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INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR
SCHRODINGER EQUATIONS

Jing Chen and X. H. Tang

Abstract. In this paper, we deal with the existence of infinitely many solutions
for a class of sublinear Schrodinger equation

~Au+V(z)u= f(z,u), xRV,
{ u € HY(RN).

Under the assumptions that infzy V(z) > 0 and f(z,t) is indefinite sign and
sublinear as |t| — +oo, we establish some existence criteria to guarantee that the
above problem has at least one or infinitely many nontrival solutions by using the
genus properties in critical point theory.

1. INTRODUCTION
Consider the following semilinear Schrodinger equation

— = N
(L1) {uﬁl}ﬁ@f){“ f@u), zeRY,

where V:RY - Rand f:RY xR — R.

In the past several decades, the existence and multiplicity of nontrivial solutions for
problem (1.1) have been extensively investigated in the literature with the aid of critical
point theory and variational methods. Many papers deal with the autonomous case
where the potential V' and the nonlinearity f are independent of x, or with the radially
symmetric case where V' and f depend on |z|, see for instance [1, 2, 5, 12, 18, 19]
and the references therein. If the radial symmetry is lost, the problem becomes very
different because of the lack of compactness. Ever since the work of Ding and Ni [7],
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Li [11] and Rabinowitz [16], this situation has been treated in a great number of papers
under various growth conditions on V" and f. When the nonlinearity f is superlinear
as |t| — oo, the so-called Ambrosetti-Rabinowitz superquadratic condition is usually
assumed, see [1, 2, 5, 7, 11, 12, 16, 18, 19]. Weaker superlinear conditions on f were
obtained in [3, 21, 22, 23, 24, 27] and the references therein.

Compared to the superlinear case, as far as the authors are aware, there are few
papers [6, 8-10, 14, 26] concerning the case where f is sublinear as |t| — cc.

In 1992, Brezis and Kamin [6] gave a sufficient and necessary condition for the
existence of bounded positive solutions of problem (1.1) with V(x) = 0. With a strong
coercive condition on the potential V'(z), Ding and Li [8] (1994) and Ding [9] (1997)
proved the existence and multiplicity of nontrivial solutions for a class of sublinear
elliptic systems corresponding to (1.1). In 2007, Kristaly [10] considered (1.1) with
parameter A in f(x,u) and proved the finite multiplicity of the solutions for some
uncertain values of \. This result was improved in the recent paper [14].

When f(z,t) = pa(x)|t|*~2t, where p € (1,2) is a constant and a : RY — R is
a positive continuous function such that a € L 2=#)(R" [0, +00)), by using variant
fountain theorem [27], Zhang and Wang [26] established the following theorem on the
existence of infinitely many nontrivial solutions of problem (1.1) under the assumptions
that 1 satisfies some weaker conditions than those in [3], which have been given in

[4].
Theorem 1.1. ([26]). Assume that V' and f satisfy the following conditions:
(S1) V € C(RY,R) and infgn V(z) = 8 > 0;

(S2) There exists a constant [y > 0 such that

||lim meas {z € RY : |z —y| <lp, V(z) <M} =0, VM >0,
yl—-+oo

where meas(-) denotes the Lebesgue measure in RY;
(S3) f(x,t) = pa(z)[t|* 2t, where u € (1,2) is a constant and a : RV — R is a
positive continuous function such that a € L2/ Z~#(RN [0, +-00)).

Then problem (1.1) possesses infinitely many nontrivial solutions.

In the above theorem, assumption (S2) is a coercive condition on L, and (S3) is
a strict restriction on f. There are much sublinear functions in mathematical physics
in problem like (1.1) except for f(x,t) = pa(x)|t|*~2t in (S3). In the present paper,
motivated by paper [20, 26], we will use the genus properties in critical point theory
to generalize Theorem 1.1 by removing assumption (S2) and relaxing assumption (S3).

Theorem 1.2. Assume that V' and f satisfy (S1) and the following conditions:
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(F1) f € C(RN x R,R) and there exist two constants 1 < 71 < 7o < 2 and two
functions  a; € L¥C=7)(RN [0, 400)) and ap € L C=72)(RN, [0, +00))
such that

(2, )] < mar(@)[t]" 7 + paa(@)t2 7,V (2,8) € RY xR

(F2) There exist an open set J C R and three constants 6,17 > 0 and 3 € (1,2)
such that
F(z,t) >nlt|, V (z,t) € J x[-4,0],

where F(x,t) fo f(z, s)ds, meRN t e R.

Then problem (1.1) possesses at least one nontrivial solution.

