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FROM EQUILIBRIUM PROBLEMS AND FIXED POINTS PROBLEMS TO
MINIMIZATION PROBLEMS

Li-Jun Zhu, Minglun Ren*, Yeong-Cheng Liou and Yonghong Yao

Abstract. Algorithms approach to equilibrium problems and fixed points problems
have been extensively studied in the literature. The purpose of this paper is devoted
to consider the minimization problem of finding a point 2 with the property

2T eQ and |zf||> = min|z|?
€

where €2 is the intersection of the solution set of equilibrium problem and the fixed
points set of nonexpansive mapping. For this purpose, we suggest two algorithms:

F(z,y) + §<y—zt,zt — ((1 —t)]—)\A)Szt> >0, vyeC.

and
F(Z7uy) + <Axn7y - Zn> + ﬁ<y — Zn,Rn — (1 - an)xn> Z 07 VCU € Ca
Tn41 = ﬁnxn + (1 - Bn)Sznv n > 0.
It is shown that under some mild conditions, the net {z;} and the sequences
{zn} and {z,,} converge strongly to & which is the unique solution of the above

minimization problem. It should be point out that our suggested algorithms solve
the above minimization problem without involving projection.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively.
Let C be a nonempty closed convex subset of H. Let S : C' — C be a nonexpansive
mapping. Denote the set of fixed points of S by F(S). For a nonlinear mapping
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A : C — H and a bifunction F' : C x C — R, the equilibrium problem is to find
z € C such that

(1.1) F(z,y)+ (Az,y — 2) > 0,Vy € C.

The solution set of (1.1) is denoted by EP. If A = 0, then (1.1) reduces to the following
equilibrium problem of finding z € C such that

(1.2) F(z,y) >0,Vy € C.

If FF =0, then (1.1) reduces to the variational inequality problem of finding z € C
such that

(1.3) (Az,y —z) > 0,Vy € C.

The equilibrium problem (1.2) and the variational inequality problem (1.3) have been
investigated by many authors. Please see [6-18], [21-29], [40-43] and the references
therein. The problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games and others. See, e.g., [1, 3-5].

For solving equilibrium problem (1.1), Moudafi [5] introduced an iterative algo-
rithm and proved a weak convergence theorem. Further, Takahashi and Takahashi [3]
introduced the following iterative algorithm for finding an element of F'(S) N EP:

(1 4) F(Znu y) + <A5Enu Y- Zn> + ,\%<y — ZnyRn T xn> > Ouvy € C,
' Tnt1 = PnZn + Slanu + (1 = By)zn],n > 0.

and they proved that the sequence {x,} converges strongly to 2 = Pp(s)ngp(u).

Now we concern the following minimization problem of finding a point « with
the property
(1.5) ' e F(SYNEP and |zf|= min |z|.

zeF(S)NEP

This problem is motivated by the least-squares solution to the constrained linear inverse
problem. Some related works, please see [30-34].

We note that the algorithm (1.4) does not find the minimum-norm elementin F'(S)N
E P because S is a self-mapping on C and w is an element in C. In order to solve
(1.5), we may consider the following algorithm by using projection:

(1 6) F(Znu y) + <A5Enu Y- Zn> + ,\%<y — ZnyRn T xn> > Ouvy € C,
' Tnt1 = Pnn + (1 — Bn)SPolanu + (1 — ap)zy], n > 0.

where v € H is a fixed point and P¢ is the metric projection from H onto C. Related
works involved in metric projection, please see [34, 35] and the references therein.
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Remark 1.1. Note that in order to find the minimum norm element, we have
used the projection Pe. It is well-known that projection methods are used extensively
in a variety of methods in optimization theory. Apart from theoretical interest, the
main advantage of projection methods, which makes them successful in real-word
applications, is computational. The field of projection methods is vast, see e.g., [36-
39]. However, it is clear that if the set C' is simple enough, so that the projection onto
it is easily executed, then this method is particularly useful; but, if C is a general closed
and convex set, then a minimal distance problem has to be solved in order to obtain
the next iterative. This might seriously affect the efficiency of the method. Hence, it
is an very interesting work of solving (1.5) without involving projection

Motivated and inspired by the results in the literature, in this paper we suggest two
algorithms:
1
—_ — — — — > .
F(z,y) + /\<y 2ty 2t ((1 t)I /\A>Szt> >0, VyeC

and

F<Znu y) + <A5Enu Yy — Zn> + ,\%<y — Zny An — (1 - an>xn> Z 07 Vy € Ca
Tnt+1 = 6nxn + (1 - 6n>SZnu n > 0.

