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SOLVING NONLINEAR COMPLEMENTARITY PROBLEM BY A
SMOOTHING HOMOTOPY METHOD

Xiaona Fan*, Tingting Xu and Furong Gao

Abstract. In this paper, a smoothing homotopy method for solving the nonlinear
complementarity problem is considered. The homotopy equation is constructed
based on Chen-Harker-Kanzow-Smale smooth function. Under certain mild non-
monotone condition, the global convergence result is obtained. Furthermore, the
initial point can be chosen almost everywhere in Rn but not just in Rn

+. The
numerical experimental results show that the method is effective.

1. INTRODUCTION

Consider the nonlinear complementarity problem (NCP for abbreviation): Find a
vector x ∈ Rn such that

(1) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where F : Rn → Rn will be assumed to be continuously differentiable in this paper.
The NCP has attracted much attention due to its various applications in optimization

and control problems, game theory, mechanics, operations research and engineering
sciences etc.. We refer the reader to [4, 5, 6, 7] for review. For most existing algorithms
in the literature, the convergence can be ensured by assuming the mapping F with
certain monotonicity, e.g., [3, 8, 9, 11, 14]. In [16], Xu et al. considered to solve the
NCP by a homotopy method. They rewrote the NCP as the following system

(2) (x, y) ≥ 0, F (x, y) =

(
Xy

y − f(x)

)
= 0,
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whereX = diag(x) is a diagonal matrix formed by the components of x. The homotopy
equation is constructed as follows:

(3) H(w, w(0), μ) =

(
Xy − μX (0)y(0)

y − (1− μ)f(x) − μy(0)

)
,

where w(0) = (x(0), y(0)) ∈ Rn
++ ×Rn

++, w = (x, y) ∈ Rn ×Rn, x = (x1, · · · , xn)T ,
y = (y1, · · · , yn)T , X (0) = diag(x(0)). They proved that for almost all starting point
x(0) ∈ Rn

+, a finite homotopy pathway formed by the homotopy equation (3) existed and
converged to a solution of NCP under a nonmonotone and easily verified convergence
condition. For comprehension, we make a slight modification in statement and the
condition is described as follows.

Assumption 1. For any x ⊆ Rn
+, lim‖x‖→∞F (x) > 0.

In [16], Xu et al. have checked that Assumption 1 is not stronger than that of
function is monotone or P0 and it is very easy to verify.
In this paper, in order to reduce the dimension of variables and enlarge the scope

of the initial point, we consider a smoothing homotopy method to solve NCP(1). We
reformulate the NCP as a system of nonsmooth equations via NCP-function[5] ϕ :
R2 → R:

ϕ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0.

There are many NCP functions in form, among them we take ϕ(a, b) = min(a, b),
where min{a, b} is the componentwise minimization operator. However, min function
is not differentiable, so we reformulate min(a, b) = 1

2

(
a+ b−√(a− b)2

)
whose

smooth form is given by B. Chen, P. T. Harker, C. Kanzow and S. Smale[2]

(4) ϕCHKS(a, b, μ) =
a+ b−√(a− b)2 + 4μ2

2
, (a, b)T ∈ R2, μ > 0.

After some simple analysis, we obtain several nice properties on this smooth function:

Proposition 1. (i) ϕCHKS(a, b, μ) converges to min(a, b) uniformly as μ → 0,
and |ϕCHKS(a, b, μ)− min(a, b)| ≤ μ.

(ii) ϕCHKS(a, b, 0) = min(a, b).

(iii) For fixed μ > 0, ϕCHKS(a, b, μ) is smooth.

Proof. Since
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0 ≥ ϕCHKS(a, b, μ)− min(a, b)

=
a+ b−√(a− b)2 + 4μ2

2
− a+ b−√(a− b)2

2

=
1
2
(
√

(a− b)2 −
√

(a− b)2 + 4μ2)

=
−4μ2

2
(√

(a− b)2 +
√

(a− b)2 + 4μ2
)

≥ −4μ2

4μ
= −μ,

thus (i) holds. Both (ii) and (iii) are easy to follow.

Remark 1. The above derivation shows ϕCHKS(a, b, μ) → min(a, b), when μ→ 0
and there exists α(a, b, μ) such that |α(a, b, μ)| ≤ 1 and ϕCHKS(a, b, μ) = min(a, b)−
μα(a, b, μ).