Theorem 1.3. Assume that V and f satisfy (S1), (F1), (F2) and the following condi-
tion:

(F3) f(x, —t) = —f(x,t), V (z,t)€RY xR,
Then problem (1.1) possesses infinitely many nontrivial solutions.
It is easy to see that assumption (F2) is satisfied if the following condition holds:

(F2') There exist an open set J C RY and three constants 6,7 > 0 and 3 € (1,2)
such that
tf(z,t) > yan|t|, ¥V (x,t) € J x[=6,0].

Hence, by Theorems 1.1 and 1.2, we have the following corollary.

Corollary 1.4. In Theorems 1.2 and 1.3, if assumption (F2) is replaced by (F2'),
then the conclusions still hold.

Remark 1.5. If f(z,t) = pa(z)|t|*"2t, then F(z,t) = a(x)|t|*. Hence, assumption
(S3) implies that (F1), (F2) and (F3) with v; =73 = < 72 < 2, a;(x) = a(x) and
as(z) = 0.

Remark 1.6. Our results can be applied to the following indefinite sign sublinear
functions:

1 + sin? T _ _
and
4 cosxq 93 3 sin o ~1/2
(1.3) flz,t) = [t~ + |t~/

3(1+ [z|N/?) 2 (1 + [z|N/3)
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where x = (z1,x9, -+ ,xn). See Examples 4.1 and 4.2 in Section 4.

The remainder of this paper is organized as follows. In Section 2, some preliminary
results are presented. The proofs of our main results are given in Section 3. Some
examples to illustrate our results are given in Section 4.

2. PRELIMINARIES

Let
E= {u e HY(RY) : /RN [[Vul? + V(2)u?] dz < —i—OO}

equipped with the norm

1/2
llul| = {/ [\Vu\2 + V(a:)uQ] da:} , u€k,
RN
and the inner product
(u,v) = / [(Vu, Vo) + V(z)uw]dz, wu,veE.
RN

Then E is a Hilbert space with this inner product. As usual, for 1 < p < +oo, we let

1/p
uuup:(/ \u\pdx) e IP(RM),
RN

and

Jullo = 55 sup ul, u e LX(RY).
zeRN

Lemma 2.1. Assume that (S1) and (F1) hold. Then the functional ¢ : E — R
defined by

1

@) o) = 5l - [ Fla.wis

is well defined and of class C'(E,R) and

(2.2) (¢'(u),v) = (u,v) - L @) vlz)de.

Furthermore, the critical points of ¢ in E are solutions of problem (1.1).

Proof. By virtue of (F1), one has

(2.3) |F(x,t)] < a1 ()|t + ag(z)[t]2, V¥ (2,t) € RN x R.
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For any u € E, it follows from (S1), (2.3) and the Holder inequality that

/RN Pz, u)|de

< [ m@uP + o)) ds
RN
2 (2—73)/2 vi/2
< ([ P a) ([ viande)
i=1 RY RY

2
< ZB_Vi/2HaiH2/(2—Vi) HuH%a
=1

and so ¢ defined by (2.1) is well defined on E.

Next, we prove that (2.2) holds. For any function 6 : RN — (0,1), by (F1) and
the Holder inequality, we have

| max |f (@, ut O@)hv)vlde

<
S Jon hfg[gﬁ]\f(x s u+ 0(x)ho)|v|dz

<Z%/ 2)(ful + o) olda
<Z%/ ai(z) ([u[* + o) [o]de
2—7;
2
<3 ([ o)
i=1 RY

bi—1

(/RN V(a:)qua:) : (/RN V(a:)v2da:)%

2 2= i
2 2
# ([wpean) T ([ vieta)
=1

2

< S8 aillagan (P + ol ) [lo]l < +oc.
=1

(2.4)

Then by (2.1), (2.4) and Lebesgue’s Dominated Convergence Theorem, we have
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p(u+ hv) — p(u)

(¢'(w),v) = lim

h—0+t h
oy L et Al — fu?
= hli%h ’ { 5 — /RN [F(z,u+ hv) — F(z,u)]dz
= lim |(u,v)+ M — f(z,u+ 0(z)hv)vdz
h—0T ’ 2 RN ’
= (u,v) — f(z,u)vde.

RN
This shows that (2.2) holds. Furthermore, by a standard argument, it is easy to show
that the critical points of ¢ in E are solutions of problem (1.1).
Let’s prove now that ¢’ is continuous. Let uy — w in E. Then ug — u in L2(RY),
and so

(2.5) klim up(z) = u(z), ae xcRY.

