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MULTI PURSUER DIFFERENTIAL GAME OF OPTIMAL APPROACH
WITH INTEGRAL CONSTRAINTS ON CONTROLS OF PLAYERS

Gafurjan Ibragimov, Norshakila Abd Rasid,
Atamurat Kuchkarov and Fudziah Ismail

Abstract. We study a differential game of optimal approach of finite or countable
number of pursuers with one evader in the Hilbert space l2. On control functions of
the players integral constraints are imposed. Such constraints arise in modeling the
constraint on energy. The duration of the game θ is fixed. The payoff functional
is the greatest lower bound of distances between the pursuers and evader when
the game is terminated. The pursuers try to minimize the payoff functional, and
the evader tries to maximize it. In this paper, we find formula for the value of the
game and construct explicitly optimal strategies of the players. Important point to
note is that the energy resource of any pursuer needs not be greater than that of
the evader.

1. INTRODUCTION AND PRELIMINARIES

Theory of Differential Games was initiated by the book of Rufus Isaacs [9]. Since
then many works have been devoted to differential games (see, for example, [1-18]).

Constructing the player’s optimal strategies and finding the value of the game are of
specific interest in studying of differential games. Isaacs [9] obtained an equation, the
main equation of differential games, to find the value of a differential game and based
on his method solved a number of interesting examples. However, the main equation
may have no differentiable solution or may have infinite number of generalized so-
lutions [18]. Subbotin [18] obtained necessary and sufficient conditions in terms of
partial differential inequalities which a function must satisfy to be the value function.
In its turn, these inequalities are very complicated to solve even for simple motion
differential games, not to mention the general linear differential games. Therefore dif-
ferent approaches were chosen by different authors to solve pursuit-evasion differential
games with one or several pursuers.
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There are a few works on differential games of optimal approach of many pursuers
with one evader. Ivanov and Ledyaev [10] studied simple motion pursuit-evasion
differential game of several players with geometric constraints. They obtained sufficient
conditions to find optimal pursuit time in R

n. Their approach is based on auxiliary
differential game with one pursuer and one evader under state constraints.

Levchenkov and Pashkov [12] investigated differential game of optimal approach of
two identical inertial pursuers to a noninertial evader on fixed time interval, with control
parameters subjected to geometric constraints. They constructed the value function of
the game and used necessary and sufficient conditions [18] which a function must
satisfy to be the value function.

Rikhsiev [16] studied simple motion differential game of optimal pursuit with many
pursuers and one evader. He first obtained a sufficient condition for optimality of pursuit
time when initial position of the evader belongs to the interior of the convex hull of
initial positions of the pursuers.

Ibragimov [7] considered a simple motion differential game of many pursuers and
one evader with geometric constraints on control parameters in the Hilbert space l2.
Half-space and fictitious players methods are used to prove the main theorem.

Ibragimov and Salimi [8] studied a pursuit-evasion differential game of infinitely
many inertial players with integral constraints on control functions. The duration of the
game θ is fixed. The payoff functional of the game is the greatest lower bound of the
distances between the evader and the pursuer at θ. The pursuer’s goal is to minimize
the payoff, and the evader’s goal is to maximize it. The problem was solved under
assumption that energy of each pursuer is greater than that of the evader.

The present paper is close in spirit to [8]. Different from [8] here, we assume that
the energy of any pursuer is not necessarily greater than that of the evader. We give a
sufficient condition to find the value of the game and construct the optimal strategies
of players. It should be noted that there are no conditions between energies of the
pursuers and the evader in the theorem, for example, energy of a pursuer can be less
than energy of the evader.

