {0} .

Then

ReMinA =
{
z = (z1, z2) ∈ R2 | z2

1 + z2
2 = 1, z1 ≤ 0, z2 6= 0

}
∪ {(−2, 0)}

and it is not closed.

However, if A ⊂ Rm is polyhedral, then ReMinA is closed. To prove this we need the

following lemma.

Lemma 4.7. Suppose that A is a polyhedral subset of Rm defined by

(4.3) A = {z ∈ Rm | 〈ai, z〉 ≤ bi, i = 1, 2, . . . , N} ,

where ai ∈ Rm and bi ∈ R for all i ∈ I := {1, 2, . . . , N}. Let C ⊂ Z be a pointed closed

convex cone. Then ReMinA is nonempty if and only if

Rec(A) ∩ (− riC) = ∅,

where Rec(A) is the recession cone of A which is given by

Rec(A) = {z ∈ Rm | 〈ai, z〉 ≤ 0, i ∈ I} .
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Proof. Put Θ = {0} ∪ riC. We have ReMinA = Min(A | Θ). By Theorem 3.18 of [15,

Chapter 2], ReMinA is nonempty if and only if

(4.4) Rec(A) ∩ (−Θ) = {0} .

From the pointedness of C we see that 0 /∈ riC. Thus the condition (4.4) is equivalent to

Rec(A) ∩ (− riC) = ∅, completing the proof.

Theorem 4.8. If A is a polyhedral subset in Rm given by (4.3) and C ⊂ Rm is a pointed

closed convex cone, then ReMinA is closed.

Proof. We will follow the proof scheme of [8, Proposition 4.1]. Suppose on the contrary

that ReMinA is not closed. Then there exists a sequence (zn) ⊂ ReMinA which converges

to z and z /∈ ReMinA. Thus there is z ∈ A satisfying z − z ∈ riC. For each n ∈ N, put

In = {i ∈ I | 〈ai, zn〉 = bi}. As I is finite and In ⊂ I for all n ∈ N, there exist infinitely

many integers n such that In = I1. Without loss of generality, we can assume that In = I1

for all n ∈ N. This means that

〈ai, zn〉 = bi, i ∈ I1 and 〈ai, zn〉 < bi, i ∈ I \ I1

for all n ∈ N. Thus 〈ai, z〉 = bi and 〈ai, z〉 ≥ 〈ai, z〉 for i ∈ I1. Furthermore, there exists

i ∈ I\I1 such that 〈ai, z〉 < 〈ai, z〉. Otherwise, 〈ai, z〉 ≥ 〈ai, z〉 for all i ∈ I or, equivalently,

〈ai, z − z〉 ≤ 0

for all i ∈ I. This implies that z − z ∈ Rec(A). Hence z − z ∈ [Rec(A) ∩ (− riC)], which

is impossible. Thus there are two index subsets J1, J2 ⊂ I with J2 6= ∅ satisfying

〈ai, z − z〉 ≤ 0, i ∈ J1 ⊃ I1, and 〈ai, z − z〉 > 0, i ∈ J2.

For each n ∈ N put

λn = min
i∈J2

bi − 〈ai, zn〉
〈ai, z − z〉

> 0,

and yn = zn + λn(z − z). We have

〈ai, yn〉 = 〈ai, zn〉+ λn 〈ai, z − z〉

≤ 〈ai, zn〉+ (bi − 〈ai, zn〉)

≤ bi

for all i ∈ J2. Clearly, 〈ai, yn〉 ≤ bi for all i ∈ I \ J2. Thus yn ∈ A for all n ∈ N.

Moreover, we have yn − zn ∈ − riC, contradicting the fact that zn ∈ ReMinA. The proof

is complete.
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Corollary 4.9. Let A be a polyhedral subset in Rm and C be a pointed closed convex cone.

If (RCP) holds for (A,MinA), then ReMinA = cl MinA.

The following proposition gives a characterization of (RCP) whenever riC 6= ∅.

Proposition 4.10. If riC 6= ∅, then the following two properties are equivalent:

(i) (RCP) holds for (A,B);

(ii) For each W ∈ N (0Z) there is W0 ∈ N (0Z) such that for all

y ∈ A \ (B +W )

there exist ηy ∈ B and cy ∈ C satisfying

y = ηy + cy, (cy +W0) ∩ aff(C) ⊂ C.