By the smooth function (4), we can obtain the smooth proximal equation of the
NCP:

(5) Θ(x, μ) =

⎛
⎜⎝

ϕCHKS(x1, F1(x), μ)
...

ϕCHKS(xn, Fn(x), μ)

⎞
⎟⎠ = 0, μ > 0.

Based on (5), a homotopy equation can be constructed. The following main content
is to prove, under certain suitable condition, when μ ↓ 0, for almost all x(0) ∈ Rn, the
homotopy equation converges to the point (x∗, 0). Correspondingly, x∗ solves equation
(5), thus x∗ is a solution of the NCP.
The remainder of this paper is organized as follows. In Section 2, the main results

of the paper are given. A smoothing homotopy equation is constructed, then under
Assumption 1, the existence and convergence of a smooth path from almost all given
initial point in Rn but not Rn

+ in [16] to a solution of the NCP are proved. The
numerical results show this smoothing homotopy method for solving the NCP is more
effective than that of [16] in Section 3.

2. HOMOTOPY METHOD FOR NCP AND ITS CONVERGENCE

Above all, we introduce several lemmas which are from differential topology and
it will be used in the proposed homotopy method. Denote ψ−1(u) = {z|ψ(z) = u}.
Definition 1. Let ψ : Rm → Rn be a C1-mapping and ψ(z) = u. A point z ∈ Rm

is called a regular point of ψ if rank(ψ′(z)) = n. A value u ∈ Rn is called a regular
value of ψ if z is a regular point of ψ for all z ∈ ψ−1(u). Points and values are called
singular if they are not regular.
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Lemma 1. (Inverse Image Theorem [13]). Let φ : U ∈ Rn → Rp be a Cα

(α > max{0, n− p}) mapping. If 0 is a regular value of φ, then φ−1(0) consists of
some (n− p)-dimensional Cα manifolds.

Here, manifold means a topological space or surface and it is a subset of Rn.
Applying the inverse image theorem to the homotopy method, we have the following
result.
Let H : Ω ⊂ Rn+1 → Rn, H ∈ C1. If rankH ′(x, μ) = n, then the connected

components emanated from the equation H(x, μ) = 0 are C1-smooth curves.
ByH ′(x, μ)=(H ′

x(x, μ),H ′
μ(x, μ)), we have ifH ′

x(x, μ) is inverse, then rankH ′(x,
μ) = n. However, the condition is strong, which confines the method. To weaken
the nonsingular condition and enlarge the scope of homotopy method, we introduce the
well-known parameterized sard theorem which can solve this problem.

Lemma 2. (Parameterized Sard Theorem [1]). Let V ⊂ Rn, U ⊂ Rm be open
sets and let φ : V ×U → Rk be a Cα mapping, where α > max{0, m−k}. If 0 ∈ Rk

is a regular value of φ, then for almost all a ∈ V , 0 is a regular value of φa = φ(a, ·).
Parameterized sard theorem tells us that we can loose the regularity condition by

introducing a suitable parameter to the homotopy equation. The full rank of jacobian
matrix of the homotopy mapping H reduces to the partial derivation of H on the
parameter having full rank.

Lemma 3. (Classification Theorem of One-Dimensional Smooth Manifolds [13]).
A one-dimensional smooth manifold is homeomorphic to a unit circle or a unit interval.

We make an explanation for homeomorphic in lemma 3. A homeomorphic is also
called a continuous transformation which is an equivalent relation and one to one
correspondence between points in two.
From the preceding analysis, for arbitrary given x(0) ∈ Rn and μ ∈ (0, 1], we

construct the following homotopy equation:

(6) H(x, x(0), μ) = (1− μ)Θ(x, μ) + μ(x− x(0)) = 0,

where

Θ(x, μ) =

⎛
⎜⎝

ϕCHKS(x1, F1(x), μ)
...

ϕCHKS(xn, Fn(x), μ)

⎞
⎟⎠ = 0,

and

ϕCHKS(xi, Fi(x), μ) =
1
2

(
xi + Fi(x) −

√
(xi − Fi(x))2 + 4μ2

)
, i = 1, 2, · · · , n.

It can also be rewritten by component as:

(7) Hi(x, x(0), μ) = (1−μ)ϕCHKS(xi, Fi(x), μ)+μ(xi−x(0)
i ) = 0, i = 1, 2, · · · , n.
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Set
H−1

x(0)(0) = {(x, μ) ∈ Rn × (0, 1] : H(x, x(0), μ) = 0}.