It is shown that under some mild conditions, the net {z;} and the sequences {z,} and
{z,,} converge strongly to Z which is the unique solution of the above minimization
problem (1.5). It should be point out that our suggested algorithms solve the above
minimization problem (1.5) without involving projection.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that
a mapping A : C — H is called a-inverse-strongly monotone if there exists a positive
real number o > 0 such that

<A$ - Ay,.’l? - y> > CEHA.’B - Ay|’2,V$, ye C.

It is clear that any a-inverse-strongly monotone mapping is monotone and é-Lipschitz
continuous. A mapping S : C — C is said to be nonexpansive if ||Sz — Sy| <
H.’B - yH,Va:, Yy e C.

Throughout this paper, we assume that a bifunction F' : C' x C' — R satisfies the
following conditions:
(H1) F(z,z) =0 forall z € C;
(H2) F is monotone, i.e., F(z,y) + F(y,xz) <0 for all z,y € C,
(H3) for each z,y,z € C, limy|o F(tz + (1 — t)z,y) < F(z,y);
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(H4) for each z € C, y — F(x,y) is convex and lower semicontinuous.

We need the following lemmas for proving our main results.

Lemma 2.1. ([2]). Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let F': C' x C' — R be a bifunction which satisfies conditions (H1)-(H4).
Let » > 0 and x € H. Then, there exists z € C such that

1
F(Z,y)+;<y—Z,Z—IE> Zouvyec

Further, if T,.(z) = {z € C : F(z,y) + Xy — z,2 — z) > 0,Vy € C}, then the
following hold:
(i) T, is single-valued and T;. is firmly nonexpansive, i.e., forany z,y € H, ||T,x —
TryH2 < <T7“$ - Tryu T — y>;
(if) EP is closed and convex and EP = Fix(T)).

Lemma 2.2. Let C, H, F and T,z be as in Lemma 2.1. Then the following holds:

-1
| Tz — Tyz||* < S—(Tsx — Tz, Tsx — x),
s

forall s,t >0and z € H.

Lemma 2.3. ([8]). Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let the mapping A : C — H be a-inverse strongly monotone and » > 0 be
a constant. Then, we have

(I = rA)z— (I —rA)y|* < |l -yl +r(r — 20)[| Az — Ay|*, Vz,y € C.
In particular, if 0 < r < 2q, then I — r A is nonexpansive.

Lemma 2.4. ([19]). Let {x,} and {y,} be bounded sequences in a Banach space
X and let {3,,} be a sequence in [0, 1] with 0 < liminf,, o 5, < limsup,,_,., Gn < 1.
Suppose xp+1 = (1 — Bn)yn + Bnzy, for all n > 0 and limsup,,_, (||Yn+1 — Ynll —
|Znt1 — nl]) < 0. Then, lim, . ||yn — 2n|| = 0.

Lemma 2.5. ([10]). Let C be a closed convex subset of a real Hilbert space H
and let S : C' — C be a nonexpansive mapping with Fiiz(S) # (. Then, the mapping
I — S is demiclosed. That is, if {x,} is a sequence in C such that z,, — z* weakly
and (I — S)z,, — y strongly, then (I — S)z* =y.

Lemma 2.6. ([20]). Assume {a,,} is a sequence of nonnegative real numbers such
that

an+1 < (1 - 7n>an + 5n7nu

where {~,,} is a sequence in (0, 1) and {4, } is a sequence such that
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(i) 2omsy Y = 00
(ii) limsup,,_,o0 0n <0 0r >0 [0p7n| < 00.

Then lim,, .o a, = 0.