2. FORMULATION OF THE PROBLEM

In the space l2 consisting of elements α = (α1, α2, ..., αk, ...), with
∑∞

k=1 α2
k <

∞, and inner product (α, β) =
∑∞

k=1 αkβk, the motions of the countably many pur-
suers Pi and the evader E are described by the equations

(2.1)
Pi : ẍi = ui, xi(0) = x0

i , ẋi(0) = x1
i ,

E : ÿ = v, y(0) = y0, ẏ(0) = y1,

where xi, x0
i , x1

i , u, y, y0, y1, v ∈ l2, ui = (ui1, ui2, ..., uik, ...) is the control pa-
rameter of the pursuer Pi, i ∈ I , I stands for either finite set I = {1, 2, ..., m} or
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the set of positive integers I = {1, 2, ..., m, ...}, and v = (v1, v2, ..., vk, ...) is the
control parameter of the evader E . Let θ, the duration of the game, be a given positive
number.

A ball (respectively, sphere) of radius r and center at the point x0 is denoted by
H(x0, r) = {x ∈ l2 | ||x−x0|| ≤ r} (respectively, by S(x0, r) = {x ∈ l2 | ||x−x0|| =
r}).

Denote by B(ρ) the set of all functions u(·) = (u1(·), u2(·), ...), u : [0, θ] → l2
such that uk : [0, θ] → R1, k = 1, 2, ...., are Borel measurable functions and

(∫ θ

0
‖u(s)‖2 ds

)1/2

≤ ρ, ‖u‖ =

( ∞∑
k=1

u2
k

)1/2

,

where ρ is given positive number. Functions ui(·) ∈ B(ρi) and v(·) ∈ B(σ) are called
admissible controls of the ith pursuer and the evader, respectively.

Once the players admissible controls ui(·) and v(·) are chosen, the corresponding
motions xi(·) and y(·) of the players are defined as

xi(t) = (xi1(t), xi2(t), ..., xik(t), ...), y(t) = (y1(t), y2(t), ..., yk(t), ...),

xik(t) = x0
ik + tx1

ik +
∫ t

0

∫ s

0
uik(r)drds, yk(t) = y0

k + ty1
k +

∫ t

0

∫ s

0
vk(r)drds,

i ∈ I, k = 1, 2, ....

One can readily see that xi(·), y(·) ∈ C(0, θ; l2), where C(0, θ; l2)is the space of
functions

f(t) = (f1(t), f2(t), ..., fk(t), ...) ∈ l2, t ≥ 0,

such that (i) fk(t), 0 ≤ t ≤ θ, k = 1, 2, ..., are absolutely continuous functions; (ii)
f(t), 0 ≤ t ≤ θ, is a continuous function in the norm of l2.

Definition 1. A function Ui(t, v), Ui : [0, ∞) × l2 → l2, of the form Ui(t, v) =
at + b + v, where a, b, v ∈ l2 and t is time variable, is called a strategy of the pursuer
Pi.

Note that for any v(·) ∈ B(σ) solution xi(t), 0 ≤ t ≤ θ, of the initial value problem

ẍi = at + b + v, xi(0) = x0
i , ẋi(0) = x1

i ,

belongs to C(0, θ; l2).

Definition 2. Strategies Ui0, i ∈ I, of the pursuers Pi, i ∈ I, are said to be optimal
if

inf
U1 ,..., Um, ..

Γ1(U1, ..., Um, ...) = Γ1(U10, ..., Um0, ...),

where Γ1(U1, ..., Um, ...) = supv(·) infi∈I ‖xi(θ) − y(θ)‖ , Ui are admissible strate-
gies of the pursuer Pi, and v(·) is an admissible control of the evader E .
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Definition 3. A function V (t, x1, ..., xm, ..., y), V : [0,∞)×l2×···×l2×···×l2 →
l2, is called a strategy of the evader E if the system of equations

ẍi = ui, xi(0) = x0
i , ẋi(0) = x1

i , i = 1, 2, ...,m, ...,

ÿ = V (t, x1, ..., xm, ..., y), y(0) = y0, ẏ(0) = y1,

has a unique solution (x1(·), ..., xm(·), ..., y(·)), with xi(·), y(·) ∈ C(0, θ; l2), for
arbitrary admissible controls ui = ui(t), 0 ≤ t ≤ θ, of the pursuers Pi, i ∈ I . If
each control formed by the strategy V is admissible, then the strategy V is said to be
admissible.