Proof. Sine the implication (ii)⇒ (i) is obvious, it suffices to show that (i)⇒ (ii). For each

W ∈ N (0Z), put CW =
{
c ∈ C | (c+W ) ∩ aff(C) ⊂ C

}
. Clearly, riC =

⋃
W∈N (0Z)CW .

We claim that for any V ∈ N (0Z) there exists WV ∈ N (0Z) such that

(4.5)
{
z ∈ Z | z + [V ∩ aff(C)] ∈ B + C

}
⊂ B + CWV

.

Indeed, since 0Z ∈ (−C) = cl(− riC), there exists WV ∈ N (0Z) satisfying V ∩ (−CWV
) 6=

∅. Obviously, −CWV
⊂ aff(C). Thus

V ∩ (−CWV
) = V ∩ [(−CWV

) ∩ aff(C)] = [V ∩ aff(C)] ∩ (−CWV
) 6= ∅.

Choose zV ∈ [V ∩ aff(C)] ∩ (−CWV
). Take any z ∈

{
c ∈ Z | c+ [V ∩ aff(C)] ⊂ B + C

}
,

i.e., z + [V ∩ aff(C)] ⊂ B + C. We have z + zV ∈ B + C. On the other hand, we

have C + CWV
⊂ CWV

. Indeed, take any c1 ∈ C and c2 ∈ CWV
. We claim that (c1 +

c2) ∈ CWV
or, equivalently, [(c1 + c2) + WV ] ∩ aff(C) ⊂ C. Let u be an arbitrary point

in [(c1 + c2) + WV ] ∩ aff(C). Then there is w ∈ WV such that u = c1 + c2 + w and

c1 + c2 + w ∈ aff(C). Since C is a convex cone, we have aff(C) + C = aff(C). Thus

c2 + w = u− c1 ∈ aff(C)− C = aff(C). From this and c2 ∈ CWV
imply that c2 + w ∈ C.

Thus u = c1 + (c2 +w) ∈ C +C = C. This means that [(c1 + c2) +WV ] ∩ aff(C) ⊂ C for

any c1 ∈ C and c2 ∈ CWV
. Hence C + CWV

⊂ CWV
. This implies that

z ∈ B + C − zV ⊂ B + C + CWV
⊂ B + CWV

.

Next, take any W ∈ N (0Z). Since (RCP) holds for (A,B) there exists V ∈ N (0Z) such

that

(4.6) [A \ (B +W )] + [V ∩ aff(C)] ⊂ B + C.
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By virtue of (4.5) we can find WV ∈ N (0Z) satisfying

(4.7)
{
z ∈ Z | z + [V ∩ aff(C)] ∈ B + C

}
⊂ B + CWV

.

For each y ∈ A \ (B +W ), it follows from (4.6) and (4.7) that

y + [V ∩ aff(C)] ⊂ B + C ⊂ B + CWV
.

Thus there exist ηy ∈ B and cy ∈ C satisfying

y = ηy + cy, (cy +W0) ∩ aff(C) ⊂ C,

where W0 := WV .

Remark 4.11. If intC 6= ∅, then Proposition 2.2 in [7] is deduced from the above.

Definition 4.12. Given a multifunction F : P ⇒ Z, where P is a topological space, put

F(p) = Min(F (p)), R(p) = ReMin(F (p)) and call F : P ⇒ Z and R : P ⇒ Z are the

Pareto efficient point multifunction and the relative Pareto efficient point multifunction

corresponding to the quadruplet {F, P, Z,C}, respectively.

We recall some concepts of upper and lower continuities of a multifunction.

Definition 4.13. Let F : P ⇒ Z be a multifunction and p0 ∈ P .

(i) F is upper semicontinuous (usc for brevity) at p0 if for every open set V containing

F (p0) there exists U0 ∈ N (p0) such that F (p) ⊂ V for all p ∈ U0.

(ii) F is lower semicontinuous (lsc) at p0 ∈ domF if for any open set V ⊂ Z satisfying

V ∩ F (p0) 6= ∅ there exists U0 ∈ N (p0) such that V ∩ F (p) 6= ∅ for all p ∈ U0.