3. MAIN REsuLTS
In this section, we will prove our main results.

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H and let I : C x C — R be a bifunction satisfying conditions (H1)-(H4). Let
A : C — H be an a-inverse-strongly monotone mapping and let S : C — C be a
nonexpansive mapping. Suppose that F'(S) N EP # (). Let A be a constant satisfying
a < A < bwhere [a,b] C (0,2a). Fort € (0,1—2%), let {2} C C be a net generated
by the implicit manner

(B1)  F(zt,y)+ §<y — 24, 24 — ((1 —t)I — /\A> Szt> >0,y e C.

Then the net {z;} converges strongly, as ¢t — 0+, to a point & which is the minimum
norm element in F'(S) N EP.

Proof.  First, we show the net {z;} is well-defined. We observe by Lemma 2.1
that we only need to show that the implicit algorithm z; = T)((1 — ¢)I — AA)Sz is
well-defined. Now, we define a mapping W; := T)((1 — ¢)I — AA)S. It is clear that
W is a self-mapping of C' according to Lemma 2.1. For z,y € C, we have

Wiw = Wiyl = ITa((1 = )1 = AA)Sz = TA((1 = )1 = AA)Sy]|
< (A =DI = AA)Sz = ((1 - 1) = AA)Sy]|
A A

= (=n|(1- g a)se— (1= 754 59|

Since [ — %_tA (by Lemma 2.3) and S are nonexpansive, we deduce
Wiw = Wiyl < (1 =)z —yll, Yo,y € C.

This indicates that W; is a contraction on C'. It has a unique fixed point, denoted by
zt, In C. Thatis, z; = T\((1 — t)I — AA)Sz. Hence, (3.1) is well-defined.

Take any z € F(S)NEP. Itis obvious that z = T)\(z—AAz) for all A > 0. So, we
have z = Sz = Th(z — AAz) = T\(Sz— ANASz) =T (tSz +(1—-t)(Sz— ﬁASz))

forall ¢t € (0,1 — %). Since T}, is nonexpansive, we have
2 — 2|2

(32) = HT,\((l —t)Sz — /\ASzt> — 2H2

= [ (052 %AS%)) 1y (124 (1 1) (52 %AS@) H2
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< [[(a s - %Aszg) (-0 - %AS@) I

- H(1 . t)((Szt . %_tASzt) (82— %ASZ)) —|—t(—z)”2.

By using the convexity of | - || and the a-inverse strong monotonicity of A, we derive
A A 2

A A 2 ,
<(1- t)H(Szt T ASz) - (S - 1—_tASz)H ¢z
= (1= 1)[|(S2 — Sz) = A(ASz — ASz)/(1— 1)1 + t]|z]|?

=(1-1) (HSzt —Sz|? - 12—_/\t<ASzt — ASz,Sz — Sz)
N 2 2
@3 tgogplAsa— AsH?) + il
20\

<(1- t)(HSzt — 52| = 22| AS 2 — AS2?

A2 2 2
rogellAs= - Asz] ) +tlz]

= (1-0) (152 82|+

A
(1_t>2(/\—2(1—t)a)HASzt—ASzHZ>—|-tHZH?

(/\—2(1—t)a)HASzt—ASzHQ>—|—tHzHQ.

< 4= (bl + o

By the assumption, we have A —2(1 — ¢t)a < 0 for all t € (0,1 — %). Then, from
(3.2) and (3.3), we obtain

2 — 2|2
(B34 < (1—t)(Hzt—zHQ—|—ﬁ(A—Q(l—t)a)HASzt—ASzH2> )2
< (1= B)lla = 21 + |2l
It follows that

lze = 2l < |-

Therefore, {z;} is bounded. Hence, {Sz;} and {ASz;} are also bounded.
From (3.4), we obtain

e = 21 < (1= )}z — 2|* + (A= 2(1 = t)a) [ ASz — Az|]* +t]]2]*.

A
-0
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So,

ﬁ(zu ~ o — N)|ASz — A2| < £ ] — 0.

This implies that

(3.5) t£%1+ |ASz — Az|| = 0.

