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Radial Symmetry and Asymptotic Estimates for Positive Solutions to a

Singular Integral Equation

Yutian Lei

Abstract. In this paper, we are concerned with the nonlinear singular integral equation
uP(y) d
ua) = ol [ DD
re |z =y

2
study of sharp constants of the Hardy-Sobolev inequality and the Hardy-Littlewood-

where a € (0,n), 0 € (max{—a, 5%},0]. Such an integral equation appears in the

Sobolev inequality. It is often used to describe the shapes of the extremal functions.

fo<p< n there is not any positive solution to this equation. Under the

n—a—o’
assumption of p = 2tat2e

£=2 we obtain an integrability result for the integrable solution

u (e, u € L2s (R™)) of the integral equation. Such an integrable solution is radially
symmetric and decreasing about xg € R™. Furthermore, zq is also the origin if o # 0.
In addition, this integrable solution is blowing up with the rate —o when |z| — 0.

Moreover, if n + po > 0, then u decays fast with the rate n — o — o when |z| — cc.

1. Introduction

In this paper, we are concerned with the singular integral equation
uP(y) d
(1.1) u(z) = ]x"/ Lﬂf’g u>0in R".
R |2 — Yl
Here n >3, 0 € (—a,0l,n —a+20 >0 and p > 0.
This equation is related to the sharp constant of the Hardy-Sobolev inequality

/nvp(x)da:<0

|| Rn

m
2

dzx

2
4

(—=4)

for each v belonging to the homogeneous Sobolev space D™?2(R"), where n > 2m, max{0,

747””_"2} <a<?2mandp= 2(n—a)

o ——5,.- To find the extremal functions, one can investigate

the Euler-Lagrange equation

(1.2) v(z) —/R vily) dy

n |ylt|z — yln—2m
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The radial symmetry and the regularity of the integrable solutions were proved (cf. [19] and

the references therein). Afterwards, [13] generalized those results to the case of p > =0
Set u(x) = |x|%v(z) with 0 = —a/p and a = 2m. Then the integral equation becomes

).
Such an equation (|1.1) is also related to the sharp constant in the weighted Hardy-
Littlewood-Sobolev (WHLS) inequality (cf. [23])

(1.3)

f(z)g(y)
/n/n |LU\O‘|:1: — y|>‘|y’ﬁ dl’dy S Ca’/gvsa)\vn Hf”r ”gHs

where 1 < 7,5 <00,0<A<n,a+>0and a+ S+ X <n. In addition,

1 1 1 1
ol oa b g Lyl Ateds
romnoon T ros n
Another form of WHLS inequality is (cf. [11])
9(y) dy
(1.4 / <Clgll,.
e 2]z — y[MylP ], ’

vvherel<5:,]0<c>o,04~|—620,0<>\<n,1—1—%ZL+WaHd%—%<Q<l

s n p’
To find the extremal functions, [17] considered the following Euler-Lagrange system and

proved that the ground state solutions exist

1 V(y)?
Ur) = — d
(15) g o W

Ul(y)?
Viz) = .
@)= 2P o ool =P

Setting u(x) = |z|* AOH/DU (z) and v(z) = |z|P~*UH/PIV (), we get

_ 1 V(y)?
u(z) = 2| PO+ /Rn B . §1A @
B 1 U(y)?

Let p=¢q, a =, u=vand 0 = —a(l + 1/p). Then the system above is also reduced to
withn —a = A

Jin and Li [11] proved the radial symmetry of the positive solutions to by using
the method of moving planes in integral forms. Later, they established the optimal inte-
grability of those solutions (cf. [12]). Based on these results, [14] obtained the fast decay

rates when || — 0 and |z| — oo.

Let o =0 in (1.1]), then

(1.6) u(z) = /R _Py)dy_ u>0in R™

n o —yn-e’
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Lieb [17] used this integral equation to obtain an extremal function of the Hardy-Littlewood-
Sobolev inequality. Papers [8] and [16] classified the positive solutions to (1.6)), and hence
proved that such an extremal function is also the unique critical point up to translations
and scalings.

