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THE MINIMAL SPEED OF TRAVELING WAVE SOLUTIONS
FOR A DIFFUSIVE THREE SPECIES COMPETITION SYSTEM

Jong-Shenq Guo, Yi Wang, Chang-Hong Wu and Chin-Chin Wu*

Abstract. In this paper, we study the minimal speed of traveling wave solutions
for a diffusive three species competition system. Our main concern is the linear
determinacy for the minimal speed. We provide some conditions on the parameters
of the competition system such that the linear determinacy is assured. The main
idea is by studying the linear determinacy of the corresponding approximated
lattice dynamical systems and using the discrete Fourier transform.

1. INTRODUCTION

To understand the interaction between multiple competing species on population
dynamics is one of the important issue in mathematical biology. One of typical mathe-
matical models describing such phenomenon is the following so-called Lotka-Volterra
type competition system:

uit = Diu
i
xx + riu

i

⎛
⎝1 −

N∑
j=1

biju
j

⎞
⎠ , x, t ∈ R, i = 1, ..., N,(1.1)

which describes how N species compete to each other, where Di, ri, bij > 0 for
i, j = 1, ..., N . To investigate the invasion phenomenon for (1.1), it is very nature to
look for traveling wave solutions. Indeed, there have been tremendous works devoted
to the existence of traveling wave solutions for (1.1), see, for example, [1, 6, 8, 13, 17,
18, 19, 21, 22] and the references cited therein. However, most of them were devoted
to two-species case (N = 2).
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In this paper, we shall consider (1.1) with three species case (N = 3). We envision
that there are three species u, v and w living together such that each species has the
preference of food resource so that the competition occurs only between species u and
v and between species v and w, respectively. In other words, species u and w have
different preferences of food resource. But, species v has both preferences so that it
needs to compete with both species u and w.

More precisely, we study the following diffusive three species competition system:

(1.2) ut = D1uxx + r1u(1− u − b12v), x, t ∈ R,

(1.3) vt = D2vxx + r2v(1− b21u− v − b23w), x, t ∈ R,

(1.4) wt = D3wxx + r3w(1 − b32v −w), x, t ∈ R,

where Di > 0, ri > 0, bij > 0. Here u, v, w are the population densities of species
1, 2, 3, respectively, bij is the competition coefficient of species j to species i, ri is
the growth rate of species i and Di is the diffusion coefficient of species i. Also, we
have taken the scales of species so that the carrying capacity of each species is nor-
malized to be 1 and the states (u, v, w) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)
are equilibria of the system (1.2)-(1.4).

Throughout this paper, we shall always assume that
(A) b12, b32 > 1, b21 + b23 < 1,

which means that the species u, w are weak competitors to the species v. Therefore, it
is expected that the species v shall win the competition eventually. We thus are inter-
ested in the traveling wave solution of the system (1.2)-(1.4), connecting the equilibria
(1, 0, 1) and (0, 1, 0), in the form

(u, v, w)(x, t) := (φ, ψ, θ)(y), y := x+ st,

where s is the wave speed and (φ, ψ, θ) is the wave profile. It is easy to see that
(φ, ψ, θ) satisfies the following problem:

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sφ′ = D1φ
′′ + r1φ(1 − φ− b12ψ), y ∈ R,

sψ′ = D2ψ
′′ + r2ψ(1− b21φ− ψ − b23θ), y ∈ R,

sθ′ = D3θ
′′ + r3θ(1 − b32ψ − θ), y ∈ R,

(φ, ψ, θ)(−∞) = (1, 0, 1), (φ, ψ, θ)(+∞) = (0, 1, 0),

0 ≤ φ, ψ, θ ≤ 1.

Notice that, by a linearization of the corresponding kinetic systems to (1.2)-(1.4), we
can easily check that near the equilibrium (1, 0, 1) the stable manifold is of dimension 2
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and the unstable manifold is of dimension 1; and the equilibrium (0, 1, 0) is stable such
that the stable manifold is of dimension 3, under the assumption (A).

If we consider the linearization of the second equation of (1.5) around the state
(1, 0, 1), the corresponding characteristic equation is given by

(1.6) D2μ
2 − sμ+ r2(1− b21 − b23) = 0.

We easily obtain that (1.6) has a positive solution if and only if s ≥ s∗, where

s∗ := 2
√
D2r2(1− b21 − b23).

Thus, the minimal speed smin (if it exists) for the diffusive model (1.2)-(1.4) with
φ′ < 0, ψ′ > 0, θ′ < 0, must satisfy that smin ≥ s∗. Indeed, since the limiting linear
equation of the second equation in (1.5) as y → −∞ is given by

D2ψ
′′ − sψ′ + r2(1 − b21 − b23)ψ = 0

which has a monotone solution near y = −∞ only if s ≥ s∗. Hence we should have
smin ≥ s∗.

Our main purpose is to investigate the linear determinacy for the problem (1.5).
By linear determinacy, it means that smin = s∗. In fact, the definition of linear
determinacy is first defined in [19], which means that the minimal speed is determined
by the linearization of the problem at some unstable equilibrium. For the works related
to linear determinacy, we refer to [10, 14, 15, 16, 19] for partial differential equations
and [10, 12] for lattice dynamical systems.

We now state our main theorem of this paper, the linear determinacy theorem for
(1.5), as follows.

Theorem 1. Assume that (A) holds. Also, let D2, r2, b21, b23 > 0 be given. Then
smin = s∗ as long as

(1.7) (Dj, rj, bj2) ∈ B1
j ∪ B2

j , j = 1, 3,

where

(1.8) B1
j := {Dj ∈ (0, 2D2], bj2(b21 + b23) ≤ 1, rj > 0},

(1.9)
B2
j :={
Dj∈(0, 2D2), bj2(b21+b23)>1, 0<rj<

(
2−Dj

D2

)
r2(1−b21−b23)
bj2(b21+b23)−1

}
,

for j = 1, 3.
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To prove this main theorem, following a method developed in [10], we first consider
the corresponding discrete diffusive system of (1.2)-(1.4) in the following form

(1.10) u′j(t) = d1D[uj](t) + r1uj(t)[1− uj(t) − b12vj(t)], j ∈ Z, t ∈ R,

(1.11) v′j(t) = d2D[vj ](t)+r2vj(t)[1−b21uj−vj(t)−b23wj(t)], j∈Z, t ∈ R,

(1.12) w′
j(t) = d3D[wj](t) + r3wj(t)[1− b32vj(t) −wj], j ∈ Z, t ∈ R,

where dj is the discrete diffusion rate and D[uj] := (uj+1 − uj) + (uj−1 −uj) and so
on. The system (1.10)-(1.12) is a so-called lattice dynamical system. For the study of
lattice dynamical systems, we refer to the book of Fife [7] and survey papers by Chow
[5] and Mallet-Paret [20].