Lemma 4. For almost all x(0) ∈ Rn, 0 is a regular value ofH : Rn×(0, 1] → Rn,
and H−1

x(0)(0) consists of some smooth curves. Among them, a smooth curve Γ starts
from (x(0), 1), denoted by Γx(0) .

Proof. We regard the function H as the variables x, x(0), μ. UsingDH(x, x(0), μ)
to denote the Jacobian matrix of H(x, x(0), μ), we have

DH(x, x(0), μ) =

(
∂H(x, x(0), μ)

∂x
,
∂H(x, x(0), μ)

∂x(0)
,
∂H(x, x(0), μ)

∂μ

)
.

For all x(0) ∈ Rn and μ ∈ (0, 1], recalling the homotopy equation (6), we have

∂H(x, x(0), μ)
∂x(0)

= −μI,

where I is the identity matrix. Thus, DH(x, x(0), μ) is of full row rank. That is, 0 is a
regular value of H(x, x(0), μ). By Lemma 1 and Lemma 2, for almost all x(0) ∈ Rn, 0
is a regular value of H(x, x(0), μ) and H−1

x(0)(0) consists of some smooth curves. From
H(x(0), x(0), 1) = 0, there lies a smooth curve Γ in H−1

x(0)(0) starting from (x(0), 1),
denoted by Γx(0) .

Lemma 5. (Boundedness of the homotopy pathway). Suppose Assumption 1 holds.
When 0 is a regular value of H(x, x(0), μ), Γx(0) is bounded on Rn × (0, 1].

Proof. By Lemma 4, we have that 0 is a regular value of H(x, x(0), μ). If Γx(0) ⊂
Rn × (0, 1] is an unbounded curve, and because (0, 1] is bounded, then there exists a
sequence of points {(x(k), μk)} ⊂ Γx(0) with ‖ x(k) ‖→ ∞. Hence, there must exist
i ∈ {1, · · · , n} such that |x(k)

i | → +∞ and x(k)
i satisfying equation (7), i.e.,

(1 − μk)ϕCHKS(x(k)
i , Fi(x(k)), μk) + μk(x(k)

i − x
(0)
i ) = 0.

By Remark 1, we rewrite the above equation:

(1 − μk)
(
min

(
x

(k)
i , Fi(x(k))

)
− μkα(x(k)

i , Fi(x(k)), μk)
)

+ μk(x(k)
i − x

(0)
i ) = 0,

where 0 < α(x(k)
i , Fi(x(k)), μk) ≤ 1.

Reorganizing the above equality, we obtain

(8)
(1− μk) min

(
x

(k)
i , Fi(x(k))

)
− μk(1− μk)α(x(k)

i , Fi(x(k)), μk)

+μk(x(k)
i − x

(0)
i ) = 0.

For |x(k)
i | → +∞, we have the following two possible cases:
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(1) x(k)
i → −∞, as k → ∞, there are two subcases to discuss:
(a)Fi(x(k)) → −∞, as k → ∞. In this case, for the left side of (8), the sum of
the first term and the third term tends to −∞, but the second term is bounded,
which contradicts with the right side of (8);
(b)Fi(x(k)) > −∞, as k → ∞. Then equation (8) can be simplified as follows:

(9)
(1− μk)x(k)

i − μk(1 − μk)α(x(k)
i , Fi(x(k)), μk) + μk(x(k)

i − x
(0)
i ) = 0

⇐⇒ x
(k)
i − μk(1− μk)α(x(k)

i , Fi(x(k)), μk)− μkx
(0)
i = 0

Since μk, α(x(k)
i , Fi(x(k)), μk) and x

(0)
i are all bounded, so (9) is a contradiction.

Hence, this case can not occur.

(2) x(k)
i → +∞, as k → ∞, there are also two subcases to discuss:
(c)Fi(x(k)) → +∞, as k → ∞. The proof is similar to case (a). It is impossible
to occur.
(d)Fi(x(k)) < +∞, as k → ∞. Then equation (8) can be reorganized as:

(1 − μk)Fi(x(k)) − μk(1 − μk)α(x(k)
i , Fi(x(k)), μk) + μk(x(k)

i − x
(0)
i ) = 0,

so we have

(10) Fi(x(k)) = − μk

1 − μk

(
x

(k)
i − (1 − μk)α(x(k)

i , Fi(x(k)), μk)− x
(0)
i

)
.