We claim that

(2.6) lim |f(z,up) — fx,u)|*dz = 0.
k—oo JRN

If (2.6) is not true, then there exist a constant e, > 0 and a subsequence {uy, }
such that

(2.7 /RN |f (2, up,) — f(2,u)|?de > ey, VieN.

Since ux — wu in L2(RY), passing to a subsequence if necessary, it can be assumed
that $°°, fluk, — ull2 < +oo. Set w(x) = [S20°, |uk, (x) — u(z)2]"?, & € RV,
Then w € L?(RY). Note that

‘f(xa ulﬁ) - f([l?, u>‘2
< 2| f (a, ug,) [ + 2| f (2, u)[?
< 4y?)a1 (z)|? [\uki\%—l) N ‘U‘Q(%—l)}

+4x3lan (@) ? [[ug, 20271 + ul0 )]
(2.8)

<

e

(479 +4) 77l (@) g, — w07 2057

7=1

< (4%’ + 4) 'Y?‘aj(ﬂf)P [‘w‘2(%’—1) + ‘u‘2(%’—1)}

o |

=g(x), VieN, zeRY
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and
/ g(z)dx
RN
2
— A0 4 4 2/ a:i ()12 w25 4 206D | dg
(2.9) Z< 17 [ i) [Jw 2050
2

, 2(y;—1 2(y;—1
<> + 99213 oy (370 + Jull; ) < oo
j=1

Then by (2.5), (2.8), (2.9) and Lebesgue’s Dominated Convergence Theorem, we have

lim |f (2, up,) — f(z,u)*dz = 0,

1—0 JRN

which contradicts (2.7). Hence (2.6) holds. From (2.2), (2.6) and the Holder inequality,
we have

(' (k) — (), )
(ur, — 1, ) — / ) — o wlode

< g = wll [loll + . |f (@, ug) = f(2,u)] |v]dz

1/2
< o=l ol + 577 ([ 17Gw) = e Pz ) o]
<o(l), k— +o0,
which implies the continuity of ’. The proof is complete. ]

Lemma 2.2. ([13]). Let X be a real Banach space and ¢ € C'(X, R) satisfy the
(PS)-condition. If v is bounded from below, then ¢ = inf x ¢ is a critical value of .

To order to find nontrivial critical points of v, we will use the “genus” properties,
so we recall the following definitions and results (see [15] and [17]).
Let X be a Banach space, ¢ € C1(X,R) and ¢ € R. We set

Y={AC X —{0}: Aisclosed in X and symmertric with respect to 0},
Ke={ueX:y(u)=c ¢/() =0}, ¢°={uecX: pu)<ch

Definition 2.3. ([15]). For A € 3, we say genus of A is n (denoted by v(A) = n)
if there is an odd map ¢ € C(A,R™ \ {0}) and n is the smallest integer with this

property.
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Lemma 2.4. ([15]). Let v be an even C! functional on X and satisfy the (PS)-
condition. For any n € N, set

S,={AeT:y(A)>n}, ¢, = inf .
{ VA znb,en= Inf supy(u)

(i) If ¥, # 0 and ¢,, € R, then ¢, is a critical value of 1;
(if) If there exists » € N such that

Cn==Cntl =" =Cpyr =CER,
and ¢ # ¢(0), then y(K,) > r + 1.

3. PROOFs oF THEOREMS

Proof of Theorem 1.2. In view of Lemma 2.1, » € C'(E,R). In what follows,
we first show that ¢ is bounded from below. By (2.1), (2.3) and the Holder inequality,
we have

o) = lul® = [ Fauds

1
> Sl = [ a@hlde - [ a@lus
RN RN
2

Lo /2 2oy
> - _ —Yi A —Yi
o > Tl =305 ([ et

=1

( /R N V(a:)qua:) i

1 2
> Sllull® =Y 872 il llul .
i=1
Since 1 < 1 < 72 < 2, (3.1) implies that p(u) — +oo as ||u|| — +oo. Consequently,
 is bounded from below.
Next, we prove that ¢ satisfies the (PS)-condition. Assume that {uy}ren C E is
a sequence such that {¢(ug) }ren is bounded and ¢'(uy) — 0 as k — +oo. Then by
(3.1), there exists a constant A > 0 such that

(32) lukllz < 872 |lugl| < A, k€N

So passing to a subsequence if necessary, it can be assumed that ux — wug in E. For
any given number ¢ > 0, by (F1), we can choose R. > 0 such that

(2=7:)/2
(3.3) / |as(z) |/ ) dg <eg i=1,2.
|z|>Re
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We claim that
(3.4) lim lug, — ug|*dx = 0.
k—oo |z| <R

In fact, if (3.4) is not true, then there exist a constant ¢, > 0 and a subsequence {uy, }
such that

(3.5) / lug, — uo|®dz > 9, VieN.
|z|<Re

{ux,} has a convergent subsequence in L?(Bg,), which is still denoted by {uy, } for
the sake of simplicity. Let {u,} converge to u. in L?(Bg.), i.e.