A traveling wave of (1.10)-(1.12) is a solution in the form

(uj(t), vj(t), wj(t)) = (Û(ξ), V̂ (ξ), Ŵ(ξ)), ξ = j + ct,

where c is the wave speed and {Û, V̂ , Ŵ} are the wave profiles. Therefore, the
problem of finding traveling wave of (1.10)-(1.12) is equivalent to find (c, Û, V̂ , Ŵ ) ∈
R × [C1(R)]3 such that

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cÛ ′ = d1D[Û ] + r1Û(1− Û − b12V̂ ), ξ ∈ R,

cV̂ ′ = d2D[V̂ ] + r2V̂ (1− b21Û − V̂ − b23Ŵ ), ξ ∈ R,

cŴ ′ = d3D[Ŵ ] + r3Ŵ (1 − b32V̂ − Ŵ ), ξ ∈ R,

(Û , V̂ , Ŵ)(−∞) = (1, 0, 1), (Û , V̂ , Ŵ)(+∞) = (0, 1, 0),

0 ≤ Û , V̂ , Ŵ ≤ 1,

where D[u](ξ) := u(ξ + 1) + u(ξ − 1) − 2u(ξ) and so on.
Following [3, 12], we first have the following theorem on the existence of traveling

waves and the minimal wave speed for (1.13).

Theorem 2. Assume (A). Then there exists a positive constant cmin such that the
problem (1.13) admits a solution (c, Û, V̂ , Ŵ) satisfying Û ′(·) < 0, V̂ ′(·) > 0 and
Ŵ ′(·) < 0 on R if and only if c ≥ cmin.

The main idea of proving Theorem 2 is to transform the problem into a monotone
system. Based on the monotone property, a typical method to show the existence
of traveling wave solution is to apply the monotone iteration scheme with the help of
super-sub-solutions (cf. [2, 23]). Our approach here adopts an idea of [3] by truncating



3-Species Competition System 1809

the original problem with the help of a super-solution. Then we are able to obtain the
existence of traveling wave solution. For the 2-component system, we refer to [12]. In
fact, the method of [3] (and [12]) works well to multiple component systems, as long as
we can derive that the solutions of truncated problems can produce a desired solution
with correct boundary conditions at ±∞. However, we were unable to accomplish
this by using the definition of super-solution defined in [12] (or [3]). To overcome
this difficulty, we introduce a suitable notion of super-solution (see Remark 2.1 and
Proposition 1 below).

The related works about the minimal speed for lattice dynamical systems can be
found in, for example, [2, 3, 9, 11, 12].

Next, to estimate the minimal speed for (1.13), we define

c∗ := inf
λ>0

{
d2(eλ + e−λ − 2) + r2(1 − b21 − b23)

λ

}
.

It is clear that

(1.14) cλ = d2(eλ + e−λ − 2) + r2(1− b21 − b23)

has a positive solution if and only if c ≥ c∗. Moreover, there exists λ∗ > 0 such that
λ∗ is the unique solution of (1.14) when c = c∗. For c > c∗, (1.14) has exactly two
solutions λi(c), i = 1, 2, with 0 < λ1(c) < λ2(c).

Then, based on a fundamental theory of [4] (see also [3, 12]), we have

Theorem 3. Assume (A). Then cmin ≥ c∗.

By applying an idea used in [10, 12], the linear determinacy for (1.13) is given as
follows.

Theorem 4. Assume (A). Let r2 > 0, b21 > 0 and b23 > 0 be given. Then there
exists a constant d∗ = d∗(d2) > 2d2 such that cmin = c∗ as long as

(dj, rj, bj2) ∈ A1
j ∪A2

j , j = 1, 3,(1.15)

where

(1.16) A1
j := {dj ∈ (0, d∗], bj2(b21 + b23) ≤ 1, rj > 0},

(1.17) A2
j :=

{
dj∈(0, d∗], bj2(b21+b23)>1, 0 < rj ≤ d∗−dj

d∗−d2 ·
r2(1−b21−b23)
bj2(b21+b23)−1

}

for j = 1, 3.
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With this discrete linear determinacy theorem, we can apply the method of dis-
cretization with the help of discrete Fourier transform used in [10] to finish the proof
of our main theorem, Theorem 1. However, to prove Theorem 1, we need a detailed
analysis of the quantity d∗(d2) defined in Theorem 4. See the two key lemmas (Lem-
mas 4.1 and 4.2) in §4.

The rest of this paper is organized as follows. In §2, we study the existence
of minimal speed for the discrete model (1.13). In §3, we characterize the linear
determinacy for the discrete model (1.13). Finally, in §4, we study the continuous PDE
system (1.2)-(1.4) and prove the linear determinacy theorem for the continuous system
(1.5) by using an idea from [10].

2. DISCRETE PROBLEM: EXISTENCE OF MINIMAL SPEED

This section is devoted to the proofs of Theorems 2 and 3.
First, if (c, Û, V̂ , Ŵ) is a solution of (1.13), then it is easy to see that (cf. [3, 12])

0 < Û(·), V̂ (·), Ŵ(·) < 1 in R, c > 0.(2.1)

For convenience, we introduce the new variable U := 1 − Û , V := V̂ ,W := 1 − Ŵ

so that (1.13) is transformed into a cooperative system as follows:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cU ′ = d1D[U ] + r1(1− U)(−U + b12V ), ξ ∈ R,

cV ′ = d2D[V ] + r2V (1 − b21 − b23 − V + b21U + b23W ), ξ ∈ R,

cW ′ = d3D[W ] + r3(1 −W )(−W + b32V ), ξ ∈ R,

(U, V,W )(−∞) = (0, 0, 0), (U, V,W )(+∞) = (1, 1, 1),

0 ≤ U, V,W ≤ 1.

Note that the new problem (2.2) enjoys the monotone property. In fact, for given
c, μ > 0, we let

H1(U, V,W )(ξ) :=
{
μU +

d1

c
D[U ] +

1
c
r1(1 − U)(−U + b12V )

}
(ξ),

H2(U, V,W )(ξ) :=
{
μV +

d2

c
D[V ]+

1
c
r2V (1−b21−b23−V +b21U +b23W )

}
(ξ),

H3(U, V,W )(ξ) :=
{
μW +

d3

c
D[W ] +

1
c
r3(1−W )(−W + b32V )

}
(ξ).

Then, by choosing a sufficient large constant μ, the operator T := (T1, T2, T3) defined
by
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T1(U, V,W )(ξ) := e−μξ
∫ ξ

−∞
eμsH1(U, V,W )(s)ds,

T2(U, V,W )(ξ) := e−μξ
∫ ξ

−∞
eμsH2(U, V,W )(s)ds,

T3(U, V,W )(ξ) := e−μξ
∫ ξ

−∞
eμsH3(U, V,W )(s)ds,

is a monotone operator on the space C0(R; [0, 1])× C0(R; [0, 1])× C0(R; [0, 1]). It
is clear that (c, U, V,W ) is a solution of (2.2) if and only if (U, V,W ) = T (U, V,W )
and

(U, V,W )(−∞) = (0, 0, 0), (U, V,W )(+∞) = (1, 1, 1).

