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GENERALIZATIONS OF THE HAHN-BANACH THEOREM REVISITED

N. Dinh and T. H. Mo

Abstract. In this paper, based on the extended versions of the Farkas lemma
for convex systems introduced recently in [9], we establish an extended version
of a so called Hahn-Banach-Lagrange theorem introduced by Stephan Simons in
[22]. This generalized version of the Hahn-Banach-Lagrange theorem holds in
locally convex Hausdorff topological vector spaces under a Slater-type constraint
qualification condition and with the relaxing of the lower semi-continuity of some
functions involved and the closedness of the constrained sets. The version, in
turn, yields extended versions of the Mazur-Orlicz theorem, the sandwich theo-
rem, and the Hahn-Banach theorem concerning extended sublinear functions. It
is then shown that all the generalized versions of the Farkas lemma for cone-
convex/sublinear-convex systems in [9] and the new extended Hahn-Banach-
Lagrange theorem just obtained are equivalent together. A class of composite
problems involving sublinear-convex mappings is considered at the end of the
paper. Here the main results of the paper are applied to get a strong duality
result and optimality conditions for the class of problems. Moreover, a formula
for the conjugate of the supremum of a family (possibly infinite, not lower semi-
continuous) of convex functions is then derived from the duality result to show
the generality and the significance of the class of problems in consideration.

1. INTRODUCTION

In the recent years, an extended version of the Hahn-Banach theorem, called the
Hahn-Banach-Lagrange theorem, was introduced by S. Simons [22-24] in a form that
is suitable for dealing with many problems of Lagrange type and covers several well-
known theorems in mathematics such as the sandwich theorem, the Mazur-Orlicz the-
orem.
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In [7], the authors developed two new versions of the Farkas lemma, one for cone-
convex systems and another for systems which are convex with respect to an extended
sublinear function. They also proved that these versions of the Farkas lemma are
equivalent to each other and are also equivalent to an extended, topological version of
the Hahn-Banach-Lagrange theorem that substantially extends the earlier version of S.
Simons. Particularly, it extends the celebrated Hahn-Banach theorem to the case where
the sublinear function appeared in this theorem possesses extended real values, the case
where this celebrated theorem failed (see [7, Theorem 4.1]). All the results in [7] were
established under very weak qualification conditions. However, in [7] the functions and
mappings involved are assumed to be lower semi-continuous (lsc for short), the sets
are assumed to be closed, conditions that are not always satisfied for many problems
in optimization. It is worth observing that there have been several generalized versions
of the Hahn-Banach theorem in variant circumstances (including non convex cases)
and under different constraint qualification conditions (see, e.g., [1, 2, 7, 9, 19, 26])
or extended versions without convexity nor any constraint qualification condition such
as the ones in [6]. It should be emphasized also that there have been many incorrect
results on the extension of the Hahn-Banach theorem published in the last four decades
(see [6, Section 1]).

In the recent paper [9], some new versions of the Farkas lemma were established
under Slater-type constraint qualification conditions, which are stronger than the ones
used in [7]. These versions, however, are liberated from the lower semi-continuity of
the functions involved and the closedness of the constrained sets. It is shown in [9] that
these new results are successfully applied to study a class of composite problems with
the presence of sublinear-convex mappings. This class of problems possibly causes
difficulties in treating since the non-convexity of the sublinear-convex mappings may
lead to the appearance of the non-convexity of some parts of Lagrangian functions
associated to such problems (see [9, Example 4.1]). However, the class subsumes a wide
range of optimization problems such as general convex cone-constrained optimization
problems [8, 11, 16], penalty problems associated to convex programming, nonlinearly
constrained best approximation problems [17]. The study of this class of problems
also leads to certain extensions of the Fenchel duality theorem and also some convex
separation theorem in normed spaces as shown in [9].

The present paper can be considered as a counter part of [7] and also, a continu-
ation of [9]. More concretely, following the approach proposed in [7] we established
an extended version of the Hahn-Banach-Lagrange theorem (in short, HBL theorem)
in locally convex Hausdorff topological vector spaces under a Slater-type constraint
qualification condition and in the absence of the lower semi-continuity and the closed-
ness of functions (except the sublinear one as in [9]) and constrained sets involved.
Moreover, we show that the two versions of the Farkas lemma established in [9] and
the extended Hahn-Banach-Lagrange theorem obtained in this paper are equivalent to-
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gether. Several extended versions of the Mazur-Orlicz theorem, the sandwich theorem,
and also the Hahn-Banach theorem for extended sublinear functions are also derived
as consequences of this extended HBL theorem. It is shown that the results obtained
can be applied to get a duality result and optimality conditions for some class of com-
posite problems involving sublinear-convex mappings. Moreover, a formula for the
conjugate of the supremum of a family (possibly infinite, not lower semi-continuous)
of convex functions is then derived from the duality result to show the generality and
the significance of the class of problems in consideration.

The organization of the paper is as follows: Section 2 presents notations and pre-
liminaries that will be used in the sequel. This section also recalls two versions of
the Farkas lemma for convex systems established in [9], which will be the base for
obtaining the main results of this paper. Section 3 establishes the extended Hahn-
Banach-Lagrange theorem with some of its corollaries. We show also in this section
that the two versions of the Farkas lemma in [9] (Theorems 2.1 and 2.2) and the ex-
tended HBL theorem obtained in this paper are actually equivalent together. In Section
4, as consequences of the extended HBL theorem, we get extensions of the Mazur-
Orlicz theorem, the sandwich theorem, and of the celebrated Hahn-Banach theorem
with extended sublinear functions. The last section, Section 5, devotes to some ap-
plications of the main results obtained in Sections 3 and 4 to optimization problems
and to convex analysis. Concretely, a strong duality result and necessary and sufficient
conditions for optimality for a class of composite problems involving sublinear-convex
mappings are established, and as a consequence of the duality result, a formula for
the conjugate function of the supremum of a family (possibly infinite) of convex (not
necessarily lower semi-continuous) functions is derived.