(iii) F is Hausdorff upper semicontinuous (H-usc) at p0 if for every W ∈ N (0Z) there

exists U0 ∈ N (p0) such that F (p) ⊂ F (p0) +W for all p ∈ U0.

(iv) F is Hausdorff lower semicontinuous (H-lsc) at p0 if for every W ∈ N (0Z) there

exists U0 ∈ N (p0) such that F (p0) ⊂ F (p) +W for all p ∈ U0.

We now introduce some stronger forms of the properties lsc and H-usc of a multifunc-

tion, which will be used in this section.

Definition 4.14. (i) F is said to be relatively lower semicontinuous (r-lsc for brevity)

at p0 ∈ domF if for any z ∈ F (p0) and W ∈ N (0Z) there exists U0 ∈ N (p0) such

that [z + (W ∩ aff(C))] ∩ F (p) 6= ∅ for all p ∈ U0.
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(ii) F is said to be relatively Hausdorff upper semicontinuous (r-H-usc) at p0 if for every

W ∈ N (0Z) there exists U0 ∈ N (p0) such that F (p) ⊂ F (p0) + [W ∩ aff(C)] for all

p ∈ U0.

Remark 4.15. The following observations are simple:

(a) If F is upper semicontinuous (Hausdorff lower semicontinuous), then F is Hausdorff

upper semicontinuous (lower semicontinuous).

(b) If intC 6= ∅ then aff(C) = Z. Thus the properties r-usc (r-H-usc) and usc (H-usc)

are coincide.

(c) If F is relatively lower semicontinuous, then F is lower semicontinuous. The converse

does not hold in general. For instance, let F : R ⇒ R2 be defined by

F (p) =
{

(z1, z2) ∈ R2 | 0 < z2 ≤ 1
}
, ∀ p ∈ R \ {0} ,

F (0) = {0R2} and C = R+ × {0}. Then F is lsc at every points but not r-lsc at

p = 0.

(d) If F is relatively Hausdorff upper semicontinuous, then F is Hausdorff upper semi-

continuous, but not vice versa. For example, let P = R, Z = R2, C = R+ × {0}.
Let F : R ⇒ R2 be defined by F (0) = {(z1, z2) | z1 = 0} \ {0R2} and

F (p) = {(z1, z2) | − |p| ≤ z1 ≤ |p|} , ∀ p ∈ R \ {0} .

Then for any δ > 0 we have

F (p) ⊂ F (0) + B(0R2 , δ), ∀ p ∈ R, |p| < δ

2
.

Thus F is H-usc at p0 = 0. However, for each δ > 0 we have

F (0) + [B(0R2 , δ) ∩ aff(C)] = {(z1, z2) | |z1| < δ and z1 6= 0} .

Hence F (p) ( F (0) + [B(0R2 , δ)∩ aff(C)], ∀ p ∈ R \ {0}. Thus F is not r-H-usc at 0.

Let F and G be two multifunctions from P to Z. The following definition gives a

weaker form of notion uniform containment property of a multifunction around a point

in [4].

Definition 4.16. We say that (RCP) holds for pair (F,G) uniformly around a certain p0

if for any neighborhood W ∈ N (0Z) there exist V ∈ N (0Z) and U0 ∈ N (p0) such that

[F (p) \ (G(p) +W )] + [V ∩ aff(C)] ⊂ G(p) + C, ∀ p ∈ U0.
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It is clear that if (CP) holds for pair (F,G) uniformly around p0 then (RCP) holds for

pair (F,G) uniformly around p0. The converse is not true in general (see Example 4.20

below).

Theorem 4.17. Suppose that riC 6= ∅ and (RCP) holds for pair (F,R) uniformly around

p0. If F is r-H-usc and r-lsc at p0, then R is lsc at p0.

Proof. Let z ∈ R(p0) and W ∈ N (0Z). The proof will be completed if we can show that

there exists UW ∈ N (p0) such that

(4.8) (z +W ) ∩R(p) 6= ∅, ∀ p ∈ UW .