Next, we show ||z — Sz — 0. By using the firm nonexpansivity of T (see Lemma
2.1), we have

oo — =l = || 7 (@~ 52— Aasz) — 2
= |7 (1= 952 - Aa82) - T (82 - A4S2) H2
< <(1 —t)Sz — AASz — (Sz — ANASz), 2z — z>

S (10 =087~ A4Sz — (52~ AAS2)P + |1z - 2]
(1 = £)Sz — MASz — AASz) — th2>.
By the nonexpansivity of I — AA/(1 — ¢), we have
(1 —1)Sz — NASz — (Sz — NAS2)||?
= |(1 = )((Sz — AASz /(1 —t) — (Sz — MNASz/(1 — 1)) + t(—2)|?
< (1 =8)||(Sz — AASz /(1 —t) — (Sz — AASz/(1 —t))||> + t]|z||?
< (1= 1))z — Sz|* + ]2
< (1= t)llze — 2II* + el

Thus,
l2¢ — 22
< (=t llzimelP 2]+ 22| (1 1) S22~ A(ASz— AS2) ).
It follows that

0 < tl|z]|>—|[(1—t)Sz—2—A(ASz—AS2)|?
2> = 1(1=1)S 2z — 2|2+ 2X((1 —t) S 2y— 2, ASz— ASz) — A\?||ASz — ASz||?
t] 2|2 = |(1—=1) Szt — 2] |2+ 2| (1 = 1) S zp— 2t ||| AS 2 — AS 2]

IN

Hence,
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(1= £)Sz — z||? < t]|2]|2 + 27| (1 — £)Sz — 2 ||| ASz — Az]].
Since ||ASz — Az|| — 0 by (3.5), we deduce
I
Therefore,
@9 g [ =5 =0
From (3.2), we have
A A 2
p— 2 p— _ —_—_—,—_— p— —_ —_—_— p—
2 — 2|2 < H(1 1 ((5% o ASz) - (82 - 15 tASz)) tz”
A A 2
_ _ )2 AN _ AN
—(1-1) H(Szt o ASz) - (52 1= tASz)H
A A S
211 — t)<z, (Szt—l—_tASzt)—(Sz—l—_tASz)>+t 2]

< Ltz 2P 2t(1—1) (2, Sz 2 (ASz— A7) =2 )+ 2]

1—t
A
_ _ _ L2 _ _ VA _
= (1-20)|% — 2| —i—2t{ (1 t)<z,Szt 2= T (ASz Az)>
FE(=? + 120 = 23 }-

It follows that

A t
= 2012 < (2, S — 2 = To=(AS % — 42)) + 5 (2] + 12 — 2%

A
(3.7) 2] HSzt — 2= (A8 - A@H
A
< (z,2—8z)+ T tHzHHASzt — Az|| +tM,
where M is some constant such that
sup {HzH2 + ||z — 2H2 + [|2]||| Sz — 2 — L(ASzt — Az)|,t€ (0,1— i)} < M.
1—t ’ ’ 207 ) —

Next we show that {z;} is relatively norm-compact as ¢ — 0+. Assume {¢,} C (0, 1)
is such that ¢,, — 0+ as n — oo. Put z,, := z;,. From (3.7), we have

(3.8)  lzn—2|2<{z, Z—Szn>+ﬁ"HzHHASzn—AzH—i-tnM, z€ F(S)NEP.
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Since {z,} is bounded, without loss of generality, we may assume that z, — = € C.
From (3.6), we have

(3.9) lim ||z, — Sz,|| =0.
n—oo
We can use Lemma 2.5 to (3.9) to deduce & € F'(S). Further, we show that z is also

in EP. Since z, = Th((1 — t,)Sz, — AASz,) for any y € C, we have

1
F(zn,y)+ (ASzn,y — zn) + X(y — Zny 2n — (L = t,,)Sz,) > 0.

From (H2), we have

1
(3-10) <ASZnu Yy — Zn> + X<y — Zny An — (1 - tn>SZn> > F(y7 Zn)

Put oy =ty + (1 —t)z forall t € (0,1 — £>) and y € C. Then, we have z; € C. So,
from (3.10), we have

(@ — 2, Axg) > (@ — 20, Axg) — (@ — 2, AS2y)
1

_X<xt — Zny 2n — (L= t)Szn) + F(ay, 2p,)

= (x4 — 2, Axy — Azp) + (x4 — 2, Az — ASzy)

1
_X<xt — Zny 2n — (L = t,)Szn) + F(xy, 2p).