We now introduce the notion of super-solution as follows.

Definition 2.1. Given a constant c > 0. A continuous function (U+, V+, W+) from
R to (0, 1]× (0, 1]× (0, 1] is called a super-solution of (2.2), if the followings hold:

(i) There exists some ξ0 ∈ R such that U+(ξ0) < 1 and W+(ξ0) < 1;
(ii) U+(+∞) = V+(+∞) = W+(+∞) = 1;

(iii) U+, V+ and W+ are differentiable a.e. in R such that

(2.3) c(U+)′ ≥ d1D[U+] + r1(1 − U+)(−U+ + b12V+),

(2.4) c(V+)′ ≥ d2D[V+] + r2V+(1− b21 − b23 − V+ + b21U+ + b23W+),

(2.5) c(W+)′ ≥ d3D[W+] + r3(1 −W+)(−W+ + b32V+)

hold a.e. in R.

Remark 2.1. We note that the definition of super-solution here is a little different
from the one used in [12]. Instead of requiring that U+ and W+ are non-constant in
[12], here we take a little stronger condition as (i).

In order to prove the existence of traveling waves, the following proposition plays
an important role.

Proposition 1. If there exists a super-solution (U+, V+, W+) satisfying U+(·) =
V+(·) = W+(·) = 1 on [0,+∞), then (2.2) admits a solution (U, V,W ) with U ′(·) > 0,
V ′(·) > 0 and W ′(·) > 0 in R.

To prove Proposition 1, following [3] we introduce the following truncated problem
for the integral system

(2.6)
(U, V,W )(ξ)

= (T n1 (U, V,W ), Tn2 (U, V,W ), T n3 (U, V,W ))(ξ) for all ξ ∈ [−n, 0]
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with the boundary conditions:

U(ξ) = 1, V (ξ) = 1, W (ξ) = 1, ∀ ξ ∈ (0,+∞),(2.7)

U(ξ) = V (ξ) = W (ξ) = ε, ∀ ξ ∈ (−∞,−n],(2.8)

where ε ∈ [0, 1), n ∈ N and

T n1 (U, V,W )(ξ) := e−μξ
∫ −n

−∞
εμeμsds+ e−μξ

∫ ξ

−n
eμsH1(U, V,W )(s)ds,

T n2 (U, V,W )(ξ) := e−μξ
∫ −n

−∞
εμeμsds+ e−μξ

∫ ξ

−n
eμsH2(U, V,W )(s)ds,

T n3 (U, V,W )(ξ) := e−μξ
∫ −n

−∞
εμeμsds+ e−μξ

∫ ξ

−n
eμsH3(U, V,W )(s)ds.

Note that (U, V,W ) satisfies the differential equations in (2.2) on (−n, 0) if it satisfies
(2.6).

Since T ni also enjoy the monotone property, we can derive the following lemma by
a similar argument as that for [12, Lemma 2.2]. We shall not repeat the proof here.

Lemma 2.1. For each n ∈ N and ε ∈ [0, 1), there exists a unique function
(Un,ε, V n,ε, Wn,ε) from R to [ε, 1] × [ε, 1] × [ε, 1] that satisfies (2.6)-(2.8) and has
the following properties:

(1) Un,ε, V n,ε, Wn,ε ∈ C1((−n, 0)) ∩C((−∞, 0]),

(2) (Un,ε)′, (V n,ε)′, (Wn,ε)′ > 0 on (−n, 0) for any ε ∈ [0, 1),

(3) d
dεU

n,ε(ξ), ddεV
n,ε(ξ), ddεW

n,ε(ξ) ≥ e−μ(ξ+n) for ξ ∈ [−n, 0].

To proceed further, we also recall the following Helly’s Lemma.

Proposition 2 (Helly’s Lemma). Let {Un}n∈N be a sequence of uniformly bounded
and non-decreasing functions defined in R. Then there exist a subsequence {Uni} of
{Un} and a non-decreasing function U such that Uni → U as i→ +∞ point-wise in
R.

Based on Lemma 2.1 and Helly’s Lemma, we can modify the proof in [12,
Lemma 2.4] to show Proposition 1 by using the new definition (comparing with that
in [12]) of super-solution. For reader’s convenience, we provide the details of proof as
follows.

Proof of Proposition 1. First, we choose n0 > 0 such that U+(−n0) = ε1 and
W+(−n0) = ε2 for some εi ∈ (0, 1) (i = 1, 2). Note that ε1 and ε2 exist because of
the definition of super-solution. Then we shall prove that there exists a subsequence
{nk} of {n} such that one of the followings must hold:
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(i) There exists ε = ε(nk) ∈ (0, 1) such that

Unk,ε(nk)(−nk/2) = ε1, W
nk ,ε(nk)(−nk/2) ≤ ε2 for all nk > 2n0;

(ii) There exists ε = ε(nk) ∈ (0, 1) such that

Unk,ε(nk)(−nk/2) ≤ ε1, W
nk ,ε(nk)(−nk/2) = ε2 for all nk > 2n0.

In order to do this, we consider

η∗ := inf{η > 0 | U+(ξ) ≥ Un,0(ξ − η), V+(ξ) ≥ V n,0(ξ − η),

W+(ξ) ≥Wn,0(ξ − η) for all ξ ∈ (−∞, 0] }.
We can see that η∗ is well-defined and η∗ ∈ [0, n] since U+(·) = V+(·) = W+(·) = 1
on [0,+∞) and Un,0(·) = V n,0(·) = Wn,0(·) = 0 on (−∞,−n]. By continuity, we
have

U+(ξ) ≥ Un,0(ξ − η∗), V+(ξ) ≥ V n,0(ξ − η∗), W+(ξ) ≥Wn,0(ξ − η∗)

for all ξ ∈ (−∞, 0]. This implies that

Hi(U+, V+, W+)(ξ) ≥ Hi(Un,0, V n,0, Wn,0)(ξ − η∗) for ξ ∈ (−∞, 0], i = 1, 2, 3.

Using this monotone property of Hi and the same process of [11, Lemma 2.4], we have
η∗ = 0. In particular, U+(·) ≥ Un,0(·) and W+(·) ≥ Wn,0(·) on (−∞, 0]. Thus, we
have

Un,0(−n
2

) < Un,0(−n0) ≤ U+(−n0) = ε1

and
Wn,0(−n

2
) < Wn,0(−n0) ≤W+(−n0) = ε2

for any n > 2n0.
Consequently, for each n > 2n0, by using Lemma 2.1(3) and the continuity of U ε,n

and W ε,n in ε, there exists a unique ε = ε(n) ∈ (0, 1) such that

Un,ε(n)(−n/2) = ε1, W
n,ε(n)(−n/2) ≤ ε2

or
Un,ε(n)(−n/2) ≤ ε1, W

n,ε(n)(−n/2) = ε2

must hold. By choosing a suitable subsequence {nk} of {n}, one of (i) and (ii) must
hold.