2. NOTATIONS AND PRELIMINARY RESULTS

2.1. Notations and preliminaries
In this paper we consider two locally convex Hausdorff topological vector spaces

(l.c.H.t.v.s.) X and Y , with their topological dual spaces X∗ and Y ∗, respectively. For
a set A ⊂ X , intA denotes the interior of A in X . Moreover, the indicator function
of the set A is denoted by iA, i.e., iA (x) = 0 if x ∈ A, iA (x) = +∞ if x ∈ X�A.

Given f : X → R ∪ {+∞}, we denote by domf := {x ∈ X : f (x) < +∞} the
effective domain of f , and say that f is proper if domf �= ∅. The epigraph of f is
epif := {(x, α) ∈ X × R : f (x) ≤ α}.

The Legendre-Fenchel conjugate of the function f : X → R ∪ {+∞} is the
function f∗ : X∗ → R := R ∪ {±∞} defined by

f∗ (x∗) = sup
x∈X

(〈x∗, x〉 − f (x)) , ∀x∗ ∈ X∗.

Let K be a closed convex cone in Y . Then K defines on Y a partial order by

y1 ≤K y2 if y2 − y1 ∈ K.
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We add to Y a greatest element with respect to ≤K , denoted by ∞K ; i.e., in the space
Y • = Y ∪ {∞K} we have y ≤K ∞K for every y ∈ Y •. The following conventions
with respect to the operations in Y • will be made: y + ∞K = ∞K + y = ∞K for
all y ∈ Y •, and α∞K = ∞K if α ≥ 0. Moreover, we set 〈y∗,∞K〉 = +∞ for all
y∗ ∈ Y ∗. The dual cone of K, denoted by K+, is defined by

K+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for all y ∈ K}.

A mapping h : X → Y • is called (extended) K-convex if

x1, x2 ∈ X, μ1, μ2 > 0, μ1 + μ2 = 1
⇒ h(μ1x1 + μ2x2) ≤K μ1h(x1) + μ2h(x2),

where ”≤K” is the binary relation (generated by K) extended to Y •. By the domain
of h, we mean the set domh := {x ∈ X : h(x) ∈ Y }. Let

epiKh := {(x, y) ∈ X × Y : y ∈ h(x) +K}.

It is clear that h is K-convex if and only if epiKh is convex. Moreover, for any
y∗ ∈ Y ∗ and g : X → Y • the function y∗ ◦ g is defined (on X) as follows:

(y∗ ◦ g)(x) =
{ 〈y∗, g(x)〉 if x ∈ domg,

+∞ otherwise.

Now let S : Y → R∪{+∞}. Then S is called (extended) sublinear if it satisfies

S(y + y′) ≤ S(y) + S(y′), and S(λy) = λS(y), ∀y, y′ ∈ Y, ∀λ > 0.

We set, by convention, S(0Y ) = 0. Such a function S can be extended to Y • by
setting S(∞K) = +∞ and following all other conventions related to the operations in
Y • defined above.

It is worth observing that such an extended sublinear function S : Y → R∪{+∞}
allows us to introduce in Y a binary relation which is reflexive and transitive:

(2.1) y1 ≤S y2 if y1 ≤K y2,where K := {y ∈ Y : S(−y) ≤ 0}.

This means that

(2.2) y1 ≤S y2 ⇐⇒ S(y1 − y2) ≤ 0, ∀y1, y2 ∈ Y.

Moreover, we also have [9]

(2.3) S(y1 − y2) ≤ 0 ⇐⇒ S(y + y1) ≤ S(y + y2) ∀y ∈ Y.
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Similarly, the definition of the relation ≤S (by 2.1) can be extended to Y • by the
way as mentioned above. Concretely, we set y ≤S ∞K for all y ∈ Y •. Taking the
convention S(∞K) = +∞ into account, the extension of the relation ≤S to Y • is in
accordance with (2.2)-(2.3).

Given an (extended) sublinear function S : Y → R∪{+∞}, a mapping h : X →Y •

is said to be (extended) S-convex (or, convex with respect to a sublinear function, or
sublinear-convex, see [7]) if for all x1, x2 ∈ X, μ1, μ2 > 0, μ1 + μ2 = 1, one has

h(μ1x1 + μ2x2) ≤S μ1h(x1) + μ2h(x2).

The notion S-convex was used in [24] and was generalized to extended sublinear
function in [7].

It is worth observing that, as mentioned in [23, Remark 1.10], ”S-convex can mean
different things under different circumstances” such as, when Y = R, if S(y) := |y|,
S(y) := y, S(y) := −y, or S(y) = 0, respectively, then ”S-convex” means ”affine”,
”convex”, ”concave” or ”arbitrary”, respectively.

It can be verified easily that if h is S-convex then h is K-convex with K := {y ∈
Y : S(−y) ≤ 0}. Conversely, if h is K-convex with some convex cone K then h is
(extended) S-convex with S = i−K (see [7], [9]).

2.2. Preliminary results: generalized Farkas lemma for convex systems

In this subsection, we will recall some versions of extended Farkas lemma for
cone-convex systems and for sublinear-convex systems introduced in [9]. These results
relaxed the earlier versions of the Farkas lemma proved in [7] in the sense that all the
assumptions on the lower semi-continuity (lsc for short) of functions and mappings,
the closedness of sets involved are removed. However, the constraint qualification
conditions used in [9] are the Slater-type ones, which are stronger than the “closedness-
type conditions” used in [7].