Definition 4. A strategy V0 of the evader E is said to be optimal if supv Γ2(V ) =
Γ2(V0), where Γ2(V ) = infu1(·), ... um(·), ... inf i∈I ‖xi(θ) − y(θ)‖ , where ui(·) are ad-
missible controls of the pursuers Pi, i ∈ I , and V is an admissible strategy of the
evaderE .

If Γ1(U10, ..., Um0, ...) = Γ2(V0) = γ, then we say that the game has the value γ
[17].

Problem 5. Find the optimal strategies Ui0 and V0 of the players Pi, i ∈ I , and
E , respectively, and the value of the game.

Instead of differential game described by (2.1) we can consider an equivalent dif-
ferential game with the same payoff function and described by the following system
(see, for example, [8]):

Pi : ẋi(t) = (θ − t)ui(t), xi(0) = xi0
.= x1

i θ + x0
i , i ∈ I,

E : ẏ(t) = (θ − t)v(t), y(0) = y0
.= y1θ + y0.

and the attainability sets of the pursuer Pi and the evader E at the time θ are the closed
balls H

(
xi0, ρi

(
θ3/3

)1/2
)

and H
(
y0, σ

(
θ3/3

)1/2
)

respectively.

3. MAIN RESULT

We study the stated problem under the following assumption.

Assumption 6. There exists a nonzero vector p0such that (y0 − xi0, p0) ≥ 0 for
all i ∈ I.

Note that in the case of finite set I = {1, ..., m} Assumption 6 is true since all
vectors y0 − xi0, i ∈ I, lie on one plane in l2 and the normal vector of this plane can
be taken as the vector p0. Let

(3.1) γ = inf

{
l ≥ 0 | H

(
y0, σ(θ3/3)1/2

)
⊂
⋃
i∈I

H
(
xi0, ρi(θ3/3)1/2 + l

)}
.

Clearly, such number γ exists. We’ll prove the following statement.
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Theorem 7. If Assumption 6 is true, then the number γ given by (3.1) is the value
of the game.

Proof of the theorem relies on Lemmas 8, 9, and 10 in the following subsections.

3.1. Auxiliary differential game

Here we study a differential game of two players, the Pursuer P and the Evader E,
described by equations:

P : ẋ = (θ − t)u, x(0) = x0,

E : ẏ = (θ − t)v, y(0) = y0,

where x, y, u, v, x0, y0 ∈ R
n, x0 	= y0, u and v are control parameters of the pursuer

and the evader, respectively, θ is a given positive number. Admissible control of the
pursuer and the evader are defined as the functions u(·) ∈ B(ρ) and v(·) ∈ B(σ),
respectively. We require that the state of the evader at the time θ must belong to the
half-space X defined by

(3.2) X =
{

z ∈ l2 | 2(z, y0 − x0) ≤ 1
3
θ3
(
ρ2 − σ2

)
+ ‖y0‖2 − ‖x0‖2

}
.

We assume that x0 ∈ X , i.e., initial position of the pursuer belongs to the half-space
X .

The Pursuer tries to realize the equality x(θ) = y(θ) and the evader tries to avoid
this. It should be noted that the number σ need not to be less than ρ. The problem
is to construct a strategy for the pursuer such that x(θ) = y(θ) for any control of the
evader. We prove the following statement.

Lemma 8. There exists a strategy of the pursuer such that if y(θ) ∈ X , then
x(θ) = y(θ).

Proof. 1◦. Construction of the strategy of the pursuer. We define the strategy of
the pursuer by formula

(3.3) u(t, v) = 3θ−3(θ − t)(y0 − x0) + v(t).

2◦. Admissibility of the constructed strategy. Since y(θ) ∈ X , then from (3.2) we
obtain,

2(y0 − x0, y(θ)) ≤ 1
3
θ3(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2 ,

hence

2
(

y0 − x0, y0 +
∫ θ

0
(θ − t)v(t)dt

)
≤ 1

3
θ3(ρ2 − σ2) + ‖y0‖2 − ‖x0‖2 .
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It can be rewritten as follows

(3.4) 2
(

y0−x0,

∫ θ

0
(θ−t)v(t)dt

)
≤ 1

3
θ3(ρ2−σ2)−

(
‖y0‖2−2(x0, y0)+‖x0‖2

)
.