We now consider the sequence of functions

{Unk,ε(nk)(−nk/2 + ·), V nk ,ε(nk)(−nk/2 + ·), Wnk ,ε(nk)(−nk/2 + ·)}nk>2n0 ,
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in R. Then Helly’s Lemma gives

(Unk,ε(nk), V nk,ε(nk), Wnk,ε(nk))(−nk/2 + ·) → (U, V,W )(·) in R

as k → ∞ (up to take a subsequence), where (U, V,W ) is a non-decreasing function
from R to [0, 1]× [0, 1]× [0, 1] and satisfies

U(ξ)=T1(U, V,W )(ξ), V (ξ) = T1(U, V,W )(ξ),W (ξ) = T2(U, V,W )(ξ)

for all ξ ∈ R. Furthermore, by (i) and (ii), one of the following must hold:

U(0) = ε1 and W (0) ≤ ε2,(2.9)

U(0) ≤ ε1 and W (0) = ε2.(2.10)

To prove that (U, V,W ) is a solution of (2.2)-(2.3), it suffices to show that (U, V,W )
satisfies the boundary conditions. Since U , V and W are non-decreasing in R and
0 ≤ U, W ≤ 1 in R, we see that U(±∞), V (±∞) and W (±∞) exist. By using
U = T1(U, V,W ), V = T1(U, V,W ), W = T2(U, V,W ) and L’Hospital’s rule, we
have

(2.11) (1− U)(b12V − U)(±∞) = 0,

(2.12) V { [1− V ] + b21[U − 1] + b23[W − 1] }(±∞) = 0,

(2.13) (1−W )(b32V −W )(±∞) = 0.

Hence U(±∞), V (±∞), W (±∞) ∈ {0, 1}.
Recall that we have (2.9) or (2.10). Without loss of generality, we may assume

that (2.9) occurs. The same argument can apply to the other case. When (2.9) occurs,
we have U(−∞) = 0 and U(+∞) = 1 since U is non-decreasing in R. Note
that U(−∞) = 0 implies V (−∞) = 0 because of (2.11). Then we can show that
V (+∞) = 1. Otherwise, V (±∞) = 0 implies that V ≡ 0. Integrating the first
equation of (2.2) over (−∞,+∞) gives

0 < c = −r1
∫ +∞

−∞
U(s)(1− U(s))ds < 0,

a contradiction. Thus, we must have (V (−∞), V (+∞)) = (0, 1).
Finally, we show that (W (−∞), W (+∞)) = (0, 1). Indeed, by (2.12) and using

U(+∞) = V (+∞) = 1, we have W (+∞) = 1. Recall that W (0) ≤ ε2 ∈ (0, 1)
because of (2.9), it follows that W (−∞) = 0 since W is non-decreasing. Thus, we
have (W (−∞), W (+∞)) = (0, 1). Thus, (U, V,W ) is a solution of (2.2).
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Finally, it suffices to show that U ′ > 0 V ′ > 0 and W ′ > 0 in R. For this, note
that U , V and W are non-decreasing in R, and μ� 1, it follows that

Hi(U, V,W )(s) ≥ Hi(U, V,W )(ξ) for all s ≥ ξ and i = 1, 2, 3.

Differentiating U(ξ) = T1(U,W )(ξ) gives

U ′(ξ) = −μe−μξ
∫ ξ

−∞
eμs {H1(U, V,W )(s)−H1(U, V,W )(ξ)}ds ≥ 0 in R.

If there existsU ′(ξ0) = 0 for some ξ0∈R, we obtainH1(U, V,W )(s)≡H1(U, V,W )(ξ0)
for all s ∈ (−∞, ξ0]. By taking s→ −∞,

μU(ξ0) + U ′(ξ0) = H1(U, V,W )(ξ0) = H1(U, V,W )(−∞) = 0.

Note that U ′(ξ0) = 0 we obtain U(ξ0) = 0, a contradiction with (2.1). Thus U ′(ξ) > 0
for all ξ ∈ R. Similarly, we also have V ′(·) > 0 andW ′(·) > 0 in R. Then we complete
the proof of Proposition 1.

As an application of Proposition 1, we have

Corollary 2.2. The problem (2.2) admits a solution (c, U, V,W ) with U ′(·) > 0,
V ′(·) > 0 and W ′(·) > 0 in R as long as c ≥ ĉ, where

ĉ := max{d1(e+ e−1 − 2) + r1(b12 − 1), d2(e+ e−1 − 2) + r2,

d3(e+ e−1 − 2) + r3(b32 − 1)}.

Proof. Set

U+(ξ) = V+(ξ) = W+(ξ) = min{eξ, 1}.

Then by some simple computations, it is not hard to check that (U+, V+, W+) forms a
super-solution of (2.2) as long as c ≥ ĉ. Then Corollary 2.2 follows from
Proposition 1.

The proof of the following lemma is similar to that of [12, Lemma 2.5], we omit
it here.

Lemma 2.3. If there exists a super-solution (U+, V+, W+) of (2.2) with (U+)′, (V+)′,
(W+)′ > 0 for a given c > 0, then (2.2) admits a solution (c, U, V,W ) with U ′ >
0, V ′ > 0, W ′ > 0 in R.

We are ready to prove Theorem 2.
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Proof of Theorem 2. Due to Corollary 2.2, the constant

cmin := inf{c > 0 | (2.2) has a solution (c, U, V,W )

with U ′ > 0, V ′ > 0 and W ′ > 0 in R}
is well-defined and cmin ≥ 0.

Note that the wave profile of a monotone front with wave speed c0 is a super-
solution of (2.2) for any c > c0. Thus, Lemma 2.3 implies that (2.2) admits a solution
(c, U, V,W ) with U ′ > 0, V ′ > 0 and W ′ > 0 in R for any c > cmin. To complete the
proof of Theorem 2, it suffices to show that (2.2) also has a strictly monotone solution
(c, U, V,W ) for c = cmin.

To do so, we choose {ci, Ui, Vi, Wi} be a sequence of strictly monotone solutions
of (2.2) such that ci ↓ cmin and one of the following cases occurs:

(i) Ui(0) = 1/2 and Wi(0) ≤ 1/2 for all i ∈ N;

(ii) Ui(0) ≤ 1/2 and Wi(0) = 1/2 for all i ∈ N.

Note that we can choose Ui and Wi such that either (i) or (ii) holds since the wave
profiles are monotone and if necessary, we take a subsequence.