When a = 2m is even, then becomes

(=A)"u=u", u>0inR".

Here m € [1,n/2) is an integer. The classification of the solutions has provided an
important ingredient in the study of the prescribing scalar curvature problem. This
scalar equation and its corresponding positive solutions were studied rather extensively
(cf. |3L57,[9L/15,/18,24] and the references therein).

When a = 2m in ([L.1)), it becomes the higher-order Lane-Emden type equation with
weight

(1.7) (=A)™(Jz| %u(x)) = uP(x), w>0in R".

If o > 0, this equation is associated with the Hénon model to study spherically symmetric
clusters of stars. If o < 0, it is related to the study of the sharp constant of the integer-
order Hardy-Sobolev inequality. The quantitative properties of this type equation are also
interesting in critical point theory and nonlinear elliptic equations (cf. [1,2,4,20}22]).

When o # 0, it seems difficult to classify the positive solutions to (|1.1)). Thus, it is
important to understand the shapes of solutions. In this paper, we try to show the radial
symmetry, the integrability and the asymptotic rates of the positive solutions, which play
key roles to describe the shapes of the positive solutions.

When m = 1, it was proved by Mitidieri and Pokhozhaev [21] that has no positive

solution as long as 0 < p < 2£Z (see also [22]). In general, we have the following result.

Theorem 1.1. Let a € (0,n) and 0 € (—,0]. If0 <p < —2 then (L.1) has no

n—oa—o’

positive solution.

n(p—1)
The positive solution u of (1.1)) is called the integrable solution if uw € L oo (R™).

T s +a+2 n(p=1) _ 2 :
Moreover, if p is equal to the critical exponent “T*T=2 then e = —=. According to

the results in [19], the extremal function of the Hardy-Sobolev inequality is an integrable

solution.

Theoremshows that if u > 0 solves , then p > ——~—. This impliesn—a—o >
g%“l’. Therefore, the exponent n — a — o of |z| is called the fast decay rate of u, and the
exponent %ﬂlf is called the slow decay rate.

The following result shows that the integrable solution decays fast.
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Theorem 1.2. Let p = 2t2t20 gpd y € L%(R”) be a positive solution to (1.1) with
(1.8) a€ (0,n), o€ (max{—a, 252},0].

Then
(1) w e L"(R™) for all 1 € (—2,2=2=2)  In addition, if n + po > 0, then u € L"(R")
for all L € (0, 2=9=9),

n

(2) lim |z| u(x) :/ ly|* "uP(y) dy. In addition, if n+po >0, then lim |z|""*"7
Rn

|z|—0 |z|—o0

uw) = [ W)y

(3) u(z) is radially symmetric and decreasing about some point xo. Moreover, if o # 0,

then xq s the origin.

Remark 1.3. The condition n 4+ po > 0 is natural in studying (1.2)), if we notice a < n
there (cf. |19)]).

Remark 1.4. Theorem is not the simple corollary of the corresponding results of (|1.2))
and ((1.5]) (cf. [12-14.|19]). The reason is that the transformation (multiplying the power
functions of |z|) changes not only the integrability of solutions, but also the asymptotic

rates near the origin and infinity.

2. Exponents

We show a necessary condition for the existence of positive solutions to ([1.1]), which implies

the lower bound of the exponent p. It can be called Serrin type exponent.

Theorem 2.1. If p € (0, —2—]

, then (L1.1) has no positive solution.
Proof. Step 1. Suppose u is a positive solution to (1.1). We deduce a contradiction if
p€ (0, =0

When y € B1(0) and |z| > 1, |z — y| < 2|z|. In addition, fBl(O) uP(y)dy > ¢ > 0.
Thus, for |z| > 1,