Since μk ∈ (0, 1), α(x(k)
i , Fi(x(k)), μk) and x

(0)
i are all bounded when k is suffi-

ciently large, so the right side of equation (10) is non-positive, which contradicts
with Assumption 1.

Combing (1) and (2) together, we have that Γx(0) is bounded on Rn × (0, 1].

Lemma 6. For x(0) ∈ Rn, H(x, x(0), 1) = 0 has a unique solution (x(0), 1).

Proof. When μ = 1, by homotopy equation (6), it is easy to obtain the
conclusion.

Theorem 1. (Convergence of the homotopy pathway). Let F be twice continuously
differentiable. Suppose Assumption 1 holds. Then, for almost all x(0) ∈ Rn, homotopy
equation (6) determines a bounded smooth curve Γx(0) ⊂ Rn × (0, 1] which starts
from (x(0), 1) and approaches the hyperplane at μ = 0. When μ → 0, the limit set
T × {0} ⊂ Rn × {0} of Γx(0) is nonempty, and the x-component x∗ of every point
(x∗, 0) in T × {0} solves (1).
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Proof. By Lemma 4, for almost all x(0) ∈ Rn, 0 is a regular value of H and
H−1

x(0)(0) contains a smooth curve Γx(0) ⊂ Rn × (0, 1] starting from (x(0), 1). By
Lemma 3, Γx(0) ⊂ Rn × (0, 1] must be homeomorphic to a unit circle or the unit
interval (0, 1] or [0,1], where 1 is regarded as the image of the starting point. In
other words, the curve Γx(0) will return to (x(0), 1), terminates in or approaches to the
boundary of Rn × [0, 1] or goes to infinity.
Notice that∂H(x,x(0),μ)

∂x |x=x(0),μ=1= I is nonsingular, as a result, (x(0), 1) is not a
multiple solution of H(x, x(0), μ) = 0. Hence, Γx(0) is not homeomorphic to a unit
circle and it is homeomorphic to the unit interval. The limit points of Γx(0) must lie in
Rn × [0, 1]. Let (x∗, μ∗) be a limit point of Γx(0) . Only the following two cases are
possible:

(i) (x∗, μ∗) ∈ Rn × {1};
(ii) (x∗, μ∗) ∈ Rn × {0}.
Because equation H(x, x(0), 1) = 0 has only one solution (x(0), 1) in Rn × {1},

Case (i) is impossible. Therefore, Case (ii) is the only possible case. If (x∗, 0) is the
limit point of Γx(0) , by Lemma 5, we have (x∗, 0) is a solution of (6) and x∗ is the
solution of the NCP. The proof is completed.

By Theorem 1, for almost all x(0) ∈ Rn, if Assumption 1 holds, then the homotopy
equation (6) generates a smooth curve Γx(0) , which is called as the homotopy pathway.
Tracing numerically Γx(0) from (x(0), 1) until μ → 0, one can find a solution of (1).
Letting s be the arc-length of Γx(0) , we can parameterize Γx(0) with respect to s. That
is, there exist continuously differentiable functions x(s), μ(s) such that

(11)
H(x(s), μ(s)) = 0,
‖ẋ(s), μ̇(s)‖ = 1,

x(0) = x(0), μ(0) = 1.

Differentiating the first equality of (11), we obtain the following result.

Theorem 2. The homotopy path Γx(0) is determined by the following initial value
problem to the system of ordinary differential equations

DHx(0)(x(s), μ(s))
(
ẋ

μ̇

)
= 0,

‖ẋ(s), μ̇(s)‖ = 1,

x(0) = x(0), μ(0) = 1.

And the x−component of the solution point (x(s∗), μ(s∗)) of (11), for μ(s∗) = 0, is
the solution of NCP(1).
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Proof. Differentiating the first equality of (11) on s, we have

H ′
x(x, μ)

dx

ds
+H ′

μ(x, μ)
dμ

ds
= 0.