By Helly’s Lemma, there exists a subsequence {cij , Uij , Vij , Wij} and a monotone
non-decreasing function (Umin, Vmin, Wmin) such that

(cij , Uij , Vij , Wij) → (cmin, Umin, Vmin, Wmin)

pointwise in R as j → ∞. Since one of (i) and (ii) holds, we have eitherUmin(0) = 1/2
and Wmin(0) ≤ 1/2; or Umin(0) ≤ 1/2 and Wmin(0) = 1/2. Thus, we can apply the
same argument in the proof of Proposition 1 to derive that

(Umin, Vmin, Wmin)(−∞) = (0, 0, 0), (Umin, Vmin, Wmin)(+∞) = (1, 1, 1)

and U ′
min > 0, V ′

min > 0 and W ′
min > 0 in R. Consequently, (2.2) also has a strictly

monotone solution for c = cmin. Hence cmin > 0 and so we have completed the proof
of Theorem 2.

In order to prove Theorem 3, we study the asymptotic behavior of wave profile as
ξ → −∞ based on the following fundamental theory developed in [3, 4].

Proposition 3. Let a > 0 be a constant and B(·) be a continuous function having
finite B(±∞) := limξ→±∞B(ξ). Let W (·) be a measurable function satisfying

(2.14) az(ξ) = e
∫ ξ+1

ξ z(s)ds + e
∫ ξ−1

ξ z(s)ds + B(ξ), ∀ξ ∈ R.

Then z is uniformly continuous and bounded. In addition, ω± = limξ→±∞ z(ξ) exist
and are real roots of the characteristic equation

aω = eω + e−ω + B(±∞).
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Proof of Theorem 3. The theorem can be easily proved by applying Proposition 3
to z = V ′/V . Indeed, it follows from (2.2) that the function z = V ′/V satisfies the
equation (2.14) with

B(ξ) = −2d2 + r2[1 − b21 − b23 − V (ξ) + b21U(ξ) + b23W (ξ)].

Since B(−∞) = −2d2 + r2(1− b21 − b23), we have

cλ = d2(eλ + e−λ − 2) + r2(1 − b21 − b23)

for some λ > 0. It follows that c ≥ c∗. Hence Theorem 3 follows.

3. CHARACTERIZATION OF LINEAR DETERMINACY FOR DISCRETE MODEL

This section is devoted to the proof of Theorem 4.
To begin with, recall that λ1 = λ1(c) be the smallest root of (1.14) for any given

c ≥ c∗. Then we consider the function

(3.1) g(c, d) := cλ1(c)− d(eλ1(c) + e−λ1(c) − 2).

Note that g(c, d) is strictly decreasing in d for any fixed c. Also, we have

g(c, d2) = r2(1 − b21 − b23) > 0.

This implies that, for c = c∗, there exists a unique constant d∗ = d∗(d2) > d2 such
that g(c∗, d∗) = 0. Furthermore, we can have d∗ > 2d2. Indeed, following the same
process in [10, Lemma 2.2], we have

Lemma 3.1. Let r2, b21 and b23 be fixed and let the function g be given in (3.1).
Then there exists a unique d∗ = d∗(d2) > 2d2 such that

g(c∗, d∗) = 0 < g(c∗, d) for all d ∈ (0, d∗).

Furthermore, for each c > c∗, there exists a unique dc > d∗ such that

g(c, dc) = 0 < g(c, d) for all d ∈ (0, dc).

We are ready to prove Theorem 4.

Proof of Theorem 4. Thanks to Theorem 3, it suffices to show that cmin ≤ c∗ as
long as (1.15) holds. Furthermore, by Proposition 1, it suffices to show that a super-
solution exists for each c ≥ c∗. For this, given c ≥ c∗. We introduce the functions

U+(ξ) = W+(ξ) := min
{

1,
eλ1ξ

b21 + b23

}
, V+(ξ) := min{1, eλ1ξ}.
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Then it is easy to check that (2.4) holds a.e. in R, using (3.1). Moreover, (2.3) and
(2.5) hold for all ξ > [ln(b21 + b23)]/λ1 := ξ1, since U+(ξ) = W+(ξ) = 1 for all
ξ > ξ1.

It remains to check (2.3) and (2.5) for ξ < ξ1. Indeed, for ξ < ξ1, we have

U+(ξ) = W+(ξ) =
eλ1ξ

b21 + b23
, V+(ξ) = eλ1ξ.

Let us focus on the U -equation first. Direct calculations yield

(3.2)

c(U+)′(ξ) − d1D[U+](ξ)− r1[(1− U+)(−U+ + b12V+)](ξ)

≥ eλ1ξ

b21 + b23

{
cλ1 − d1(eλ1 + e−λ1 − 2)

+ r1

(
1 − eλ1ξ

b21 + b23

)
[1− b12(b21 + b23)]

}

=:
eλ1ξ

b21 + b23
Q(ξ) for ξ < ξ1.

If b12(b21 + b23) ≤ 1, using eλ1ξ/(b21 + b23) < 1 and Lemma 3.1 give us

Q(ξ) ≥ cλ1 − d1(eλ1 + e−λ1 − 2) ≥ 0 in (−∞, ξ1)

for all d1 ∈ (0, d∗] and for all r1 > 0. Hence (2.3) is verified whenever (d1, r1, b12) ∈
A1

1, where A1
1 is given by (1.16).

Now, we shall consider the case that b12(b21 + b23) > 1. For ξ < ξ1, we see from
(3.2) that

(3.3)
Q(ξ) ≥ cλ1 − d1(eλ1 + e−λ1 − 2) − r1[b12(b21 + b23)− 1]

:= g(c, d1) − r1[b12(b21 + b23) − 1].

We shall use an idea from the proof of [10, Theorem 1]. By Lemma 3.1, there is a
unique dc such that

cλ1(c)
dc

= eλ1(c) + e−λ1(c) − 2.(3.4)

Together with (1.14), we obtain

cλ1(c) = r2(1− b21 − b23)
dc

dc − d2
.(3.5)

Combining (3.4) and (3.5) give

g(c, d1) = r2(1 − b21 − b23)
dc − d1

dc − d2
.
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Thus, Q(ξ) ≥ 0 for ξ < ξ1 as long as

b12(b21 + b23) > 1, 0 < r1 <
r2(1− b21 − b23)
b12(b21 + b23) − 1

· dc − d1

dc − d2
.

Recall that we have dc > d∗ > 2d2 (Lemma 3.1). Hence we have

d∗ − d1

d∗ − d2
≤ dc − d1

dc − d2
.

Then Q(ξ) ≥ 0 for ξ < ξ1 as long as (d1, r1, b12) ∈ A2
1, where A2

1 is given by (1.17).
Next, we turn to the W -equation. Direct computations give

(3.6)

c(W+)′(ξ)− d3D[W+](ξ)− r3[(1−W+)(−W+ + b32V+)](ξ)

≥ eλ1ξ

b21 + b23

{
cλ1 − d3(eλ1 + e−λ1 − 2)

+ r3

(
1 − eλ1ξ

b21 + b23

)
[1− b32(b21 + b23)]

}
.

The same process as above, we can derive (3.6) is non-negative for ξ < ξ1 as long as
(d3, r3, b32) ∈ A1

3 ∪ A2
3.