(2.1) u(w) 2 clal* 7 [ (g dy = clafo

B1(0

Denoting n — a — o by by, for |z| > 2 we have

P(y)d
u(z) > |x]"/ L)n?ja > clz| 7%, by =pbyp—a —o.
Ba,|z]/2) 1T — Y

By induction, when |z| > R for some large R > 0, we have

u(x)zdl‘rbja bop=n—a—o, bj=pbj1—-—a—-0o, j=12,....
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We claim that there must be jo such that b;, < 0. In fact,
bj :Z)ij_Q—(a+U)(p+l) =
=p'bo— (@4 0)(1+p+---+p 7).
When p =1, bj = by — (o + 0)j. Then there exists large jo such that bj, < 0. When

p#1,
a—+o . a4o
b‘: b— .
! (0 p—l)p]+p—1

If p € (0,1), b; — —O%H; < 0 as j — o0o. So there exists jo such that b;, < 0. If

1
p € (1, .—~—). Noting by — ;%U < 0, we can find a large jop such that b;, < 0.

' n—a— 1

Hence, for fixed z € Br/»(0),

w@) 2ol [ OB g [Tremn o
R™\ B (0) |

z -yl R r

It is impossible.
Step 2. Suppose u is a positive solution to (1.1)). We deduce a contradiction if p =

n
n—oa—o’

For R > 0, denote Br(0) by B. From (l.1)) we have

=]

(22 ue) > s [ W) du

Therefore, by p = —2 it follows that

n—a—o’

ey [wwaw: [ W( [wwa) ze( [ wwa)

Here c is independent of R. Letting R — oo, we have
(2.4) / uP(x) dr < oo.
By (22), we get

uP(z) > B e </ up(y)dy>p.
~ (R ]a|perme) \Jp
Integrating on Ar = Bag(0) \ Br(0) yields

/A RCLET /A Er e 'fﬁ)fi-a) ( /B u(y) dy>p.

By p = ——, it follows
p
/ uP(x)de > ¢ </ uP(y) dy) ,
Ap B

where ¢ is independent of R. Letting R — oo, and noting ([2.4)), we obtain fIRn uP(y)dy = 0,
which implies u = 0. O]
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n+a+20

L2 =2, which ensures that the

Next, we introduce an exponent of Sobolev type p =

equation has some property of conformal invariant.

Theorem 2.2. Let A > 0. Eq. (L.1)) and the norm ||u|| 2n_ is invariant under the scaling
nta+20

n—ox

transformation uy(z) = Nu(\z), if and only if 0 = 5% and p =

Proof. By (),

p
us(x) = A Azf? / W)y _ yaro-p-vp / | ta(z) dz
Rn

o [Az =y z— 2Pz

Thus, uy solves (|1.1)) if and only if
(2.5) at+o—(p—1)0=0.

In addition,
2n6 2n

[ @) e =3 [ i) dy

Thus, the norm Hu)\||% = Hanzfna if and only if % —n = 0. Combining with ({2.5)), we
n+a+20. n

n—«

see that § = *5% and p =

3. Integrability

n+a+20

Hereafter, we always assume p = *=—25

Theorem 3.1. The integrable solution u € L%(R”) of (1.1) with (1.8]) has the following

integrability

1 _ o —
ue L*(R™) forall - € (U, W) :
s

n n

Proof. For A > 0, define

ug(x) (x), ifu(x)>Aor|z|> A,

otherwise.

S
b
—~
8
~—
I
o g

Let

1 _ -
(3.1) e <UW> .
S n n

For f € L*(R"), define

TH) = /R IO L /R (1~ ua)"(y) dy

n |z —y|rmefzl = n e =yl

Clearly, u solves
f=Tf+F.
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Applying the WHLS inequality (1.4) and the Hélder inequality, we get

ITs1, < € ui ] < Cllualls 1]

7L+(a+<7),5 n—

In view of u € L2/ ("= (R™)_if we take A suitably large, then C ||uAHp ! < 1. Thus, T is
a contraction map from L*(R™) to itself as long as s satisfies (3.1] . Moreover, n—a+20 >0

implies 5% € (57, "5—=7). Thus, T is also a contraction map from L2/ (n=2)(R™) to
itself.
Next, the WHLS inequality (L.4)) leads to |F||, < C ||u — ual|” _nsp . According to

n+(a+to)s

the definition of w4, we have F' € L*(R"™) as long as s satisfies (3.1)).
Using the lifting lemma (Lemma 2.1 in [12]) on the regularity, we can obtain u € L*(R"™)
as long as s satisfies (3.1)). O