Theorem 2.1. ([9, Farkas lemma for cone-convex systems]). Let X, Y be l.c.H.t.v.s.,
C be a nonempty convex subset of X, K be a closed convex cone in Y , f : X →
R ∪ {+∞} be a proper convex function and g : X → Y • be a K-convex mapping,
and β ∈ R. Assume that the Slater condition holds, i.e.,

(SC1) ∃x̄ ∈ (domf) ∩ C such that g(x̄) ∈ −intK.

Then the following statements are equivalent:
(i) x ∈ C, g(x) ∈ −K =⇒ f(x) ≥ β,

(ii) there exists y∗ ∈ K+ such that

f + y∗ ◦ g ≥ β on C.
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Remark 2.1. As mentioned in [9], the equivalence between (i) and (ii) in Theorem
2.1 was proved in several other works (see the recent survey paper [8] and references
therein) under different constraint qualification conditions (see, e.g., [7], [13], [15]-
[17]). For these mentioned versions, it is always required the closedness of the convex
set C, the lower semi-continuity of f and y∗ ◦ g for all y∗ ∈ K+. Theorem 2.1, on
the other side, assumes the usual Slater constraint qualification (which may be a bit
stronger than the ones used in the mentioned papers) to get the benefit of removing all
the mentioned assumptions on functions, mappings and constrained sets.

Theorem 2.2. ([9, Farkas lemma for sublinear-convex systems]). Let X, Y be
l.c.H.t.v.s., C be a nonempty convex subset of X, S : Y → R ∪ {+∞} be an lsc
sublinear function, g : X → Y • be an S-convex mapping, and let f : X → R∪{+∞},
ψ : R → R ∪ {+∞} be proper convex functions. Assume that the interior-type
constraint qualification condition

(SC2) ∃ā ∈ C ∩ (domf), ∃ᾱ ∈ R such that (ᾱ,+∞) ∩ (domψ) �= ∅

and g(ā) ∈ int{y ∈ Y : S(y) ≤ ᾱ}

holds. Then the following statements are equivalent:
(a) x ∈ C, α ∈ R, (S ◦ g)(x) ≤ α =⇒ f(x) + ψ(α) ≥ 0,
(b) there exist γ ≥ 0 and y∗ ∈ Y ∗ such that y∗ ≤ γS on Y and

(2.4) f + y∗ ◦ g ≥ ψ∗(γ) on C.

We close this section by recalling an elementary result that will be useful when
applying the extended Hahn-Banach-Lagrange theorem to optimization problems in
Section 6.

Lemma 2.1. ([9]). Let X, Y be l.c.H.v.s., S : Y → R ∪ {+∞} be an extended,
lsc sublinear function, and g : X → Y • be an S-convex mapping. The following
assertions are true:

(i) The function S ◦ g is convex,
(ii) If y∗ ∈ Y ∗ and y∗ ≤ γS for some γ ∈ R+ then y∗ ◦ g is convex,
(iii) If κ : Y → R is convex and S-increasing (i.e., y1, y2 ∈ Y, y1 ≤S y2 implies

κ(y1) ≤ κ(y2)) then κ ◦ g is convex.

3. EXTENDED HAHN-BANACH-LAGRANGE THEOREM

In this section we will establish a generalized version of the so-called Hahn-Banach-
Lagrange theorem, introduced by S. Simons in [22] (see also [23], [24]) which was
known as an extension of the celebrated Hahn-Banach theorem. Our results lead to
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extensions of other fundamental results in mathematics such as extensions of the sand-
wich theorem, the Mazur-Orlicz theorem, and also of the Hahn-Banach theorem itself,
which will be given in the next section. At the end of this section, it is shown that
the Extended Hahn-Banach-Lagrange theorem, Theorem 3.1 and the two Farkas-type
results in [9]: Theorems 2.1, 2.1 are equivalent together.

In the following, we keep maintaining the assumptions that X, Y are locally convex
Hausdorff topological vector spaces and C is a nonempty convex subset (not necessarily
closed) of X .

3.1. Extended Hahn-Banach-Lagrange theorem

Theorem 3.1. ([Extended Hahn-Banach-Lagrange theorem]). Let S : Y → R ∪
{+∞} be an lsc sublinear function, g : X → Y • be an S-convex mapping, and let
f : X → R∪{+∞} be a proper convex function. Assume that the following condition
holds:

(SC3) ∃ā ∈ C ∩ (dom f ), ∃ᾱ ∈ R s.t. g(ā) ∈ int{y ∈ Y : S(y) ≤ ᾱ}.
Then the following statements are equivalent:

(i) infC

[
f + S ◦ g] ∈ R,

(ii) there exists y∗ ∈ Y ∗ such that y∗ ≤ S on Y and

inf
C

[
f + y∗ ◦ g] = inf

C

[
f + S ◦ g] ∈ R.

Proof. Let ψ(λ) = λ for all λ ∈ R. Note that ψ∗(γ) = 0 if γ = 1 and
ψ∗(γ) = +∞ if γ �= 1.

It is clear that only the implication [(i) =⇒ (ii)] needs to prove. The converse
one is straightforward. Assume that (i) holds, i.e., β := infC

[
f + S ◦ g] ∈ R. Then

f + S ◦ g ≥ β on C. It follows that if x ∈ C, α ∈ R, (S ◦ g)(x) ≤ α then

f(x) + ψ(α) = f(x) + α ≥ f(x) + (S ◦ g)(x) ≥ β.

Thus, if we set f̃ := f − β then

x ∈ C, α ∈ R, (S ◦ g)(x) ≤ α =⇒ f̃(x) + ψ(α) ≥ 0,

i.e., (a) in Theorem 2.2 holds where f̃ plays the role of f . Moreover, the condition
(SC2) holds in this case (see the definition of ψ). Theorem 2.2 now yields the existence
of γ ≥ 0 and y∗ ∈ Y ∗ such that y∗ ≤ γS on Y and

(3.1) f̃ + y∗ ◦ g ≥ ψ∗(γ) on C.