Consequently, for each c ≥ c∗, we see that (U+, V+, W+) is a super-solution of
(1.13) and satisfies U+(·) = V+(·) = W+(·) = 1 on [0,+∞) if (1.15) holds. By
Proposition 1, the problem (1.13) has a solution for c ≥ c∗ if (1.15) holds. Thus, we
have cmin = c∗. This completes the proof of Theorem 4.

4. LINEAR DETERMINACY FOR CONTINUOUS MODEL (1.2)-(1.4)

In this section, we study the monotone traveling waves and linear determinacy for
the continuous system (1.2)-(1.4). Our approach is based on the method used in [10]
by approximating the continuous system with the following discrete system:

(4.1) (uτj )
′(t)=D1D[uτj ](t)/τ

2+r1uτj (t)[1−uτj (t)−b12v
τ
j (t)], j ∈ Z, t∈R,

(4.2) (vτj )
′(t)=D2D[vτj ](t)/τ

2+r2vτj (t)[1−b21u
τ
j−vτj (t)−b23w

τ
j (t)], j∈Z, t∈R,

(4.3) (wτj )
′(t) = D3D[wτj ](t)/τ

2 + r3w
τ
j (t)[1− b32v

τ
j (t) −wτj ], j ∈ Z, t ∈ R,

for any τ > 0 small.
Let

c∗(τ−2D2) := min
λ>0

{
τ−2D2(eλ + e−λ − 2) + r2(1 − b21 − b23)

λ

}
.(4.4)
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Then, using the same argument as in [12, Section 5], we can easily show that

τc∗(τ−2D2) → 2
√
D2r2(1 − b21 − b23) := s∗ as τ → 0+.(4.5)

To prove Theorem 1, we first prepare two key lemmas as follows.

Lemma 4.1. d∗(d2)/d2 is decreasing in d2, where d∗(d2) is given by Lemma 3.1.

Proof. From Lemma 3.1, we have g(c∗, d∗) = 0, which implies

c∗(d2)λ∗(d2) = d∗(d2)(eλ∗(d2) + e−λ∗(d2) − 2).

Also, recall from (1.14) that

(4.6) c∗(d2)λ∗(d2) = d2(eλ∗(d2) + e−λ∗(d2) − 2) + r2(1− b21 − b23).

It follows that

d∗(d2)
d2

= 1 +
r2(1 − b21 − b23)

d2(eλ∗(d2) + e−λ∗(d2) − 2)
.(4.7)

Thus, to prove Lemma 4.1, it suffices to show

d2(eλ∗(d2) + e−λ∗(d2) − 2) is increasing in d2.(4.8)

For this, recall that

c∗(d2) = min
λ>0

Φ(λ, d2), Φ(λ, d2) :=
d2(eλ + e−λ − 2) + r2(1 − b21 − b23)

λ
,

c∗(d2)λ∗(d2)=Ψ(d2), Ψ(d2) := d2(eλ∗(d2) + e−λ∗(d2) − 2)+r2(1−b21−b23).

For a given d2 > 0, since Φ is strictly convex and Φ(0+, d2) = Φ(∞, d2) = ∞,
there exists a unique λ∗(d2) satisfying

∂

∂λ
Φ(λ, d2)

∣∣
λ=λ∗(d2)

= 0.

It follows that

d2(eλ∗(d2) − e−λ∗(d2))λ∗(d2) = Ψ(d2).(4.9)

By differentiating (4.9) with respect to d2, we arrive at

λ′∗(d2) =
eλ∗(d2) + e−λ∗(d2) − 2 − λ∗(d2)(eλ∗(d2) − e−λ∗(d2))

d2λ∗(d2)(eλ∗(d2) + e−λ∗(d2))
.(4.10)
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By differentiating Ψ(d2) with respect to d2, we arrive at

Ψ′(d2) = eλ∗(d2) + e−λ∗(d2) − 2 + λ′∗(d2)d2(eλ∗(d2) − e−λ∗(d2)).(4.11)

Putting (4.10) into (4.11), we have

Ψ′(d2) = (eλ∗(d2) + e−λ∗(d2) − 2)

+
(eλ∗(d2) − e−λ∗(d2))

λ∗(d2)(eλ∗(d2) + e−λ∗(d2))
[eλ∗(d2) + e−λ∗(d2)

− 2 − λ∗(d2)(eλ∗(d2) − e−λ∗(d2))].

In order to determine the sign of Ψ′(d2), we consider

G(x) := (ex + e−x − 2) +
(ex − e−x)
x(ex + e−x)

[ex+e−x−2−x(ex−e−x)]= Q(x)
x(ex + e−x)

,

where
Q(x) := e2x − e−2x − 2(ex − e−x) − 2x(ex + e−x) + 4x.

Note that if G(x) > 0 for all x > 0, then Ψ′(d2) for all d2 > 0 since λ∗(d2) > 0 for
given any d2 > 0.

To show G(x) > 0 for all x > 0, it suffices to show that

Q(x) > 0 for all x > 0.(4.12)

However, to show (4.12), we shall show that

(i) there exists small δ > 0 such that Q(x) > 0 for all x ∈ (0, δ), and

(ii) any positive critical point of Q must be a minimal point.

Combining (i) and (ii), we obtain (4.12) since Q(0) = 0.
We now set y(x) := ex + e−x. Then it is easy to see that y(0) = 2, y(x) > 2 and

y′(x) > 0 for all x > 0. Also, note that

ex − e−x =
√
y2 − 4 = y′, y′′ = y.(4.13)

By (4.13), we can easily derive

Q(y) = yy′ − 2y′ − 2xy + 4x, Q′(x) = 2[y2 − 2y − xy′],

Q′′(x) = 2[2yy′ − 3y′ − xy], Q(3)(x) = 2[2(y′)2 + 2y2 − 4y − xy′],

Q(4)(x) = 2[8yy′ − 5y′ − xy], Q(5)(x) = 2[8(y′)2 + 8y2 − 6y − xy′].
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Then we have Q(5)(0) = 40 > 0 using y(0) = 2 and y′(0) = 0. Together with the fact
that Q(n)(0) = 0 for n = 0, . . . , 4, we obtain that Q(·) > 0 in (0, δ) for some δ > 0.
So we have proved (i).

For (ii), let x0 > 0 such that Q′(x0) = 0. The above equality of Q′ gives us

x0 =
y2(x0) − 2y(x0)

y′(x0)
.

Putting this into the above equality of Q′′ and using (4.13), we obtain

Q′′(x0) =
2

y′(x0)
[y3(x0)− y2(x0) − 8y(x0) + 12] :=

2
y′(x0)

R(y(x0)).

It is easy to see that R(y) > 0 for all y > 2, since

R′(y) = (y − 2)(3y + 4).

Recall that x0 > 0 implies y(x0) > 2 and y′(x0) > 0, we have R(y(x0)) > 0, which
gives Q′′(x0) > 0. Thus, (ii) holds. Combining (i) and (ii), we have proved (4.12)
and then Ψ′(d2) > 0 for all d2 > 0. Hence (4.8) holds. This completes the proof of
Lemma 4.1.