Remark 3.2. The proof of Theorem [3.1] shows that, in order to use the WHLS 1nequahty

and the Holder inequality, we need to choose the initial integrability u € L o o (R”) even

n+o¢+20 a+a

A(p=T) is smaller than
According to Theorem the

if p is not the critical exponent . Such an initial number

the right hand end poin

TLOZO'
n

Otherw1se P =
equation has no positive solution.
Moreover, the right end point of the integrability interval in Theorem is optimal,

since ||u||, = oo when 1 > 2=2=2 Ty fact, there exists ¢ > 0 such that for suitably large

lz| > 2,
p
we) 2o [ OB
B1(0) |z —

(3.2) . .
> n_a_/ uP(y)dy > 7.
|| 7 JB1(0) || 7

This implies that

oo d
/ u®(x) de > c/ p”_s("_o‘_")—p =00, V
n 2 p

w | =
3
|
o}
|
)

On the other hand, the left end point of the integrability interval (-2, "=2=%) may

n
not be optimal. In fact, we have the following result.

Theorem 3.3. Ifn+po > 0, then the integrable solution to (L.1) with (1.8) has the better
integrability
1 —a—
ue L*(R™) forall - € (0, W) .
s n

Proof. Step 1. Noting n + po > 0, we see =22 — &t o n=a=g Fop

n

(3.3) 1€<—pa_a+07n—a—a>7
r n n n
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by Theorem We obtain ||ull e < oo. In addition, (3.3)) shows m > 1. We
WHLS inequality ([1.4) to get

(3.4) lull, < C WPl __wr = Clull’ wmp < +oo.

n+(a+o)r ntr(ato)

can apply the

Thus, u € L"(R™) for all r satisfying (3.3).
From n — o+ 20 > 0, we see that the integrability interval in (3.3]) is larger than that

in .

Step 2. Set
o a+o

61:_7a BJ+1:6]p_ s ]:1)27
n n

We claim that 3; is a monotonically decreasing sequence. First, n — a + 20 > 0 implies
B2 < B1. Next, suppose B < fp—1 < --- < [1. We verify By11 < Bg. Clearly, n—a+20 > 0

also implies

< 0.

(a+0) a+o 20a+0) a+o
— <61 _
n—aoa n n—«o n

Br — Br—1 = Br—1 2

S0 Br+1 — Br < 0 established. Thus, we obtain by induction that §; is decreasing.
Suppose this sequence has a positive lower bound, then lim;_,, 3; exists and is denoted
by A. Letting j — ooin 8j41 = ﬂjp—o‘T*"’, we have A = A —O‘T‘"", which leads to A = *5*.
ne

Since “5* > =% = [, it contradicts with the monotonicity. So sequence 3; has not the

positive lower bound.
Step 3. Step 1 shows that if u € L"(R") for all 1 € (B;,2=2=%), then u € L"(R")

n

for all % € (Bj41, =2=%) as long as fj41 > 0. Thus, we know the left end point of the

n

integrability interval is zero by finite steps. O
Remark 3.4. By a simple calculation, n+po > 0 holds as long as either o € (0, (4v/2—5)n],
or a € ((4v/2 —5)n,n) and o € (M,OL where A = a? + 10na — n?.

4. Radial symmetry

In this section, we prove the radial symmetry by using the method of moving planes in

integral forms which was established by Chen-Li-Ou [8].

Theorem 4.1. Let u € L%(R”) be a solution to (1.1) with (1.8)). Then it must be

radially symmetric and decreasing about some point xg € R™. Moreover, if o # 0, then

Trog = 0.
Proof. For a given real number A, define ¥y = {z = (z1,...,2,) | z1 > A\}. Let 2} =
(2N — 21,22, ..., 2y), ur(z) = u(z?).