It follows from (SC3) that (dom f ) ∩ (domg) ∩ C �= ∅, and hence there exists ā ∈ C
such that

f̃(ā) + (y∗ ◦ g)(ā) < +∞.
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The last inequality and (3.1) yield ψ∗(γ) = 0 and hence, γ = 1. Consequently, one
has y∗ ≤ S and f(x) + (y∗ ◦ g)(x) ≥ β = infC

[
f + S ◦ g] for all x ∈ C. Finally,

f(x) + (S ◦ g)(x) ≥ f(x) + (y∗ ◦ g)(x) ≥ inf
C

[
f + S ◦ g] for all x ∈ C.

Taking infimum over all x ∈ C in the last inequalities, we arrive at

inf
C

[
f + y∗ ◦ g] = inf

C

[
f + S ◦ g] ∈ R.

The proof is complete.

It is clear that even when the sublinear function S possesses only real values, the
constraint qualification condition (SC3) does not hold automatically and this is quite
clear because (SC3) depends on the topology in Y . It can not be satisfied in case the
given topology is so coarse. Fortunately, for some wide classes of spaces (including
all barreled spaces such as Frechet spaces, Banach spaces, Hilbert spaces, etc.) this
condition holds for free, as we will see in the next lemma. We first recall that the
topological vector space Y is a barreled space if every absorbing, convex, and closed
subset of Y is a neighbourhood of 0Y ∈ Y (see [25, p.9]).

Lemma 3.2. ([Sufficient condition for (SC3)]). Let X be a l.c.H.t.v.s., C ⊂ X be
a nonempty convex subset, Y is a nontrivial vector space, f : X → R ∪ {+∞} be a
proper convex function, and let S : Y → R be a sublinear function and g : X → Y •

be a mapping such that C ∩ (domf)∩ (domg) �= ∅. Assume that one of the following
conditions holds:

(a) Y is a barreled space and S is lsc,
(b) Y is equipped with the finest locally convex topology. 1

Then the condition (SC3) holds.

Proof. (a) If Y is a barreled space then by [25, Theorem 2.2.20], the function
S is continuous on int(domS) = Y . Now take ā ∈ C ∩ (domf) ∩ (domg). Then
S(g(ā)) ∈ R and S(g(ā)) < ᾱ for some ᾱ ∈ R. We then have ᾱ > infy∈Y S(y). As
S is a continuous sublinear function we have (see [25], p.147)

g(ā) ∈ {y ∈ Y : S(y) < ᾱ} = int{y ∈ Y : S(y) ≤ ᾱ}.
This shows that (SC3) holds.

(b) In the case when Y is equipped with the finest locally convex topology, say τY
(note that τY is Hausdorff), then the function p defined by

p(y) := max{S(y), S(−y)}, ∀y ∈ Y
i.e., the weakest locally convex topology (also Hausdorff) in Y for which all the semi-norms on Y are
continuous.
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is continuous on Y with respect to τY as p is a semi-norm on Y [21]. Consequently,
it is bounded from above on a neighbourhood of 0Y , which ensures that S is also
bounded from above on this neighbourhood since S ≤ p, and hence, S is continuous
on int(domS) = Y (see [25, Theorem 2.2.9]). The rest of the proof is the same as in
(a).

We now get a version Hahn-Banach-Lagrange theorem for a real-valued sublinear
function S on a barreled space Y . This result (Corollary 3.1) and the next one (Corollary
3.2), in some sense, justify the name ”extended Hahn-Banach-Lagrange theorem” used
for the Theorem 3.1.

Corollary 3.1. Let X be l.c.H.t.v.s., C be a nonempty convex subset of X, Y be
a barreled space, S : Y → R be an lsc sublinear function, g : X → Y be an S-
convex mapping, and let f : X → R ∪ {+∞} be a proper convex function satisfying
C ∩ domf �= ∅. Then the following statements are equivalent:

(i) inf
C

[
f + S ◦ g] ∈ R,

(i) there exists y∗ ∈ Y ∗ such that y∗ ≤ S on Y and

inf
C

[
f + y∗ ◦ g] = inf

C

[
f + S ◦ g] ∈ R.

Proof. It follows from Lemma 3.2 that the condition (SC3) holds under the
assumption of this corollary. The conclusion now follows from Theorem 3.1.

The original Hahn-Banach-Lagrange theorem in [23] (for real-valued sublinear
functions in vector spaces) now readily follows from Theorem 3.1 as shown in the
next corollary.

Corollary 3.2. ([23, Algebraic Hahn-Banach-Lagrange theorem]). Let Y be a
nontrivial vector space, S : Y → R be a sublinear function, C be a nonempty convex
subset of a vector space X , g : C → Y be an S-convex mapping, and f : C → R be
a convex function. Then there exists a linear functional L on Y such that L ≤ S on
Y and

inf
C

[
f + L ◦ g] = inf

C

[
f + S ◦ g]

Proof. Let β = infC
[
f +S ◦g]. It is clear that β < +∞ since domf ∩dom(S ◦

g) = C �= ∅. If β = −∞ then by [23, Lemma 1.2], there exists a linear functional L
on Y such that L ≤ S on Y . Then infC

[
f + L ◦ g] ≤ infC

[
f + S ◦ g] which yields

infC
[
f + L ◦ g] = infC

[
f + S ◦ g] = −∞ and the conclusion of the corollary holds.

So we now can assume that β ∈ R. Let us equip X , Y with the finest locally
convex Hausdorff topologies τX , τY , respectively. Let also f̃ : X → R ∪ {+∞} and
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g̃ : X → Y • be the functions defined by

f̃(x) :=
{
f(x) − β if x ∈ C,
+∞ else,

g̃(x) :=
{
g(x) if x ∈ C,
∞K else.