According to (3.3) we have∫ θ

0
||u(t)||2dt =

3
θ3

||y0−x0||2+
3
θ3

·2
(

y0 − x0,

∫ θ

0
(θ − t)v(t)dt

)
+
∫ θ

0
||v(t)||2dt.

Combining this with (3.4) we obtain the following one∫ θ

0
||u(t)||2dt ≤ 3

θ3
||y0 − x0||2 +

3
θ3

·
(

θ3

3
(ρ2 − σ2) − ||y0 − x0||2

)
+ σ2

= ρ2 − σ2 + σ2 = ρ2.

Thus, strategy of the pursuer is admissible.

3◦ Proof that x(θ) = y(θ). Indeed, by (3.3)

x(θ) = x0 +
∫ θ

0

(θ − t)u(t)dt

= x0 +
∫ θ

0

(θ − t) ·
(

3
θ3

(θ − t)(y0 − x0) + v(t)
)

dt

= y0 +
∫ θ

0

(θ − t)v(t)dt = y(θ).

Hence x(θ) = y(θ). This completes the proof of Lemma 8.
It should be noted that in construction of the pursuer’s strategy we have not required

the inequality ρ ≥ σ.

3.2. Some properties of balls and half-spaces in Hilbert space

Suppose that we have finitely or countably many closed balls H(y0, r) and
H(xi0, Ri), i ∈ I. Let

I0 = {i ∈ I | S(y0, r) ∩ H(xi0, Ri) 	= ∅} ,

Xi =
{
z ∈ l2

∣∣∣ 2(y0 − xi0, z) ≤ R2
i − r2 + ‖y0‖2 − ‖xi0‖2

}
if xi0 	= y0, i ∈ I0,

and

(3.5) Xi = {z ∈ l2 | (z − y0, p0) ≤ Ri} if xi0 = y0, i ∈ I0.

Note that the half-space (3.5) contains the ball H(xi0, Ri) = H(y0, Ri).
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Lemma 9. If Assumption 6 is valid and

(3.6) H(y0, r) ⊂
⋃
i∈I

H(xi0, Ri),

then

(3.7) H(y0, r) ⊂
⋃
i∈I0

Xi.

Proof. Indeed, if xi0 	= y0, i ∈ I0, then by the Corollary to Assertion 2 [7, p. 634]
the inclusion

(3.8) S(y0, r) ∩ H(xi0, Ri) ⊂ Xi, i ∈ I0,

is valid. We show that the inclusion (3.8) is also true for the case xi0 = y0, i ∈ I0.
If this is the case, then either r > Ri or r ≤ Ri. For r > Ri, the intersection
S(y0, r) ∩ H(y0, Ri) = ∅, and therefore by definition of I0 we get i /∈ I0. We drop
this case since we deal only with i ∈ I0. In the latter case, i.e. if r ≤ Ri, we have

S(y0, r) ∩ H(xi0, Ri) = S(xi0, r) ∩ H(xi0, Ri) = H(xi0, Ri) ⊂ Xi, i ∈ I0.

Thus, for all i ∈ I0 the inclusion (3.8) is true and therefore from it we get⋃
i∈I0

(S(y0, r) ∩ H(xi0, Ri)) ⊂
⋃
i∈I0

Xi.

Hence,

(3.9) S(y0, r) ∩
⎛
⎝⋃

i∈I0

H(xi0, Ri)

⎞
⎠ ⊂

⋃
i∈I0

Xi.

On the other hand, from (3.6) we obtain

H(y0, r) ∩ S(y0, r) ⊂
(⋃

i∈I

H(xi0, Ri)

)
∩ S(y0, r).