To prove this theorem, we compare u(z) with uy(z) on Xy. The proof consists of two

steps.
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Step 1. We show that there exists an N > 0 such that for A < —N, we have
(4.1) u(z) > upr(z) a.e.in Xy.

Thus we can start moving the plane from A < N to the right as long as (4.1)) holds.
It is not difficult to obtain

1 1 b_
(42) “A@)—u(ﬂf)—/&(m_yw‘ﬂU—W_MMMU)(UA )y

+ E(z, N),

where

1 1
E(zx,\) = — — P d
(.%', ) /E/\ (’x_y’n—a|x’—a ’m_y’n—a’x)\‘—o'>u)\ Y

/ 1 1 vy
- - u .
o \Jer —ylr=elal =~ X —yrefel]7e )

Define X} = {z € Xy | u(z) <ux(z)}, X, = X\ \ X{. We show that for sufficiently
negative values of A\, X§ must be empty. Clearly, when y € Xy, E(z,\) < 0. Thus, we

(4.3)

obtain
1 1
ux(r) —u(z) < — uP —uP) d
)\( ) ( )_/Z)\ <|3§'—y|n_a‘$|_g |x)\_y’n_a|x)\‘o’)( A ) Yy
1
4.4 = / e Uy —uP)(y) dy + 1
(44) oy o — ylafalo A
1
< uh — uP)(y) dy,
/z; o= yafape 2 W)
since
1 1
- ( - ; )<u§uQ)<y>dy
— :L»_ynfaxfcr €T _yﬂ*&x —0
(45) s\ oz | el P

- / L (B~ u)(y) dy <.
>

o e —yPefal 7

By the mean value theorem, it is easy to verify that

! Py — w)(y) dy.

4.6 ur(z) —ulz) < C uy
( ) A( ) ( )— o ‘x_y‘n—a‘$|—g A

Applying the WHLS inequality (1.4)) and the Holder inequality, we get

- Jun@) = u@)legs < €7 = )|t
. < Clluy|[P~L Uy — |75 psouy -
< Clluall” 2 - [lux = ull o)

A
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Since u € L*(R™), we can choose a sufficiently large |N| with N < 0 such that for
A< N <O, C’HuAHp e = < 1. This implies that [juy(z) — u(z )| Ls(zyy = 0. Therefore
2§ must be of measure zero and (| . ) holds. This completes Step 1.

Step 2. Step 1 shows that we can start moving the plane continuously from A < R
to the right as long as holds. If the plane stops at 1 = Ay for some A9 < 0, then
u must be symmetric and decreasing about the plane x; = Ag. Otherwise, we can move
the plane all the way to 1 = 0. More precisely, suppose that at a point Ag < 0, we have
u(z) > uy,(z) but u(z) # uy,(z) on Ty,. By the same argument as in ([4.7)), one can find
e sufficiently small, so that u(x) # ux(z) on Xy for all X in [Ag, A9 + €). This implies the
plane can be moved further to the right.

Finally, we claim Ag = 0 if o # 0. In fact, if A\g < 0, then implies

0 = upy (@) - u(x)

/ 1 1 p g
= — — U
(4.8) 52y \JZ =gz Jz— yPefzro[e ) Do

1 1
- — P dy < 0.
/EAO (e ~ o graers )

It is impossible. The claim is verified.

Since z1 can be chosen arbitrarily, u is radially symmetric and decreasing. O

5. Blow up near the origin

Theorem 5.1. Let u € L%(R”) be a solution to with (L.8). Then |z|™u is

bounded when |x| is small.