Then f̃ is a proper convex function and g̃ is an S-convex mapping. Moreover, C ∩
(domf̃) ∩ (domg̃) = C �= ∅. Lemma 3.2 ensures that (SC3) holds for f̃ , g̃, C, and
S. The conclusion now follows from Theorem 3.1 where f̃ , g̃ play the roles of f, g,
respectively. The proof is complete.

3.2. The equivalence between extended Farkas lemmas and the extended Hahn-
Banach-Lagrange theorem

It is well-known that the convex Farkas lemma (also called Farkas-Minkovski
lemma [14, 14F. Corollary 2]) is equivalent to the celebrated Hahn-Banach theorem
[14, Section 14. I]. The proof of this fact was given in [14] not directly but using
other intermediate results. Turning back to our situation, we have just established an
extended version of Hahn-Banach theorem: The Hahn-Banach-Lagrange theorem, and
in [9] the authors got two extended Farkas lemmas. A natural question arises: Are
the three mentioned theorems equivalent together? Fortunately and also reasonably, the
answer is affirmative. Moreover, it is even better when we are able to give a direct
proof for these equivalences. Concretely, we have the claim:

Claim. The two versions of extended Farkas lemma: Theorems 2.1, 2.2, and the
extended Hahn-Banach-Lagrange theorem, Theorem 3.1, are equivalent to each other.

Proof. (of the Claim) We observe firstly that:
• The implication Theorem 2.1 =⇒ Theorem 2.2 was proved in [9],
• The implication Theorem 2.2 =⇒ Theorem 3.1 was shown in Subsection 3.1,

namely, the proof of Theorem 3.1.
• Consequently, we have

Theorem 2.1 =⇒ Theorem 2.2 =⇒ Theorem 3.1.

To complete the proof we need to prove:
• [Theorem 3.1 =⇒ Theorem 2.1] Let X, Y, C, K, f, and g be as in Theorem

2.1 and assume that the Slater condition (SC1) holds. Let S := i−K . Then S is an
lsc, extended sublinear function (since K is a closed convex cone). Moreover, the
condition (SC3) follows from (SC1).

On the other hand, if (i) in Theorem 2.1 holds, i.e.,

x ∈ C, g(x) ∈ −K ⇒ f(x) ≥ β.
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This is equivalent to:
f(x) + (S ◦ g)(x) ≥ β, ∀x ∈ C,

or equivalently, infC
[
f+S◦g] ≥ β. Now, Theorem 3.1 yields the existence of y∗ ∈ Y ∗

such that y∗ ≤ S on Y and
inf
C

[
f + y∗ ◦ g] ≥ β,

which is equivalent to
f + y∗ ◦ g ≥ β on C.

It remains to prove that y∗ ∈ K+ but this follows from the fact that y∗ ≤ S on Y , as
one has

〈y∗, y〉 ≤ S(y) = i−K(y) = 0, ∀y ∈ −K.
This ensures that y∗ ∈ K+ and the implication (i) =⇒ (ii) in Theorem 2.1 has been
proved. The converse implication is trivial. The proof is complete.

4. EXTENDED SANDWICH THEOREM, MAZUR-ORLICZ THEOREM AND HAHN-BANACH

THEOREM

The extended Hahn-Banach-Lagrange theorem, Theorem 3.1, in the previous section
will lead to extensions of some fundamental theorems in mathematics such as the
Mazur-Orlicz theorem, the sandwich theorem, and the Hahn-Banach theorem. These
results extend the ones in [23] to the cases where the sublinear functions (appeared in
these theorems) are possibly assumed extended real-values.

Corollary 4.1. ([Extended sandwich theorem]). Let X be an l.c.H.t.v.s., S : X →
R ∪ {+∞} be an lsc, extended sublinear function, and let f : X → R ∪ {+∞} be a
proper convex function satisfying −f ≤ S on X . Assume that

(4.1) ∃ᾱ ∈ R such that (domf) ∩ int{x ∈ X : S(x) ≤ ᾱ} �= ∅.

Then there exists L ∈ X∗ such that −f ≤ L ≤ S on X .

Proof. We will show that the conclusion of the corollary follows from Theorem
3.1. Let Y ≡ X , C = X , and g(x) := x for all x ∈ X . Then the mapping g is S-
convex. Now, (4.1) and the fact that −f ≤ S on X ensure that infC

[
f + S ◦ g] ∈ R.

Moreover, (4.1) guarantees also (SC3) holds for our setting. Theorem 3.1 now yields
the existence of a continuous functional L ∈ X∗ with the properties: L ≤ S on X and

(4.2) inf
X

[
f + L

]
= inf

X

[
f + S

]
.

As −f ≤ S on X we have infX

[
f + S

] ≥ 0. Combining this, (4.2) and the fact that
L ≤ S on X , one gets −f ≤ L ≤ S on X .
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Corollary 4.2. ([Extended Mazur-Orlicz theorem]). Let X be an l.c.H.t.v.s., S :
X → R ∪ {+∞} be an lsc, extended sublinear function, C be a nonempty convex
subset of X . Assume that infC S > −∞ and that the following condition holds

(4.3) ∃ᾱ ∈ R such that int{x ∈ X : S(x) ≤ ᾱ} �= ∅.
Then there exists L ∈ X∗ such that L ≤ S on X and

inf
C
L = inf

C
S.

Proof. An application of Theorem 3.1 to the case where X ≡ Y , g(x) := x for
all x ∈ X , and f ≡ 0.

Remark 4.2. It is worth noticing that the algebraic versions of the sandwich theo-
rem and of the Mazur-Orlicz theorem in [23] are consequences of Corollaries 4.1, and
4.2 (respectively) when taking S being a sublinear function with values in R and the
finest locally convex topologies being equipped to the corresponding vector spaces (see
also Corollary 3.2).