Moreover, we have

Lemma 4.2. There holds

inf
d2>0

d∗(d2)
d2

= lim
d2→∞

d∗(d2)
d2

= 2.

Proof. By Lemmas 3.1 and 4.1, we see

inf
d2>0

d∗(d2)
d2

= lim
d2→∞

d∗(d2)
d2

≥ 2.(4.14)

Putting τ =
√
D2/

√
d2 into (4.5), we have

c∗(d2)√
d2

→ 2
√
r2(1 − b21 − b23) as d2 → ∞.(4.15)

Recall from the proof of Lemma 4.1 that c∗(d2)λ∗(d2) is increasing in d2. On the
other hand, it follows from (4.7) and (4.14) that d2(eλ∗(d2) +e−λ∗(d2)−2) must have a
positive upper bound for all d2 ∈ (0,∞). Thus, (4.6) implies that limd2→∞ c∗(d2)λ∗(d2)
exists and is finite. Together with (4.15), there exists a constant γ ∈ (0,∞) such that

lim
d2→∞

√
d2λ∗(d2) = γ.(4.16)
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Now, the fact that limλ→0[eλ+e−λ−2]/λ2 = 1 and λ∗(d2) → 0 as d2 → ∞ gives

lim
d2→∞

d2(eλ∗(d2) + e−λ∗(d2) − 2)
d2[λ∗(d2)]2

= 1.

It then follows from (4.16) that

lim
d2→∞

d2(eλ∗(d2) + e−λ∗(d2) − 2) = γ2.(4.17)

Using (4.15), (4.16) and (4.17) and taking d2 → ∞ in

c∗(d2)λ∗(d2) = d2(eλ∗(d2) + e−λ∗(d2) − 2) + r2(1 − b21 − b23)

yield that

[2
√
r2(1 − b21 − b23) ]γ = γ2 + r2(1− b21 − b23).

Hence we have γ =
√
r2(1 − b21 − b23). By (4.7) and (4.17), we have

lim
d2→∞

d∗(d2)
d2

= 2.

This completes the proof of Lemma 4.2.

Consequently, we obtain the following result.

Corollary 4.3. Suppose that (Dj, rj, bj2) ∈ B1
j ∪ B2

j for j = 1, 3. Let dj(τ) :=
Dj/τ

2 and d∗(τ) := d∗(d2(τ)) for τ > 0. Then (dj(τ), rj, bj2) ∈ A1
j∪A2

j for j = 1, 3,
for all small τ > 0.

Proof. It is easy to see that (Dj, rj, bj2) ∈ B1
j implies that (dj(τ), rj, bj2) ∈ A1

j

for all τ > 0 and j = 1, 3, since d∗ > 2d2.
For (Dj, rj, bj2) ∈ B2

j , it follows from Lemma 4.2 that

d∗(τ)− dj(τ)
d∗(τ) − d2(τ)

=
[d∗(τ)/d2(τ)] −Dj/D2

[d∗(τ)/d2(τ)] − 1
→ 2 − Dj

D2
as τ → 0+.

Thus, (dj(τ), rj, bj2) ∈ A2
j for all small τ > 0, if (Dj, rj, bj2) ∈ B2

j , for j = 1, 3.
Then Corollary 4.3 follows.

Since the system (1.5) has no solution when s < s∗, to prove Theorem 1 it suffices
to prove the existence of monotone traveling front with speed s for any s > s∗ under
the conditions (1.8)-(1.9), where

s∗ := 2
√
D2r2(1− b21 − b23).



1824 Jong-Shenq Guo, Yi Wang, Chang-Hong Wu and Chin-Chin Wu

Hereafter, for convenience, we write c∗(τ−2D2) in (4.4) as c∗(τ) without any confusion.
For any given s > s∗, we can choose small η > 0 such that s∗ + η < s. Then from
(4.5) there exists τ0 > 0 sufficiently small such that

τc∗(τ) < s∗ + η < s ∀ τ ∈ (0, τ0].

For any τ ∈ (0, τ0], since s/τ > c∗(τ), it follows from Corollary 4.3 (if necessary,
we choose τ0 smaller) and Theorem 4 that there exists a traveling front of the system
(4.1)-(4.3) connecting (1, 0, 1) to (0, 1, 0) with speed s/τ and profile (Û τ,s, V̂ τ,s, Ŵ τ,s)
under the assumption (1.7). Namely, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s
τ (Û

τ,s)′ = D1D[Û τ,s]/τ2 + r1Û
τ,s(1 − Û τ,s − b12V̂

τ,s), y ∈ R,

s
τ (V̂

τ,s)′ = D2D[V̂ τ,s]/τ2 + r2V̂
τ,s(1 − b21Û

τ,s − V̂ τ,s − b23Ŵ
τ,s), y ∈ R,

s
τ (Ŵ

τ,s)′ = D3D[Ŵ τ,s]/τ2 + r3Ŵ
τ,s(1− b32V̂

τ,s − Ŵ τ,s), y ∈ R,

(Û τ,s, V̂ τ,s, Ŵ τ,s)(−∞) = (1, 0, 1), (Û τ,s, V̂ τ,s, Ŵ τ,s)(+∞) = (0, 1, 0),

0 ≤ Û τ,s, V̂ τ,s, Ŵ τ,s ≤ 1 in R.

Next, we define

(φτ,s, ψτ,s, θτ,s)(y) := (Û τ,s, V̂ τ,s, Ŵ τ,s)(y/τ)

and
(uτ,s, vτ,s, wτ,s)(x, t) := (φτ,s, ψτ,s, θτ,s)(x+ st).

Then it is easy to check that

uτ,s(x, t+ 1/s) = uτ,s(x+ 1, t), vτ,s(x, t+ 1/s) = vτ,s(x+ 1, t),

wτ,s(x, t+ 1/s) = wτ,s(x+ 1, t), x, t ∈ R,

uτ,sx = uτ,st /s, vτ,sx = vτ,st /s, wτ,sx = wτ,st /s.

It follows that

uτ,st =
D1[uτ,s(·+ τ, t) + uτ,s(· − τ, t)− 2uτ,s]

τ2
+ r1u

τ,s(1 − uτ,s − b12v
τ,s),

vτ,st =
D2[vτ,s(· + τ, t)+vτ,s(·−τ, t)−2vτ,s]

τ2
+r2vτ,s(1 − vτ,s−b21u

τ,s−b23w
τ,s),

w
τ,s
t =

D3[wτ,s(· + τ, t) + wτ,s(· − τ, t)− 2wτ,s]
τ2

+ r3w
τ,s(1 −wτ,s − b32v

τ,s).