Since ||z, — Sz,|| — 0, we have ||Az, — ASz,|| — 0. Further, from monotonicity of
A, we have (z; — 2y, Az — Az,) > 0. So, from (H4), we have

(3.11) (xy — &, Azy) > F(xy,T),aS N — 00.

From (H1), (H4) and (3.11), we also have

0 = F(xy, x¢)
< tF(z,y) + (1 —t)F (24, 2)
< tF(z,y) + (1 —t)(zy — T, Axy)
= tF(z,y) + (1 - )ty — 2, Awy)

and hence
0 < F(ze,y)+ (1 —t)(y — &, Azy).
Letting ¢t — 0, we have, for each y € C,

0< F(z,y) + (y — T, AT).
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This implies & € EP. Therefore we can substitute Z for z in (3.8) to get

2 — &2 < (£, — Szn) + IZ]/|AS 20 — AZ|| + taM, 2 € F(S) N EP.

1-1,
By (3.5), we know that ||ASz, — Az|| — 0 for any z € F(S) N EP. Then, we get
||ASz, — AZ|| — 0. Consequently, the weak convergence of {z,} (and {Sz,}) to
actually implies that z, — Z. This has proved the relative norm-compactness of the
net {z:} as t — 0+.

Now we return to (3.8) and take the limit as n — oo to get

|z —2||> < (2,2 — %), € F(S)NEP.

Equivalently,
|Z]|* < (z,2), z€ F(S)NEP.

This clearly implies that
1Z]] < llzll, 2z € F(S)NEP.

Therefore, z is the minimum-norm element in F(S) N EP. This completes the
proof. ]

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H and let I : C x C — R be a bifunction satisfying conditions (H1)-(H4). Let
A : C — H be an a-inverse-strongly monotone mapping. Suppose that EP # (). Let
A be a constant satisfying a < A < b where [a, b] C (0,2«). For ¢t € (0,1 — %), let
{z:} C C be a net generated by the implicit manner

1
F(z,y) + X<y — 24, 2 — ((1 —t)I — /\A>zt> >0,Vy e C.

Then the net {z;} converges strongly, as ¢t — 0+, to a point & which is the minimum
norm element in EP.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H and let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Suppose
that EP # (). Let A be a constant satisfying a < A\ < b where [a,b] C (0,2«). For
te(0,1— %), let {z;} C C be a net generated by the implicit manner

1
F<Zt7y> + X<y — 2ty 2t — (1 —t— A)Zt> Z Ouvy € C

Then the net {z;} converges strongly, as t — 0+, to a point & which is the minimum
norm element in EP.
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Theorem 3.4. Let C' be a nonempty closed convex subset of a real Hilbert space
H and let I : C x C — R be a bifunction satisfying conditions (H1)-(H4). Let
A : C — H be an a-inverse-strongly monotone mapping and let S : C — C be a
nonexpansive mapping. Suppose that F'(S)NEP # (). Let zp € C and let {z,} C C
and {z,,} C C be sequences generated by

1

F(Znu y) + <A$nu Yy—= Zn> + /\—<y — Zny An — (1 - an>xn> Z Ouvy € Ca
Tn+l = ann + (1 - ﬁn>52n’% > 07
where {\,} C (0,2a), {a,} € (0,1) and {3,} C (0, 1) satisfy

(i) limy oo oy =0 and )" oy, = o0;

(i) 0<c< B, <d< 1,
(131) a(l—ay) < A\, < b(1—ay,) wWhere [a, b] C (0, 2«) and limy, oo (A r1—Ap) = 0.
Then {x,} generated by (3.12) converges strongly to the minimum norm element x*
in F(S)N EP.

(3.12)

Proof. Note that z,, can be rewritten as z, =T\, ((1 — o)z, — Ay Ax,,) for each
n. Take z € F(S)N EP. Itis obvious that z = T}, (z — A\, Az) = T\, (anz +(1-

o) (z — fgl—‘fj)) for all n > 0. By using the nonexpansivity of T, and the convexity
of || - ||, we derive