It is well-known that the celebrated Hahn-Banach theorem fails in the case where
the sublinear function appeared in this theorem (the function S in the next corollary)
possesses extended real values (see [23, Remark 2.3]). An extended version of the
Hahn-Banach theorem to the mentioned situation (i.e., with extended real valued sub-
linear functions) [9] will be found again as a direct consequence of Theorem 3.1.

Corollary 4.3. ([9, Extended Hahn-Banach theorem]). Let X be an l.c.H.t.v.s.,
S : X → R ∪ {+∞} be an lsc, extended sublinear function, M be a subspace of X ,
φ : M → R be a linear function satisfying φ ≤ S on M . Assume that the following
condition holds

(4.4) ∃ᾱ ∈ R : M ∩ int{x ∈ X : S(x) ≤ ᾱ} �= ∅.
Then there exists L ∈ X∗ such that L ≤ S on X and L|M = φ, where L|M denotes
the restriction of L to the subspace M .

Proof. The conclusion of the corollary follows directly from Theorem 3.1.
Indeed, let Y = X , C = M , g : X → X defined by g(x) := x for all x ∈ X , and
f : X → R ∪ {+∞} defined by

f(x) :=
{ −φ(x) if x ∈M,

+∞ else.

Then g is an S-convex mapping while f is a proper, convex function. It is clear that
(4.4) ensures that the condition (SC3) holds in this new setting. Observe also that (4.4)
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and the fact that φ ≤ S on M entail that infC
[
f + S ◦ g] = infM

[ − φ + S
] ∈ R,

which is (i) in Theorem 3.1. By this theorem, there exists L ∈ X∗ such that L ≤ S
on X and

inf
M

[ − φ+ L
]

= inf
M

[ − φ+ S
] ≥ 0 (as φ ≤ S on M),

which means that φ ≤ L on M . As M is subspace and φ, L are linear we have
L|M = φ. The proof is complete.

5. COMPOSITE PROBLEMS INVOLVING SUBLINEAR-CONVEX MAPPINGS WITH APPLICATION

In this section, the extended Hahn-Banach-Lagrange theorem, Theorem 3.1, will
be applied to some optimization problem. Concretely, we will see how the mentioned
theorem is used to derive easily the duality result and optimality conditions for the
class of composite problems involving sublinear-convex mappings. To illustrate the
applications of these results, a conjugate formula for the supremum of a family of
proper, convex (not necessarily lower semi-continuous) functions will be introduced at
the end of the section.

5.1. Composite problems involving sublinear-convex mappings

Let X, Y be locally convex Hausdorff topological vector spaces, C be a nonempty
convex subset of X , and f : X → R∪{+∞} be a proper convex function. Let further
S : Y → R ∪ {+∞} be an lsc, extended sublinear function, and g : X → Y • be an
S-convex mapping.

We consider a composite optimization problem involving the S-convex mapping g
defined as follows:

(CP) inf
x∈C

{f(x) + (S ◦ g)(x)} .

It is worth observing that (CP) is a convex problem since, by Lemma 2.1, the
composite function S◦g is convex. However, it is not a convex composite problem since
the sublinear-convex mapping g can be concave, or in general non-convex, depending
on the extended sublinear function S (see Section 2), and so, the methods for convex
composite problems (for instance, in [10], [11]) can not be applied to (CP).

We define the dual problem (D) of (CP) as:

(D) sup
y∗∈Y ∗
y∗≤S

inf
x∈C

{f(x) + (y∗ ◦ g)(x)} .

Observe that for any y∗ ∈ Y ∗ satisfying y∗ ≤ S on Y , one has

f(x) + (y∗ ◦ g)(x) ≤ f(x) + (S ◦ g)(x) ∀x ∈ C,
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and so, by taking the infimum over all x ∈ C, we get

(5.1) inf
x∈C

{f(x) + (y∗ ◦ g)(x)} ≤ inf
x∈C

{f(x) + (S ◦ g)(x)} .

As (5.1) holds for all y∗ ∈ Y ∗ satisfying y∗ ≤ S we have sup (D) ≤ inf (CP), i.e.,
the weak duality holds.

Theorem 5.1. (Strong duality for (CP)). Assume that inf
x∈C

(CP) ∈ R and that
(SC3) holds. Then the strong duality holds between (CP) and (D), i.e.,

max
y∗∈Y ∗
y∗≤S

inf
x∈C

{f(x) + (y∗ ◦ g)(x)} = inf
x∈C

{f(x) + (S ◦ g)(x)} .

Proof. Assume that inf
x∈C

(CP) ∈ R. Since (SC3) holds, it follows from Theorem
3.1 that there exists y∗ ∈ Y ∗ such that y∗ ≤ S on Y and

inf
x∈C

[
f(x) + (y∗ ◦ g)(x)] = inf

x∈C

[
f(x) + (S ◦ g)(x)].

Therefore,

sup (D) ≥ inf
x∈C

[
f(x) + (y∗ ◦ g)(x)] = inf

x∈C

[
f(x) + (S ◦ g)(x)],

which, together with the weak duality, yields sup (D) = inf (CP). Moreover, the
supremum of the dual problem (D) is attained at y∗ ∈ Y ∗. The proof is complete.

Remark 5.1. It is worth noting that the conclusion of the Theorem 5.1 still holds
if the assumption “ inf

x∈C
(CP) ∈ R” is replaced by the following one:

(5.2) ∃β̄ ∈ R such that 0Y ∈ int{y ∈ Y : S(y) ≤ β̄}.