Consequently,

(3.10)

S(y0, r) ⊂
⋃
i∈I

(H(xi0, Ri) ∩ S(y0, r))

=
⋃
i∈I0

(H(xi0, Ri) ∩ S(y0, r)) ⊂
⋃
i∈I0

H(xi0, Ri),
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since H(xi0, Ri) ∩ S(y0, r) = ∅, i ∈ I\I0. Then combining (3.9) and (3.10) yields

(3.11) S(y0, r) ⊂
⋃
i∈I0

Xi.

We proceed to show the inclusion (3.7). Assume the contrary. Then there exists a
point ȳ ∈ H(y0, r) such that ȳ /∈ ⋃i∈I0

Xi. This implies that ȳ /∈ Xi for all i ∈ I0.
Then it follows from the definition of Xi that

(3.12) 2(y0 − xi0, ȳ) > R2
i − r2 + ‖y0‖2 − ‖xi0‖2 , if xi0 	= y0,

(ȳ − y0, p0) > Ri, if xi0 = y0.

Since by Assumption 6 (y0 − xi0, p0) ≥ 0, i ∈ I0, then by (3.12) for all points of the
ray ξ(t) = ȳ + p0t, t ≥ 0, we have

2(y0 − xi0, ξ(t)) = 2(y0 − xi0, ȳ) + 2(y0 − xi0, p0)t

≥ 2(y0 − xi0, ȳ)

> R2
i − r2 + ‖y0‖2 − ‖xi0‖2 , i ∈ I0,

for xi0 	= y0, and

(ξ(t) − y0, p0) = (ȳ − y0, p0) + t ≥ (ȳ − y0, p0) > Ri, i ∈ I0,

for xi0 = y0. Thus, ξ(t) /∈ Xi for all i ∈ I0 and t ≥ 0, and hence ξ(t) /∈ ⋃i∈I0
Xi,

for all t ≥ 0.
On the other hand, the ray ξ(t), t ≥ 0, intersect the sphere S(y0, r) at some point

ξ0 ∈ S(y0, r), which according to (3.11) must be in
⋃

i∈I0
Xi. Contradiction. The

proof of Lemma 9 is complete.

Lemma 10. (see Assertion 5 [7, p. 635]). Let inf i∈I Ri = R0 > 0. If Assumption
6 is true and for any 0 < ε < R0 the set

⋃
i∈I H(xi0, Ri − ε) does not contain the

ball H(y0, r), then there exists a point ȳ ∈ S(y0, r) such that ‖ȳ − xi0‖ ≥ Ri for all
i ∈ I .

3.3. Proof of the theorem

1. Construction of the Pursuer’s strategies. We introduce counterfeit pursuers (CP)
zi, i ∈ I whose motions are described by the equations

żi = (θ − t)wi, zi(0) = xi0,(∫ ∞

0
‖wi(s)‖2 ds

)1/2

≤ ρ̄i = ρi + γ

(
3
θ3

)1/2

.
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Clearly, the attainability set of the CP zi from the initial state xi0 at t = 0 to the time
θ is the ball H

(
xi0, ρ̄i(θ3/3)1/2

)
= H

(
xi0, ρi(θ3/3)1/2 + γ

)
. Define the strategies

of CPs zi, i ∈ I , on 0 ≤ t ≤ θ as follows

(3.13) wi(t, v) = 3θ−3(θ − t)(y0 − xi0) + v(t).

This strategy needs to some comments. The maximum energy of the CP zi, i ∈ I ,
is ρ̄2

i . CP zi might not be able to move according to (3.13). If for the strategy (3.13)∫ τ

0
||3θ−3(θ − t)(y0 − xi0) + v(t)||2dt = ρ̄2

i

at the first time t = τ ∈ [0, θ], then the energy of the CP zi is exhausted at this time
and the CP zi cannot move any more. Then, automatically w(t, v) = 0, τ < t ≤ θ,
and therefore zi(τ) = zi(t) = zi(θ), τ ≤ t ≤ θ. The strategies of the real pursuers xi

are defined as follows

(3.14) ui(t, v) =
ρi

ρ̄i
wi(t, v), i ∈ I, 0 ≤ t ≤ θ.