If s is the arc-length of Γx(0) , then there holds

‖y′‖ ≡

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

dx

ds

dμ

ds

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

= 1,

where y = (x, μ)T ∈ Rn+1, ‖y‖ = ‖y‖2. Therefore, we obtain the following system
of ordinary differential equations

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(H ′
x(x, μ), H ′

μ(x, μ))u = 0

(u, u) = 1

dy

ds
= u

y(0) =

(
x(0)
μ(0)

)
=

(
x(0)

1

)

Note that

DH(x, x(0), μ) = (H ′
x(x, x(0), μ), H ′

x(0)(x, x(0), μ), H ′
μ(x, x(0), μ))

and rank(H ′
x(0)(x, x(0), μ)) = n, by parameterized sard theorem, we have for almost

all x(0) ∈ Rn, rank(DH(x, x(0), μ)) = n. It is easy to prove the matrix(
H ′

x(x, μ), H ′
μ(x, μ)

uT

)

is nonsingular. Hence, the system consisting of the first and the second equations in
(12) is solvable on u. Solving the following Cauchy problem, we can derive the curve
Γx(0) . ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dy

ds
= u

y(0) =

(
x(0)

μ(0)

)
=

(
x(0)

1

)

The proof is completed.
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3. NUMERICAL EXPERIMENTS

In this section, we formulate a predictor-corrector procedure (c.f., e.g., [1, 17])
to numerically trace the homotopy path which is generated by the homotopy equation
H(w, μ) = 0 in the subset Ω = {(w, μ) : G(w) ≤ 0, μ ∈ (0, 1]}, where G : Rp → Rq

and H : Rp × [0, 1] → Rp, starting from (w(0), 1) with w(0) ∈ Ω0 = {w : G(w) < 0}.
Algorithm 3.1. (Euler-Newton method).

Step 0. Input w(0), choose an initial step length h0 > 0 and three small positive
numbers ε1, ε2, ε3 with ε1 < ε2 and set μ0 = 1, k := 0.

Step 1. Determine the predictor direction η(k):

(a) Compute a unit tangent vector ξ(k) such that DH(w(k), μk)ξ(k) = 0;
(b) Determine the predictor direction η(k):

When k = 0, if the last element of ξ(0) is negative, then η(0) = ξ(0), else

η(0) = −ξ(0). Computing σ = signdet

(
DH(w(0), 1)

η(0)T

)
;

When k ≥ 1, if signdet

(
DH(w(k), μk)

ξ(k)T

)
= σ, then η(k) = ξ(k), else η(k) =

−ξ(k);

Step 2. Compute the predictor point (w(k), μk) = (w(k), μk) + αlhkη
(k), where l

is the least positive integer such that (w(k), μk) ∈ Ω0 × (0, 1].

Step 3. Compute a corrector point (w(k+1), μk+1):

(w(k+1), μk+1) = (w(k), μk) − (DH(w(k), μk))
†H(w(k), μk).

If (w(k+1), μk+1) /∈ Ω0 × (0, 1], then hk = 0.75hk, go to Step 2, else continue.
If ‖H(w(k+1), μk+1)‖ ≤ ε1, hk+1 = min{h0, 2hk}, go to Step 3;
If ‖H(w(k+1), μk+1)‖ ∈ (ε1, ε2), hk+1 = hk , go to Step 3;
If ‖H(w(k+1), μk+1)‖ ≥ ε2, hk+1 = hk/2, k := k + 1, go to Step 2.

Step 4. If μk+1 ≤ ε3, then stop, else k := k + 1, and go to Step 1. In the Step 3
of Algorithm,

(DH(w, μ))† = DH(w, μ)T(DH(w, μ)DH(w,μ)T)−1

is the Moore-Penrose inverse of DH(w, μ).
We use the above path following algorithm to implement the smoothing homotopy

method with the homotopy equation (6) and the homotopy method in [16] for solving
the NCP in MATLAB. For the former, let w = x and take an interior starting point
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and an exterior starting point to test, respectively. For the latter, the homotopy equation
refers to (3) and G(w) = −w and we take the same interior point to compare the
two methods in iteration time and iteration steps. For all test problems, we take the
accuracy parameters ε1 = 10−4, ε2 = 10−3, ε3 = 10−6, μ0 = 1.0. And the numerical
results are listed in the tables, where two initial points x(0) are an interior point and
an exterior point, respectively, A1 denotes our smoothing homotopy method and A2
denotes homotopymethod in [16], IT denotes the number of iterations,ACPU denotes
the average total cost time in second for solving the problem among the ten runs, x∗
denotes the approximate solution of the considered problem, F (x∗) denotes the value
of the function F at x∗, and μ∗ denotes the value when the algorithm terminates.
Numerical tests indicate that our smoothing homotopy method for solving the NCP is
more effective.