Indeed, as (SC3) holds we have inf (CP) < +∞. If inf (CP) ∈ R, the conclusion
follows from Theorem 5.1. If inf (CP) = −∞, then by the weak duality one gets
sup (D) = inf (CP) = −∞, and in this case any y∗ ∈ Y ∗ satisfying y∗ ≤ S on Y

is a solution of (D). Note that such an y∗ ∈ Y ∗ exists by the extended Hahn-Banach
theorem, Corollary 4.3, applied to the case where X := Y , M := {0Y }, φ := 0 on M
(note that (4.4) is satisfied as (5.2) does).

We now establish the optimality condition for (CP) which is an easy consequence
of Theorem 3.1.

Theorem 5.2. Let x̄ ∈ C be a feasible point of (CP). Assume that (SC3) holds.
Then the following statements are equivalent:
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(i) x̄ is a solution (CP),
(ii) there exists y∗ ∈ Y ∗ such that y∗ ≤ S on Y and{

0X∗ ∈ ∂(f + y∗ ◦ g + iC)(x̄)

(y∗ ◦ g)(x̄) = (S ◦ g)(x̄).
(5.3)

Proof. • Necessity. If x̄ is a solution of (CP), then one has

f(x) + (S ◦ g)(x) ≥ f(x̄) + (S ◦ g)(x̄) =: β, ∀x ∈ C,

or, equivalently,
inf
x∈C

{f(x) − β + (S ◦ g)(x)} ≥ 0.

This and (SC3) ensures (see Remark 5.1) that inf
x∈C

{f(x) − β + (S ◦ g)(x)} ∈ R,
which is nothing but (i) of Theorem 3.1 (with f − β playing the role of f ). By this
theorem, there exists y∗ ∈ Y ∗ with y∗ ≤ S and such that

inf
x∈C

[
f(x) − β + (y∗ ◦ g)(x)] = inf

x∈C

[
f(x) − β + (S ◦ g)(x)] ≥ 0.

The last equality shows that

(5.4) f(x) + (y∗ ◦ g)(x) ≥ β = f(x̄) + (S ◦ g)(x̄), ∀x ∈ C.

Substituting x = x̄ into (5.4), we get

(y∗ ◦ g)(x̄) ≥ (S ◦ g)(x̄),
which together with y∗ ≤ S (and hence, (y∗ ◦ g)(x̄) ≤ (S ◦ g)(x̄)), entails

(y∗ ◦ g)(x̄) = (S ◦ g)(x̄).
Combining this with (5.4) we arrive at

f(x) + (y∗ ◦ g)(x) ≥ f(x̄) + (y∗ ◦ g)(x̄) ∀x ∈ C,

which shows that
0X∗ ∈ ∂(f + y∗ ◦ g + iC)(x̄).

Thus, (ii) is proved.
• Sufficiency. Assume that (ii) holds, i.e., there exists y∗ ∈ Y ∗ with y∗ ≤ S and

such that {
f(x) + (y∗ ◦ g)(x) ≥ f(x̄) + (y∗ ◦ g)(x̄), ∀x ∈ C,

(y∗ ◦ g)(x̄) = (S ◦ g)(x̄).
(5.5)

Since y∗ ∈ Y ∗ and y∗ ≤ S, we get from (5.5) that

f(x) + (S ◦ g)(x) ≥ f(x̄) + (S ◦ g)(x̄) ∀x ∈ C,

which means that x̄ is a solution (CP). The proof is complete.
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Remark 5.2. Note that the (CP) problem is a special case of the problem (P1)
in [9] with ψ being defined as ψ(α) = α for all α ∈ R. Despite of this, the model
(CP) still covers a wide range of important classes of optimization problems such as
nonlinearly constrained best approximation problems [17], penalty problems associated
to convex programs [18] and many other models introduced in [3] and [5]. It is also
worth observing that even the duality theorem and optimality conditions for (CP) in this
section can be derived from the results in [9], here they are proved in a different and
easier way, illustrating the direct use of the extended Hahn-Banach-Lagrange theorem
(Theorem 3.1). We show the usefulness of the duality result for this class of problems
in the next subsection where with a special choice of the sublinear-convex mapping g,
the result leads to a conjugate formula for a supremum of a family of convex functions
(see also Remarks 5.3, 5.4).

5.2. A conjugate formula for the supremum of a family of convex functions

The duality result for (CP) problem, Theorem 5.1, may lead to extensions of results
in convex analysis due to the different choices of the mapping g. As an illustration,
we introduce one of such choices of g which leads to a formula of the conjugate of the
supremum of a (possibly infinite) family of convex (not necessarily lsc) functions on
locally topological vector spaces.

Let X be a locally convex Hausdorff topological vector space, T be an arbitrary
(possibly infinite) index set, and gt : X → R∪{+∞} be proper convex (not necessarily
lsc) function for all t ∈ T.We consider the product space RT endowed with the product
topology and denote by R(T ) the space of real tuples λ = (λt)t∈T with only finitely
many λt �= 0. Observe that R(T ) is the topological dual of RT (see [12, 20]). We
represent by R

(T )
+ the positive cone in R(T ), that is

R
(T )
+ = {(λt)t∈T ∈ R(T ) : λt ≥ 0 for all t ∈ T}.

Note that R
(T )
+ is also the dual cone of the positive cone

RT
+ := {(γt)t∈T ∈ RT : γt ≥ 0 for all t ∈ T}

in the product space RT . The supporting set of λ ∈ R(T ) is suppλ := {t ∈ T : λt �= 0},
and

λ(u) :=
∑
t∈T

λtut =
∑

t∈suppλ

λtut ∀u = (ut)t∈T ∈ RT , ∀λ = (λt) ∈ R(T ).