(3.6) lim lug, — u.|*dz = 0.
1—00 |I‘|§RE

Since u, — ug in E C L*(Bg,), it follows that uz, — wug in L?(Bg.), which,
together with (3.6), implies that w.(x) = ug(x), a.e. x € Bg_. Hence,

lim |ug, — ug\Qda} =0,
1—00 |I‘|§RE

which contradicts (3.5), and so (3.4) holds. By (3.4), there exists kg € N such that
(3.7) / lug — ug\Qda} <2 for k> k.

|z|<Re
Hence, by (F1), (3.2), (3.7) and the Holder inequality, we have

/ s ur) — Fa, o)l [y — wolda
|z|<Re

1/2 1/2
</ |f(x,u) — f(x, ug)\de> </ lug — ug\Qda:)
|z|<Re |z|<Re

1/2

[/ 2 (If (&, ur) | + | f (2, uo)[?) dﬂ?] €
|z|<Re

2 ;% /M:|

M2 1/2
2(vi—1 2(vi—1
2|32 VP laill ey (s34 lluollz” >)] e
Li=1

IN

IN

(3.8)

IN

1/2
Jai|? (\uk\Q(%_l) + \UO\Q(WU> dx] )
<R.

IN

IA
Do

2 1/2
S 2(y;—1
D2l oy (4707 4 o3 >)] e, k>ko.
Li=1
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On the other hand, it follows from (F1), (3.2), (3.3) and the Holder inequality that
/ £ ua) = (o, )k woldz
|z[>Re

(@)l fuol ) (] + ol )dw

A\
L[]
2
—
§

(@) (Jurl ™ + Juo|™)da

(2—i)/2
22% ( /| » \ai<x>\2/<2—%>dx> (el + luolly)
. x|> e

(2—i)/2
22% </|| . @;)\2/(2—%)(13;) (A” + [uoll3")
x|> e

22% (A% + |luglla) e, keN.
i=1

IN
N
@ L[]
2
—
§

(3.9)

IN

IN

IN

Since ¢ is arbitrary, combining (3.8) with (3.9), one gets

(3.10) /RN [f(x,u) — f(x,up][ug — uo)]de — 0 as k — oo.

It follows from (2.2) that

(3.11) <<P’(Uk)—<ﬁ’(uo),Uk—UO>=HUk—UOH2—/RN[f(x,Uk)—f(w,UO)Huk—uo]de~

Since (¢ (uk) — ¢'(uo), ux, — ug) — 0, it follows from (3.10) and (3.11) that uy, — ug
in E. Hence, ¢ satisfies the (PS)-condition.

By Lemma 2.2, ¢ = inf g ¢(u) is a critical value of ¢, that is there exists a critical
point u* € E such that p(u*) = c.

Finally, we show that u* # 0. Let ug € (WOI’Z(J) mE) \ {0} and [Juo||e < 1,
then by (2.1) and (F2), we have

2
s
(sug) = EHUOHQ —/ F(z, sug)dz
RN
52 )
(3.12) = % ol —/F(a:, sup)dz
J
2
< _HUOH2 —ns? [ |ug|dz, 0<s<d.

-2



Infinitely Many Solutions for a Class of Sublinear Schrodinger Equations 391

Since 1 < v3 < 2, it follows from (3.12) that ¢(sug) < 0 for s > 0 small enough.
Hence p(u*) = ¢ < 0, therefore »* is a nontrivial critical point of ¢, and so «* is a
nontrivial solution of problem (1.1). The proof is complete. ]

Proof of Theorem 1.3. In view of Lemma 2.1 and the proof of Theorem 1.2,
© € C1(E,R) is bounded from below and satisfies the (PS)-condition. By (F3), it is
obvious that ¢ is even and ¢(0) = 0. In order to apply Lemma 2.4, we prove now that

(3.13) forany n € N there exists ¢ > 0 such that (¢ ™) > n.