Example 3.1. ([8], Example 3).

F (x1, x2, x3, x4) =

⎛
⎜⎜⎜⎜⎝

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6
2x2

1 + x1 + x2
2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9
x2

1 + 3x2
2 + 2x3 + 3x4 − 3

⎞
⎟⎟⎟⎟⎠ .

In this example, we take two different initial points to test. The experiment results see
Table 1.

Table 1: The numerical results of Example 3.1
x0 method ACPU IT x∗ F (x∗) µ∗

(1, 1, 1, 1)T A1 0.0109 18 (1, 0, 3, 0)T (0, 31, 0, 4)T 2.9401 × 10−7

A2 0.2298 348 (1, 0, 3, 0)T (0, 31, 0, 4)T 4.5323 × 10−7

(−1, 0, 0,−0.5)T A1 0.0126 19 (1, 0, 3, 0)T (0, 31, 0, 4)T 3.3511 × 10−7

Example 3.2. ([10]).

F (x) =

⎛
⎜⎜⎝

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 3x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1
x2

1 + 3x2
2 + 2x3 + 3x4 − 3

⎞
⎟⎟⎠ ,

In this example,we take two different initial points and the experiment results see Table
2.

Table 2: The numerical results of Example 3.2
x0 method ACPU IT x∗ µ∗

(1, 1, 1, 1)T A1 0.0110 17 (1.2247, 0.0000, 0.0000, 0.5000)T 1.2920 × 10−7

A2 0.0701 104 (1.2247, 0.0000, 0.0000, 0.5000)T 4.4071 × 10−7

(−1,−1, 1, 1)T A1 0.0157 24 (1.2247, 0.0000, 0.0000, 0.5000)T 6.9288 × 10−7
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Example 3.3. ([15], Example 4). Consider the convex prgramming problem

min θ(x) = exp
(
Σ5

i=1(xi − i+ 2)2
)

subject to x ≥ 0.

The Kuhn-Tucker optimality conditions are applied to this problem, which results in a
complementarity problem with

(13) F (x) = ∇θ(x) = 2exp
(
Σ5

i=1(xi − i+ 2)2
)
⎛
⎜⎜⎜⎜⎝

x1 + 1
x2

x3 − 1
x4 − 2
x5 − 3

⎞
⎟⎟⎟⎟⎠ .

In this example, we take two different initial points and the experiment results see Table
3.

Table 3: The numerical results of Example 3.3

x0 method ACPU IT x∗ F (x∗) µ∗

(1, 1, 2, 3, 4)T A1 0.0127 28 (0, 0, 1, 2, 3)T (5.4366, 0, 0, 0, 0)T 7.2493 × 10−7

A2 fails - - - -
(−1, 2, 2, 3, 4)T A1 0.0110 22 (0, 0, 1, 2, 3)T (5.4366, 0, 0, 0, 0)T 3.8575 × 10−7

Example 3.4. ([9]). This example is a modification of Mathiesen [12]

F1(x) = −x2 + x3 + x4,

F2(x) = x1 − (4.5x3 + 2.7x4)/(x2 + 1),

F3(x) = 5 − x1 − (0.5x3 + 0.3x4)/(x3 + 1),

F4(x) = 3 − x1.

This example has infinitely many solutions (λ, 0, 0, 0), where λ ∈ [0, 3]. The test
results for Example 3.4 are listed in Table 4 for different starting points.

Table 4: The numerical results of Example 3.4
x0 method ACPU IT x∗ F (x∗ ) µ∗

(2, 2, 2, 2)T A1 0.0205 39 (0.0013, 0.0000, 0.0000, 0.0000)T (0.0000, 0.0012, 4.9987, 2.9987)T 8.5437 × 10−7

A2 0.1719 154 (1.4174, 0.0000, 0.0000, 0.0000)T (0.0000, 1.4174, 3.5826, 1.5826)T 6.9454 × 10−7

(−1, 1, 1, −1)T A1 0.0172 29 (0.0010, 0.0000, 0.0000, 0.0000)T (0.0000, 0.0010, 4.9990, 2.9990)T 5.1620 × 10−7
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