The following formula for the conjugate of the supremum function sup
t∈T

gt comes

as a consequence of Theorem 5.1. This result can be considered as a counter part of
the one in [4] (see Remark 5.3).
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Proposition 5.3. Let gt : X → R ∪ {+∞} be a proper convex (not necessarily
lsc) function for all t ∈ T . Assume that the following condition holds:

(5.6) ∃x̄ ∈ X, ∃ᾱ ∈ R : (gt(x̄))t∈T ∈ int
{
(yt)t∈T ∈ RT : sup

t∈T
yt ≤ ᾱ

}
.

Then for any x∗ ∈ X∗ with
(

sup
t∈T

gt

)∗
(x∗) ∈ R, one has

(5.7)
(

sup
t∈T

gt

)∗
(x∗) = min

(λt)t∈T∈R
(T )
+∑

t∈T
λt=1

(∑
t∈T

λtgt

)∗
(x∗).

Proof. Let Y := RT , g : X → Y • := RT ∪ {∞
RT

+
} be the mapping defined by

g(x) =

⎧⎨⎩ (gt(x))t∈T if x ∈ ⋂
t∈T

domgt,

∞
RT

+
otherwise.

Define S : RT → R ∪ {+∞} by S(y) := sup
t∈T

yt for all y = (yt)t∈T ∈ RT .

• We first claim that S is an extended sublinear and lsc function. It is clear that S is
an extended sublinear function. Moreover, for all y = (yt)t∈T ∈ RT , S(y) = sup

t∈T
yt =

sup
t∈T

pt(y), where pt : RT → R, t ∈ T is the canonical function, i.e., pt(y) = yt, which

is continuous w.r.t. the product topology on RT . Therefore, S is an lsc function. We
extended S to Y • := RT ∪ {∞

R
T
+
} by setting S(∞

R
T
+
) = +∞.

• g is a proper and S-convex mapping. Since (5.6) holds,
⋂

t∈T dom gt �= ∅ and
hence, g is proper. Moreover, g is an S-convex mapping. Indeed, for any μ1, μ2 >

0, μ1 + μ2 = 1 and any x1, x2 ∈ X we will verify that

(5.8) g
(
λ1x1 + λ2x2

) ≤S λ1g(x1) + λ2g(x2),

where “≤S” is the binary relation associated to the extended sublinear function S
defined by (2.2). We consider the following cases:

If x1, x2 ∈ ⋂
t∈T

domgt, then by the convexity of gt for all t ∈ T and the fact that⋂
t∈T

domgt is a convex set, one has

S
(
g
(
λ1x1 + λ2x2

) − λ1g(x1) − λ2g(x2)
)

= sup
t∈T

{
gt

(
λ1x1 + λ2x2

) − λ1gt(x1) − λ2gt(x2)
} ≤ 0,

which means that (5.8) holds.
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If x1 /∈ ⋂
t∈T

domgt or x2 /∈ ⋂
t∈T

domgt, then (5.8) holds (note that y ≤S ∞
RT

+
for

all y ∈ RT ∪ {∞
R

T
+
}).

If λ1x1+λ2x2 /∈
⋂

t∈T

domgt, then at least one of the two x1 and x2 does not belong

to
⋂

t∈T
domgt (as

⋂
t∈T

domgt is a convex set), i.e., g(x1) = ∞
RT

+
or g(x2) = ∞

RT
+
, or

both. Hence, (5.8) also holds. Thus g is S-convex.
• We now apply Theorem 5.1 to the function S, the mapping g defined as above,

C = X , and the function f : X → R with f(x) := −〈x∗, x〉 for all x ∈ X . Observe
that the condition (5.6) ensures that (SC3) holds.

Now if x∗ ∈ X∗ satisfying
(

sup
t∈T

gt

)∗
(x∗) ∈ R then

inf
x∈X

{f(x) + (S ◦ g)(x)} = inf
x∈X

{
−〈x∗, x〉+ sup

t∈T
gt(x)

}
= −

(
sup
t∈T

gt

)∗
(x∗) ∈ R.

It now follows from Theorem 5.1 and the definition of the conjugate functions that

(5.9)

−
(

sup
t∈T

gt

)∗
(x∗) = inf

x∈X

{
− 〈x∗, x〉+ sup

t∈T
gt(x)

}
= max

λ∈R
(T )

λ(.)≤S(.)

inf
x∈X

{
− 〈x∗, x〉+

∑
t∈T

λtgt(x)
}

= − min
λ∈R

(T )

λ(.)≤S(.)

( ∑
t∈T

λtgt

)∗
(x∗).

To complete the proof, let us fix λ = (λt)t∈T ∈ R(T ) such that λ(y) ≤ S(y) = supt yt

for all y = (yt)t∈T ∈ RT . We will show that λt ≥ 0 for all t ∈ T and
∑
t∈T

λt = 1.

Indeed, for any k ∈ T , take uk = (ut)t∈T satisfying ut = −1 if t = k and ut = 0
for t �= k. Then the relation λ(uk) ≤ S(uk) yields λk ≥ 0 for all k ∈ T . Let further
ū = (ūt)t∈T , u∗ = (u∗t )t∈T ∈ RT be such that ūt = 1 and u∗t = −1 for all t ∈ T .
Then the relations λ(ū) ≤ S(ū) and λ(u∗) ≤ S(u∗) give us

∑
t∈T

λt = 1. The equality

(5.7) now follows from (5.9). The proof is complete.

Remark 5.3. The conjugate formula (5.7) can be considered as a counter part of
the one in [4, page 78] where it was proved by another technique and under a so-called
closedness qualification condition and an extra assumption that gt is lsc for all t ∈ T .
Here, in the Proposition 5.3, we assume the condition (5.3), which is stronger than the
closedness qualification condition in [4]. However, here the assumption on the lower
semi-continuity of gt for all t ∈ T is removed.
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Remark 5.4. The procedure used in the proof of Proposition 5.3 paves the way for
the study of some general minimax problems and this will be done somewhere else.
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