Take any W1 ∈ NB(0Z) satisfying W1 + W1 ⊂ W . Since (RCP) holds for pair (F,R)

uniformly around p0, there exist W0 ∈ N (0Z) and U0 ∈ N (p0) such that for all p ∈ U0

and y ∈ [F (p) \ (R(p) +W1)] we can find ηy ∈ R(p) and cy ∈ C satisfying

(4.9) y = ηy + cy, (cy +W0) ∩ aff(C) ⊂ C.

Choose W2 ∈ NB(0Z) satisfying W2 + W2 ⊂ W0. By the relative lower semicontinuity of

F at p0, there exists a neighborhood U1 of p0, U1 ⊂ U0 such that

[z + (W1 ∩W2) ∩ aff(C)] ∩ F (p) 6= ∅, ∀ p ∈ U1.

For each p ∈ U1 let

(4.10) yp ∈ [z + (W1 ∩W2) ∩ aff(C)] ∩ F (p).

By the relative Hausdorff upper semicontinuity of F at p0, there exists U2 ∈ N (p0),

U2 ⊂ U1, such that

(4.11) F (p) ⊂ F (p0) + [(W1 ∩W2) ∩ aff(C)], ∀ p ∈ U2.

Suppose first that there exists U ∈ N (p0), U ⊂ U0, such that

(4.12) yp ∈ R(p) +W1, ∀ p ∈ U.

For each p ∈ U1 ∩ U , (4.10) and (4.12) imply that there exist wp ∈ W1 ∩W2, ηp ∈ R(p)

and wp ∈W1 satisfying yp = z + wp = ηp + wp. Thus

ηp = z + wp − wp ∈ z +W1 +W1 ⊂ z +W.

This means that

(z +W ) ∩R(p) 6= ∅, ∀ p ∈ U1 ∩ U,

which proves assertion (4.8) with UW = U1 ∩ U .
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Next, suppose that for all U ∈ N (p0), U ⊂ U2, there exists p ∈ U such that

(4.13) yp /∈ R(p) +W1.

Combining (4.13) with (4.9) yields yp ∈ [F (p) \ (R(p) + W1)]. By (4.9), there exist

ηp ∈ R(p) and cp ∈ C satisfying

(4.14) yp = ηp + cp, (cp +W0) ∩ aff(C) ⊂ C.

By (4.11) and the relation ηp ∈ R(p) ⊂ F (p), there exist z0 ∈ F (p0) and w0 ∈ (W1 ∩
W2) ∩ aff(C) such that

(4.15) ηp = z0 + w0.

By (4.10), there is wp ∈ (W1 ∩W2) ∩ aff(C) such that

(4.16) yp = z + wp.

Using (4.16), (4.14) and (4.15) we get z + wp = ηp + cp = z0 + w0 + cp. This implies that

z = z0 + cp + w0 − wp. Furthermore,

cp + w0 − wp ∈ cp + [(W1 ∩W2) ∩ aff(C)]− [(W1 ∩W2) ∩ aff(C)]

⊂ cp + [W2 ∩ aff(C)] + [W2 ∩ aff(C)]

⊂ (cp +W0) ∩ aff(C) ⊂ C.

Put k0 = cp + w0 − wp. Then k0 ∈ riC and z0 = z − k0. Thus F (p0) ∩ (z − riC) 6= ∅,
which contradicts the fact that z ∈ R(p0). The proof is complete.

Note that if 0 /∈ riC and k0 ∈ riC, then k0 6= 0. From z − k0 ∈ F (p0) and k0 6= 0

it follows that F (p0) ∩ (z − riC) 6= {z}. Consequently, F (p0) ∩ (z − C) 6= {z}. Thus,

replacing R by F in Theorem 4.17, we have the following assertion.

Theorem 4.18. Suppose that C is a convex cone with riC 6= ∅ and 0 /∈ riC, and (RCP)

holds for pair (F,F) uniformly around p0. If F is r-H-usc and r-lsc at p0, then F is lsc

at p0.

Remark 4.19. (a) Theorem 4.17 can be seen as an extension of [4, Theorem 4] from the

Pareto efficient point multifunction to the relative Pareto efficient point multifunc-

tion.