2. Proof that the value γ is guaranteed for the pursuers. Let us show that the
strategies of the pursuers (3.14) ensure the inequality

sup
v(·)

inf
i∈I

‖y(θ) − xi(θ)‖ ≤ γ.

Indeed, by definition of γ , we have

(3.15) H
(
y0, σ(θ3/3)1/2

)
⊂
⋃
i∈I

H
(
xi0, ρi(θ3/3)1/2 + γ

)
.

Then it follows from Lemma 9 where Ri = ρi(θ3/3)1/2 + γ , r = σ(θ3/3)1/2 that

H
(
y0, σ(θ3/3)1/2

)
⊂
⋃
i∈I0

Xi,

where

(3.16)
I0 =

{
i∈I

∣∣∣S (y0, σ(θ3/3)1/2
)
∩H

(
xi0, ρi(θ3/3)1/2+γ

)
	=∅
}

,

Xi =
{

z

∣∣∣∣2(y0−xi0, z)≤
(
ρi(θ3/3)1/2+γ

)2−σ2(θ3/3)+‖y0‖2−‖xi0‖2

}

if xi0 	= y0, and

(3.17) Xi =
{

z
∣∣∣ (z − y0, p0) ≤ ρi(θ3/3)1/2 + γ

}
,
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if xi0 = y0 and ρi(θ3/3)1/2 + γ ≥ σ(θ3/3)1/2. Consequently, the point y(θ) ∈
H
(
y0, σ(θ3/3)1/2

)
belongs to a half-space Xs, s ∈ I0. The half-space Xs can be

of the either form (3.16) or (3.17). In the former case xs0 	= y0, and so according to
Lemma 8 for the strategy (3.13) of the CP zs we obtain∫ θ

0
||3θ−3(θ − t)(y0 − xs0) + v(t)||2dt ≤ ρ̄2

s

and zs(θ) = y(θ).
In the latter case, xs0 = y0, ρ̄i = ρi + (3/θ3)1/2γ ≥ σ, and the strategy (3.13)

takes the form ws(t, v) = v.
Then

zs(θ) = xs0 +
∫ θ

0

(θ − t)w(t)dt

= y0 +
∫ θ

0
(θ − t)v(t)dt = y(θ).

What CP zs can use strategy ws(t, v ) = v(t) on the time interval 0 ≤ t ≤ θ
follows from ∫ θ

0
‖v(s)‖2 ds ≤ σ2 ≤ ρ̄2.

Thus, zs(θ) = y(θ) in both cases. We’ll now show that ‖xs(θ) − y(θ)‖ ≤ γ . Indeed,
by (3.14)

(3.18)

‖xs(θ) − y(θ)‖ = ‖xs(θ) − z(θ)‖

=
∥∥∥∥
∫ θ

0
(θ − t)us(t)dt −

∫ θ

0
(θ − t)ws(t)dt

∥∥∥∥
=
∥∥∥∥
∫ θ

0
(θ − t)

(
ρs

ρ̄s
− 1
)

ws(t)dt

∥∥∥∥
≤
(

3
θ3

)1/2

γ · 1
ρ̄s

∫ θ

0
(θ − t) ‖ws(t)‖ dt.

Using the Cauchy-Schwartz inequality, yields
∫ θ

0
(θ − t) ‖ws(t)‖ dt ≤

(∫ θ

0
(θ − t)2dt

)1/2(∫ θ

0
‖ws(t)‖2 dt

)1/2

≤ ρ̄s

(
θ3

3

)1/2

.

Combining this inequality with (3.18) we obtain

‖xs(θ) − y(θ)‖ ≤ γ.