Proof. By changing the order of the integral variables, we can use the Wolff type potential

to write |z|~%u(x). Namely,

p
2] u(z) = / ) g,
re | —y["me

(5.1) =(n—a) /n u?(y) </|:y| t“‘”?) dy

) [ Jouia W) Ay dt
- 0 tn—a t’
Thus,

. B th( y) dy dt th Y)dy qt
(5.2) ol ulz) = (n ~a) (/ / 75)

= (n — a)(K1 + KQ).
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Take ; = <Zp with € € (0,1) small enough, then pik‘ € (52,%5=7). Using the Héler

n

inequality and Theorem we obtain

nl—

@ ulfy, "0 E
K < C/ C/ O‘_ff
tn (e
Noting ([1.8]), we can verify

(5.3) 202 + o(n+ ) + na —a? > 0.

This shows ak —n > 0, and hence K; < oc.
For z € By(z), by virtue of Bi(z) C Byis(x), we get

X / JBiiac t+d\" M d(t + d)
2 S t+d"a t t+d

y) dy
=< C/ %Cff < Cu(z)]2| 7.
0

(5.4)

Combining the estimates of K and Ky, for z € By(x), we have u(z)lz|™ < C +
Cu(z)|z|77. Then we get

u’(x)|z| 7% < C+ Cu’(z)|z| 5.

Integrating on By(z) and noticing v € L*(R™), we obtain

/ u’(z)|x| ™ de < C dz+C u®(2)|z| 7% dz.
Ba(=) Ba(z) By(z)
So, we get
u(x)]z| 77 < C+ C(|lz| +d)~%°
Thus, |z|~%u(z) is bounded when |z| is small. O

This result shows that when |z| — 0, the rate of u(x) — oo is not larger than |z|°.

Furthermore, we also have a more accurate estimate.

Theorem 5.2. We have

lim || %u (x):/[R up(%) dy.

\:v|—>0 n |y|n o

Here fR" = v (y) 2 dy is a constant.

Proof. Step 1. We claim [p, IZT”(Z‘/Z‘ dy < oo. In fact, take % = p=.% with € € (0, 3) small
enough. Theorem [3.1|implies [[ull;,, < occ.

From , it follows that 1 + p2 > #-%. Therefore, fBR ]y\kl(a*”) dy < oo. Here
1
1 _q1_1
I
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Thus, using the Holer inequality, we deduce that

1

1
up d k "(a—m ®
/ (y)_yg(/ up’%y)dy) (/ ylF e >dy) < .
BR |y’ BR BR

On the other hand, take ﬁ = B=a=0=¢ "then % =1-1i=1- n=a—2==p. According

n k
to Theorem [[wll,x < oo.
In addition, (1.8]) leads to

20% + o(3a —n) +na —n* <0,

which is equivalent to 1 — p™=0=% > "~ Hence, fR"\BR ly[¥' (=) dy < 0.

Using the Holer inequality, we have

1 1
Up d k (c—n, K
[oml ([ ) ([ o) <
R"\Bgr |y R"\Bg R"\Bg

Combining the estimates above, we see [g, |y|* "uP(y) dy < oc.
Step 2. We claim that as |z| — 0,

p p
/ v (y)_ dy—/ i (%) dy’ — 0.
Re [T —y[ re [y

For any fixed d, denote Bs(0) by Bs. Clearly,
p P
/ u (y)_ dy_/ u (g) dy‘
e |7 —y["me rn [y[" e
(5.6) </ ( wly) up(y)> dy+/
n Bs |.T - y|n_a ’y‘n_a R”\B§

=:Ji + Jo.

(5.5)

uPly)  uP(y)
lz —y["m y[e

||

Since || is small, B(z, 5') C Bs. Using the Héler inequality, we have
|z

1 1
P k 5 n K
W) g, <o uP* (y) dy FE_dn)
| _ yln—«a | (n—a)k
B2l |z =yl B(x, 12l o T r

where 7 + 2 = 1. Take ﬁ = £2, Theorem shows [|lu||,,, < co. By (5.3) we have
%zl—p% > 2. Then we get

p /
/ Ly)_ dy < Cla["F (=) 0, as |z| — 0.
Bz, 2y [z —y["m

In B\ B(z, ‘g'), since |x —y| > |y| — |x| > |y| — 2|z — y|, there holds 3|x — y| > |y|. Then
from Step 1,