(b) We stress that the assumption made about the ordering cone C in Theorem 4.18 is

weaker than in [4, Theorem 4]. Moreover, when intC 6= ∅, then Theorem 4 in [4] is

deduced from Theorem 4.18.
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Example 4.20. Let P = [0, 1], Z = R2, C = R+ × {0}. Let F : P ⇒ R2 be defined by

setting F (p) = {(z1, z2) | f(z1) ≤ z2 ≤ −z1 + 1} for all p ∈ [0, 1], where

f(t) =


−t+ p if t ≤ p,

0 if p < t ≤ 1,

−t+ 1 if t > 1.

Clearly, riC = (0,+∞)× {0} and intC = ∅. For each p ∈ [0, 1] we have

F(p) = {(z1, z2) | z2 = −z1 + p, z1 ≤ p} ∪ {(z1, z2) | z2 = −z1 + 1, z1 > 1} .

It is a simple matter to check that F is r-H-usc and r-lsc at p0, and (RCP) holds for (F,F)

uniformly around p0. Thus F is lsc at p0. Furthermore, we can see that (CP) does not

hold for (F,F) uniformly around p0. Thus, [4, Theorem 4] is not applicable to F at p0.

Meanwhile, Theorem 4.18 works well for the multifunction at p0.

It is well known that the lower convergence in the sense of Kuratowski-Painlevé of

efficient sets is obtained by the lower semicontinuity of efficient point multifunctions. For

instance, the following result follows directly from [4, Theorem 4] and the same results

can be deduced from Theorem 4.17 and 4.18.

Corollary 4.21. (see [13, Theorem 3.1]) Let C be a convex cone with nonempty interior.

Suppose that the following condition hold:

(i) A ⊂ Lim inf An,

(ii) (An) upper Hausdorff converges to A,

(iii) (CP) holds for (An) for all large n.

Then MinA ⊂ Lim inf MinAn.

Remark 4.22. In Corollary 4.21, the condition “(CP) holds for (An) for all large n” cannot

be replaced by “(DP) holds for (An) for all large n” (see [13, Example 3.1]). Thus the

domination property together with the assumptions (i) and (ii) of Corollary 4.21 do not

suffice for the lower convergence of (MinAn) to MinA.

Finally, we refer to the results by Chuong et al. [12, Theorem 3.2]. By using the ap-

proach of Bednarczuk [4,6] and introducing the new concepts of local containment property,

denoted by (locCP), the authors obtained further results on the lower semicontinuity of

Pareto efficient point multifunctions taking values in Hausdorff topological vector spaces.

In [12], the authors showed that “if (CP) holds for pair (F,F) uniformly around p0 then

(locCP) holds for pair (F,F) uniformly around p0.” However, the property (locCP) and

(RCP) are independent of each other. To see this, we consider the following examples.
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Example 4.23. Let (F, P, Z,C) be as in Example 4.20. It is easy to check that (locCP)

(see [12, Definition 3.1]) does not hold for (F,F) uniformly around p0 = 0. Meanwhile,

(RCP) holds for (F,F) uniformly around p0.

Example 4.24. (see [12, Example 3.5]) Let P = [0, 1], Z = R2, C = R2
+. Let F : P ⇒ R2

be defined by setting F (0) = {(z1, z2) | −z1 ≤ z2 ≤ −z1 + 2} and

F (p) = {(z1, z2) | f(z1) ≤ z2 ≤ −z1 + 2}

for every p ∈ P \ {0}, where

f(t) =


−t+ p if t ≤ 1

p ,

p− 1
p if 1

p < t ≤ 1
p + 2− p,

−t+ 2 if t > 1
p + 2− p

for all t ∈ R. We have F(0) = {(z1, z2) | z2 = −z1} and

F(p) =

{
(z1, z2)

∣∣ z2 = −z1 + p, z1 ≤
1

p

}
∪
{

(z1, z2)
∣∣ z2 = −z1 + 2, z1 >

1

p
+ 2− p

}
.

It is easy to show that (RCP) holds for (F,F) at p0 = 0. But (RCP) does not hold for

(F,F) with any p ∈ P \ {0}. Thus (RCP) does not hold for (F,F) uniformly around p0.

Meanwhile, it is a simple matter to check that (locCP) holds for (F,F) uniformly around

p0.

Note that although the property (locCP) and (RCP) are independent of each other,

the assumption made about the ordering cone C in Theorem 4.18 is weaker than in [12,

Theorem 3.2].
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