Thus, the value γ is guaranteed by the actual pursuers.
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3. Proof that the value γ is guaranteed for the evader. Let us construct the evader’s
strategy ensuring that

(3.19) inf
u1(·), ..., um(·), ...

inf
i∈I

‖y(θ) − xi(θ)‖ ≥ γ,

where u1(·), ..., um(·), ... are arbitrary admissible controls of the pursuers. If γ = 0,
then the inequality (3.19) is obviously valid for any admissible control of the evader.
Let γ > 0. By definition of γ , for any 0 < ε < γ the set⋃

i∈1

H
(
xi0, ρi

(
θ3/3

)1/2 + γ − ε
)

,

does not contain the ball H
(
y0, σ(θ3/3)1/2

)
. Then, by Lemma 9 there exists a

point ȳ ∈ S
(
y0, σ(θ3/3)1/2

)
, that is, ‖ȳ − y0‖ = σ(θ3/3)1/2 such that ‖ȳ − xi0‖ ≥

ρi(θ3/3)1/2 + γ , i ∈ I . On the other hand,

‖xi(θ) − xi0‖ ≤
(

θ3

3

)1/2(∫ θ

0

‖ui(t)‖2 dt

)1/2

≤ ρi

(
θ3

3

)1/2

, i ∈ I.

Consequently,

‖ȳ − xi(θ)‖ ≥ ‖ȳ − xi0‖−‖xi(θ) − xi0‖ ≥ ρi(θ3/3)1/2+γ−ρi(θ3/3)1/2 = γ, i ∈ I.

therefore, if the evader comes to the point ȳ at the time θ, then the value γ will be
guaranteed him. The control of the evader

v(t) = σ(θ3/3)1/2(θ − t)e, 0 ≤ t ≤ θ, e =
ȳ − y0

‖ȳ − y0‖ ,

brings him to the point ȳ at the time θ. Indeed, we have

y(θ) = y0 +
∫ θ

0
(θ − s)v(s)ds

= y0 + e

∫ θ

0
(θ − s)2σ(θ3/3)1/2ds

= y0 + σ(θ3/3)1/2e = ȳ.

Thus, the value of the game is not less than γ , and inequality (3.19) holds. The
proof of the theorem is complete.

4. CONCLUSION

A pursuit-evasion differential game of fixed duration with countably many pursuers
has been studied. Control functions satisfy integral constraints. The value of the game
has been found, and the optimal strategies of players have been constructed. The proof
of the main result relies on the solution of an auxiliary differential game problem in
half-space and on some properties of spheres.
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It should be noted that the strategy (3.3) guarantees the equality x(θ) = y(θ)
whenever y(θ) ∈ X (see Lemma 8), even though σ > ρ, that is, the pursuer whose
energy less than that of the evader, can “capture” the evader.

Note that Lemma 9 is a modification of Assertion 4 ([6, p.634]. We recall that the
conclusion of the Assertion 4 was the inclusion H(y0, r) ⊂ ⋃i∈I Xi. The important
point to note for conclusion of Lemma 9 of present paper is that if we restrict the
set I to I0 by excluding all numbers i ∈ I for which S(y0, r) ∩ H(xi0, Ri) = ∅, the
inclusion H(y0, r) ⊂ ⋃i∈I0

Xi still holds. Applying this result to the differential game
we obtained that all pursuers Pi, i ∈ I\I0, can be removed from the differential game
and only the pursuers Pi, i ∈ I0, can guarantee the desired result.

The advantage of using the strategy (3.14) lies in the fact that ρi need not to be
greater than σ. In the work [8], ρi must be ≥ σ since otherwise constructed strategies
of the pursuers in general are not defined. For example, if σ > ρ in the formula (3.5)
of [8, p.5], u(t) is not defined at v(t) = 0.

We discuss now the strategy (3.3), u(t, v) = 3θ−3(θ − t)(y0 − x0) + v(t). In this
formula, the first summand 3θ−3(θ − t)(y0 − x0) is chosen so that if v(t) = 0, the
pursuer reaches the point y0 for the time θ. Therefore, the strategy (3.3) guarantees the
equality x(θ) = y(θ). Then due to the inclusion y(θ) ∈ X this strategy is admissible.
Clearly, the strategy (3.3) is linear with respect to t and v(t), and simpler than the
strategy (3.5) in Ibragimov and Salimi [8], moreover, admits the case σ > ρ.
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