For any n € N, we take n disjoint open sets .J; such that
JJica
=1
Fori=1,2,....n, letu; € (W(}’2(Ji) mE) \ {0}, [|uifle < +o00 and |jus]| = 1, and

E, =span{uy,ug, - - ,un}, Sp,={ué€E,:|ul =1}

For any u € E,, there exist \; € R, ¢ =1,2,...,n such that

(3.14) uzﬁi&m for z e RY.
Then

1/7s n 1/vs
(3.15) el = (/RN \umdx) _ <;\Ws /J \ui\%dx> ,
and

HuH2:/R [IVal? + Vi(z) dx—z/\Z/ IVl + V()] da
—ZV/ [[Vui|? + V(= M_ZVMW > AL
=1

Since all norms of a finite dimensional normed space are equivalent, so there is a
constant ¢’ > 0 such that

(3.16)

(3.17) dull <Jully, for ue E,.

By (F3), (2.1), (3.14), (3.15), (3.16) and (3.17), we have
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2 2 n
o(su) = %HUHQ _ /RN F(z, su)dz = %HUHQ _ ;/ F(z, shju;)da

n 2

2
S S
Sl = SN [ e = Sl - sl

i= Ji
(3.18) ) 1

S
< Sllull® = n(c's) flul>®

IN

82

-1
- 2 _ /. \7V3 < .
5 n(c's)”, VY ueSy,, 0<S_5<1r£1%)§l“uz”oo) :

(3.18) implies that there exist ¢ > 0 and o > 0 such that
(3.19) plou) < —e  for ue S,.

Let

=1

Sg:{o-uuesn}7 Q:{<A17A277AH>GRHZA?<U—2}

Then it follows from (3.19) that

o(u) < —e  for uwe Sy,
which, together with the fact that ¢ € C*(E, R) and is even, implies that
(3.20) SPCp e,

On the other hand, it follows from (3.14) and (3.16) that there exists an odd home-
omorphism mapping ¢ € C(S7,0). By some properties of the genus (see 3° of
Proposition 7.5 and Proposition 7.7 in [15]), we have

(3.21) Y(p™%) > (Sy) = n,

so the proof of (3.13) follows. Set

= inf .

¢n = inf sup o(u)
It follows from (3.21) and the fact that ¢ is bounded from below on E that —oco <
cn < —e < 0, that is for any n € N, ¢, is a real negative number. By Lemma 2.4, ¢
has infinitely many nontrivial critical points, and so problem (1.1) possesses infinitely
many nontrivial solutions. The proof is complete. ]
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4, EXAMPLES

Example 4.1. In problem (1.1), let V(z) = 1 + sin? z1, and let f(z,t) be as in
(1.2). Then

2 1/4 1/2 N
7@ 01 s (Y 3102) v (@) e RY xR

1+sin?z; (4 5/4 3/2
F(z,t) = 15 22 <5W — 2]t

3(N+2)/2
>
~ 10 (3N/2 4 N/2)

t5/4, V¥ (2,t) € Byz x [—474, 471

Thus all conditions of Theorem 1.3 are satisfied with

> <m=3 w@)=—— aa) = —
4 Y1 =73 <72 5 1 1t \a:\N/Z’ 2 1t \a:\N/Z’
5= 1 Gl J=B
Tar T E N ANy T T

By Theorem 1.3, problem (1.1) has infinitely many nontrivial solutions.

Example 4.2. In problem (1.1), let V(x) = 1 + cos? x1, and let f(x,t) be as in
(1.3). Then

3
W< — VP ——= 1Y%,V (2,t) e RN xR,
_ coszy 4/3 sin xo 3/2
F(z,t) = — - |t|¥3+ —=_|t
1

P — 7 LV S e (=1, DY x [-1,1].

Thus all conditions of Theorem 1.3 are satisfied with
4 3 4 3
3=nEB<n=g wal@)= S0+ o) ag(z) = SO+ )
__ 1
2 (1+ NN/4)’
By Theorem 1.3, problem (1.1) has infinitely many nontrivial solutions.

§=1, n= J=(-1,1)".
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Example 4.3. In problem (1.1), let V(z) = In(3 + |z1]), and let

_ 3sinxy
flt) =3 (L + [2[V73) (1 1 |t}372)

|t 7122

3 1/2 N
B <—— |tV ¥ (z,t) eRY xR,
0 < 5y (2,1)
F(e,t) = 1 pra (1414
1

=1 [1+ (4N)N/6] 12V (@) € (1,2 x [-1,1].

These show that all conditions of Theorem 1.2 are satisfied, where

3

3
Y1 =73 D) <72 <2, a() 9 (1 i ‘x‘N/S) , a(x) )

1
41+ (4N)N/S)?

§=1, n= J=(1,2)".

By Theorem 1.3, problem (1.1) has infinitely many nontrivial solutions.
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