Also, we have

(4.18) s(φτ,s)′ = D1[φτ,s(·+τ )+φτ,s(·−τ )−2φτ,s]
τ2 + r1φ

τ,s(1− φτ,s − b12ψ
τ,s),



3-Species Competition System 1825

(4.19) s(ψτ,s)′= D2[ψτ,s(·+τ )+ψτ,s(·−τ )−2ψτ,s]
τ2 +r2ψτ,s(1−ψτ,s−b21φ

τ,s−b23θ
τ,s),

(4.20) s(θτ,s)′ = D3[θ
τ,s(·+τ )+θτ,s(·−τ )−2θτ,s ]

τ2 + r3θ
τ,s(1− θτ,s − b32ψ

τ,s).

To proceed further, we consider the initial value problem for the system (4.1)-(4.3)
for t ≥ 0 such that 0 ≤ uτj (0), vτj (0), wτj (0) ≤ 1 for all j. For simplicity, we use the
notation

(un, vn, wn) := {(unj , vnj , wnj )}j∈Z, (unj , v
n
j , w

n
j ) := (u1/n

j , v
1/n
j , w

1/n
j )

to represent the solution of the initial value problem for (4.1)-(4.3) for t ≥ 0 with
τ = 1/n, n ∈ N.

Applying the discrete Fourier transform, the solution of the following linear lattice
equation

(znj )′(t) = n2d[znj+1(t) + znj−1(t) − 2znj (t)], j ∈ Z,

with the initial data {znj (0)}j∈Z is given by

znj (t) =
1
2π

∞∑
k=−∞

(∫ π

−π
ei(j−k)ω+2n2dt(cosω−1)dω

)
znk (0), i :=

√−1.

Then we have the following estimate which can be found in [10, Lemma 3.1].

Lemma 4.4. For any α,M > 0, there is a constant L = L(α,M) such that if
|znk (0)| ≤M for all k ∈ Z, then |znj (t)− znj+2(t)| ≤ L/n for any j ∈ Z and t ≥ α/d.

Based on Lemma 4.4, the following estimate can be derived similarly as [10,
Lemma 3.2].

Lemma 4.5. Suppose that 0 ≤ unj (0), vnj (0), wnj (0) ≤ 1 for all j ∈ Z. Then, for
any ε > 0, there is a constant δ > 0 such that for any n ∈ N

|unj1(1)− unj2(1)|, |vnj1(1)− vnj2(1)|, |wnj1(1)− wnj2(1)| < ε,

if |j1 − j2| < nδ and (j1 − j2) is even.

Now, we consider the sequence

(Un, Vn, Wn) := (Û τn,sn , V̂ τn,sn , Ŵ τn,sn), (φn, ψn, θn) := (φτn,sn , ψτn,sn , θτn,sn)

with τn = 1/n and sn ↓ s as n→ ∞. Then from (4.18)-(4.20) we see that (φn, ψn, θn)
satisfies

sn(φn)′(ξ) = n2D1[φn(ξ + 1/n) + φn(ξ − 1/n) − 2φn(ξ)]

+ r1{φn[1 − φn − b12ψn]}(ξ),
sn(ψn)′(ξ) = n2D2[ψn(ξ + 1/n) + ψn(ξ − 1/n) − 2ψn(ξ)]

+ r2{ψn[1− ψn − b21φn − b23θn]}(ξ),
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sn(θn)′(ξ) = n2D3[θn(ξ + 1/n) + θn(ξ − 1/n) − 2θn(ξ)]

+ r3{θn[1− θn − b32ψn]}(ξ)
for ξ ∈ R. Also, the following lemma about the equicontinuity of (φn, ψn, θn) follows
from Lemma 4.5.

Lemma 4.6. The families {φn}n∈N, {ψn}n∈N and {θn}n∈N are equicontinuous
functions.

Proof. We only consider {φn}n∈N, because the cases for {ψn}n∈N and {θn}n∈N

are similar. Given ε > 0. Since (Un, Vn, Wn)(j+nsnt) is a traveling wave solution of
(4.1)-(4.3), by Lemma 4.5, there is δ > 0 such that |Un(j1 +nsn)−Un(j2 +nsn)| < ε
for any |j1 − j2| < nδ and even j1, j2. This implies that

(4.21) |φn(j1/n+ sn) − φn(j2/n+ sn)| < ε

for any |j1 − j2| < nδ and even j1, j2.
Now given any x, y ∈ R with |x−y| < δ/2. We can choose n large enough and two

even integers j1, j2 with |j1− j2| < nδ such that j1/n+sn ≤ x, y ≤ j2/n+sn . Since
φn is a monotone continuous function, it follows from (4.21) that |φn(x)−φn(y)| < ε.
This proves the lemma.

We are ready to give a proof of Theorem 1.

Proof of Theorem 1. First, Lemma 4.6 implies that (up to taking a subsequence)
φn → φ, ψn → ψ, θn → θ as n→ ∞ uniformly in any bounded interval in R for some
continuous functions φ, ψ, θ. Furthermore, it is easy to see that (φ, ψ, θ) satisfies (1.5)
in the distribution sense except the boundary conditions. Indeed, the boundedness and
continuity of (φ, ψ, θ) implies that (φ, ψ, θ) solves (1.5) in the classical sense except
the boundary conditions.

It remains to show that (φ, ψ, θ) connects (1, 0, 1) and (0, 1, 0). In fact, the proof
is similar to the one for Proposition 1. Without loss of generality, if necessary, we may
take a subsequence such that one of the followings must occur:

(i) φn(0) = 1/2 and θn(0) ≥ 1/2 for all n ∈ N;
(ii) φn(0) ≥ 1/2 and θn(0) = 1/2 for all n ∈ N.

Note that we can obtain such a dichotomy due to the monotonicity of the profiles of
φn(·) and θn(·) for all n.

If (i) holds, then φ(0) = 1/2 and θ(0) ≥ 1/2. Since (φ, ψ, θ)(±∞) are constant
steady states for (1.2)-(1.3), a direct calculation of

(4.22) [φ(1 − φ− b12ψ)](±∞) = 0,

(4.23) [ψ(1− b21φ− ψ − b23θ)](±∞) = 0,

(4.24) [θ(1 − b32ψ − θ)](±∞) = 0,
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yields that (φ, ψ, θ)(±∞) can only take values in {(1, 0, 1), (1, 0, 0), (0, 0, 0), (0, 1, 0),
(0, 0, 1)}.

Since φ(+∞) ≤ φ(0) ≤ φ(−∞), we must have φ(−∞) = 1 and φ(+∞) = 0. By
(4.22), ψ(−∞) = 0. Then it follows that ψ(+∞) = 1. Otherwise, ψ ≡ 0. Then, by
integrating the φ-equation in (1.5) over (−∞,+∞) gives s < 0, a contradiction. Thus,
we have (ψ(−∞), ψ(+∞)) = (0, 1). Next, from (4.23) we see that θ(+∞) = 0. Due
to that θ(0) ≥ 1/2, we see that θ(−∞) = 1. Hence (φ, ψ, θ)(x+ st) is a monotone
traveling front connecting (1, 0, 1) and (0, 1, 0) with speed s. The proof for the case
(ii) is similar. This completes the proof of Theorem 1.
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