P P
/ ui(y)dng u(y)dy<C’(5)—>O, as 6 — 0.
B(S\B(x7

lzly & —y|—e By " T T
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Letting |z| — 0 and then § — 0, we obtain J; — 0.
On the other hand, let y € R™\ Bs. Clearly, ||y|*™® — |z —y|""%| — 0 as |z| — 0. In

addition, |z —y| > |y| — || > 0 — % = g. Hence,

uP (y)(ly[" = — |z —y["™)
|z — y[r—e|y| e

o up(g)

ly[*=e
Noting Step 1, we see that lim|,|_,o J2 = 0 by Lebesgue’s dominated convergence theorem.
Thus, letting || — 0, and then 6 — 0, we get (5.5). Thus, we complete the proof. O

<

6. Decay at infinity

Theoremshows that the rate of lim|,_,o u(z) = oo is —0. A natural problem is whether

—o is also the decay rate of u(x) when |z| — oc.
Noting (|1.8]), by Theorem we have

Step 1 in the proof of Theorem shows that the rate can not be smaller than ;‘_i‘l’.

Therefore, —o is not the decay rate. Furthermore, the following theorem shows that the

decay rate is the fast one n — a — o.

Theorem 6.1. Ifn+ po > 0, then

Jim_ 2" u(a) = Julf.

Here |Jul[) = Jgn ©P(y) dy is a finite constant.

Proof. Step 1. We claim that [juf|,, < co. In fact, from n + po > 0 it follows that % > =z
On the other hand, (1.8]) implies

1l n—a-o
6.1 l_n-a-o
(6.1) s<nze
Therefore, we can deduce u € LP(R™) by Theorem In addition, we can also apply
Theorem [3.3| to deduce v € LP(R™).

Step 2. For fixed R > 0, we write
T n—«
Ly :/ UP(Q)L,Q dy.
Br
When y € Br and |z| — oo, by Step 1,

(6.2) uP () (W — 1> < 2uP(y) € L*'(R™).

|z — gyl
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Using Lebesgue’s dominated convergence theorem, we obtain

/B vP(y)u’(y) (\xl - 1> dy‘ —0, as|z| — occ.
R

|.1? _ y|nfa
This result leads to
lim lim L; = / uP(y) dy.

R—00 |z| >0
Next, we write

’x‘nfa
Loy :/ uP(y)
(R™\Bp)\B(z.|z|/2) |z —y[re

Clearly, if y € (R™\ Bg) \ B(z, |z|/2), then |x — y| > |z|/2. Therefore, when R — oo,

dy.

Ly <C wPt(y) dy — 0.
R™"\Bpr

We write finally
|:E|’I’L—Ol

Ly= / W (y) e -
B(a,|21/2) |z —y[—
According to Theorem u is radially symmetric and decreasing about xg. When o # 0,
zo = 0. When o = 0, we still view x( as the origin since «x is sufficiently large. Therefore,
if we denote the point oz N 0B(x, |x|/2) by x4, then
P
Ls up(x*)/ dy  _ Cub(a.)
B

|z[nme (@ ]zl/2) 1T —y["™> = |z

Define w(r) = u(x), r = |z|. Hence,

Ls < CwP(r —|z|/2)
|z[n—e x|~

(6.3)

On the other hand, Theorem shows that u € LY(R") with } = 2=2=9=¢_ Here
€ > 0 is sufficiently small. This integrability result, together with the decreasing property
of w, implies

@' (r —[al/2)(r — 3fal/2) < C [ w!'(y)dy < O
B(zo,r— 1)\ B(wo,r— 312y
This inequality implies @P(r — |z|/2) < Cl|z|~"P/*. Inserting this into (6.3) and noting
(6.1), we deduce that

L3 < Clz["=9) -0, as |z| — .

Combining all the estimates of Ly, Ly and L3, we get

|x|""* %u(x) = L1 + Lo + L3 — A uP(y) dy

when |z| — oo. Thus, the proof of Theorem is complete. O
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