2
o = 2117 = ||T0, (1 = ) = AnAn ) =T (2 = /\nAz)H
Az, /\ Az
= || (1= (=32 . )) =T, (anz+(1 = an) e )H
Az, A Az
< _ _ _ _
- (<1 on)(#n = 1 —an>> (anz—i— (1= an)(z 1—-ay >H
Az, A Az
= (1—04”)((3371—71_0%)—(2—1_ )—i—an H
AnAx A Az
< (1= an)||(xn )= (2 — =2 ’ a1z
< (U= = T2 = = 70|+ el
Since A is a-inverse strongly monotone, we know from Lemma 2.3 that
AnAxy, An Az 2 An(An—2(1—ay)a) 9
< — Ax,—Az||”.
e e ] I O e e PR R
It follows that
l2n — ]

9 /\n</\n 2<1 an) )
@13 < (1—%)(”%—2” T e

< (1= an)llzn — 2[1 + |2

| Az — Az|]?) 4+ 2|2
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So, we have that

[2ns1 — 2% = [|Bn(zn — 2) + (1 = Bn) (Szn — 2)|?
< ﬂanEn—ZH +<1_ﬂn>Hzn_2H2
< Bullzn — 211 + (1= B)((1 = an) |20 — 2[* + o 12]%)

= [1— (1= Bu)an]llen — 2I* + (1 = Ba) ol 2|

< max{||lzn — 2%, |12}
By induction, we have

|1 — 2lI* < max{lzo — 2%, [I2]%}.
Therefore, {z,,} is bounded. Hence, {Az,}, {z,}, {Sz,} are also bounded.

Putting u, = (1 — ay,)zy, — A Az, for all n, we have
Znt1 — Zn = D, Ungr — T tun + T, Un — T, Un-

It follows that

2041 — zall < HTx\n+1un+1 - Tkn-uunu + HT>\7L+1 — T, un|

(3.14)
< [Jtntr — unll + (|7

n+1 T>\nunH'

From Lemma 2.3, we know that 7 — A A is nonexpansive for all A € (0, 2«). Thus, we
have I — A\, +1A4/(1 — ay41) is nonexpansive for all n due to the fact that A1 /(1 —
an+1) € (0,2a). Then, we get

[unt1 — unl|

= (1 = ans1)Tnt1 — Anr1Azngr — (1 — an)zn — A Axy)||
A

714 n ) 1- n ( n- =

—— Tyl ) —(1—ap)(z

An+1 An+1
< (1—-ay, H( —714) n —( —714) n
( an+1)||( 1 1 ) Tn41 I 1 ) T

Az, )|

= H (1 —Oén+1) ($n+1
(3.15)

—i—H(l—an+1) (a:n— %A%L) —(1—ay) (a:n

)
1- Apt1 n

1_
< |z = zoll + lant1 — anlllzall + [Ans1 — Anl[[Azy]|.

By Lemma 2.2, we have

(3.16) 1T

n+1 unH

A An
Ty < Pt =2l

n+

n+1

From (3.14)-(3.16), we obtain
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2041 = zall < |Tng1 — zull + @ — anlllznll + A1 — Aal[| Az,

Angl — A
T v SWTE |
n
Then,
1S2n4+1 — Szn|l < [|2n+1 — 2|
< l@nsr — @l + [on1 — anll|znl| + [Ant1 = Anl[|Aza ||
Angl — A
s wrea YRR |
n
Therefore,
1S2n4+1 = Sznll = [[#n41 — @all < |ansr — anll|an]] + [Ansr — An[[| Aza||
Angl — A
Pt =2l ),
n+1

Since o, — 0, A\py1 — A, — 0 and liminf,, o A,, > 0, we obtain

limsup(||Szn+1 — Sznll — || Tnt1 — xnl]) < 0.
n—oo

From Lemma 2.4, we get

lim [|Sz, — x| = 0.
n—oo
Consequently, we obtain
lim ||zp41 — x| = lm (1 = 3,,)[|Sz, — z,]] = 0.
n—oo n—oo

From (3.12) and (3.13), we have

1 — 21

9 2
< Ballan — 2l + (1 = B) |

ST,\,L<(1 — Q) Ty — /\nAa:n> — z’

An
< (1= 5){ (1= @) (len = 2l + T3 0 = 201 = an)a) Az — A7)
+an2]2} + Bullzn — 2|
1—06.)A
= (1= (1= Bl — 2P + {222 0, = 201 - )4z, — 4]
1 Brou 2]
< o — 2l + L0 (0 o1 )l — A2 4 (1 - Ba)anl

(1 —ay)
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Then, we obtain

m —ay)a — z, — Az|?
e (201 = awa = A Az, — 42|

< l#n = 2l” = [lzns1 = 21* + (1 = Ba)an]| 2|
< (l#n = 2ll = 2n41 = 2D 2na1 = @nll + (1 = Ba)an 2.
i ' - ' _ - M (A=Bn)An _
Since lim, o0 o, = 0, limy, o0 ||Znt1 — zn]| = 0 and liminf, = (2(1
ap)a— Ap) > 0, we have

(3.17) lim [|Az, — Az|| = 0.

Next, we show ||x,, — T, u,|| — 0. By using the firm nonexpansivity of T ,, we have

T 21 = [Ty~ T, (= = Az

< <un — (2 — MAz), T, un — z>

1
= 5 (lun = (2= Aa2) |2 + T3 — 211
(1= @) = An(An = AnA2) = Ty, un|2).

We note that
[un — (2 = A A2) I < (1 — an)l|lzn — 2[* + anl2]*.

Thus,
1
1T, un — 2)|* < 5((1 — ap)||zn — 2l + anllzl]® + | Tx, un — 2|

(1= @) = T ttn = An(Azy = AnA2)2).

That is,
HT>\7Lun - ZH2
< (1= ap)llzn — ZH2 + anHZHQ — (1 = an)zn — T, un — An(Azy — /\nAZ>H2
= (1= an)l|lzn — 2l + anll2]* = [|(1 — an)zn — T, unl|®
+2/\n<(1 — ap) Ty — T, Un, Ay — Az> — /\iHAa:n — A2H2
< (1= an)|lzn — 2l + anll2l]® = [|(1 — an)zn — T, unl|®
220, ]| (1 — ez, — T, unl||| Az — Az]|.
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It follows that
zn41 = 2l* < Ballen — 21 + (1= Ba) (1 = an)llzn — 2I* + (1 = Ba)awl|2]”
~(1 = Bu)ll(1 = an)an — Tx,unl|?
+22n(1 = Bo)l|(1 — an)zn — T, un|[| Az, — Az
= [1- (1~ B)an]zn — 2|
+(1 = Ba)anll2l* = (1= B) | (1 = an)zn — T, unl|?
+2X0,(1 = B) || (1 — )y, — T, un ||| Ay, — Az]|.
Hence,
(1= Ba)l(1 = an)zy — T, un?
<l = 2l* = lznss = 2l* = (1 = Ba)anllzn — 2|
+(1 = B)anll2l* + 22n(1 = Ba) (1 = an)zn — T, unll [ A2y — Az
< (lzn = 2l + llznsr = z)llznss = zall + (1 = Ba)owml|2]
+2X0,(1 = Bo)|(1 — o)y, — T, un ||| Ay, — AZ]).

Since limsup,,_, Bn < 1, [|[£p+1 — 20| — 0, oy, — 0 and || Az, — Az|| — 0, we
deduce

lim ||(1 — apn)zy — Th,un|| = 0.

n—oo

This implies that
(3.18) lim ||z, — T, un| = 0.
n—oo

Put & = Pp(s)nep(0) (i-e, T is the minimum norm element in F/(S) N EP). We will
finally show that z,, — Z.

Setting v, = z, — 22—(Az, — AZ) for all n. Taking z = & in (3.17) to get
||Az,,— AZ|| — 0. First, we prove lim sup,,_, . (Z, v, —Z) > 0. We take a subsequence
{vn,} of {v,} such that

lim sup(z, v, — ) = lim (%, v,, — ).
n—00 1—00
It is clear that {v,, } is bounded due to the boundedness of {x,,} and || Az, — AZ|| — 0.
Then, there exists a subsequence {Uni]- } of {vy,, } which converges weakly to some point
w € C. Hence, {xni]-} also converges weakly to w. At the same time, from (3.18) and

Hznij - xni]- H = HST>\7Li]. ((1 - ani]- )xni]- - /\ni]- Axni]-> - xni]- H — 0, we have

(3.19) lim me — Sy, H = 0.
00 J J
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By the demi-closedness principle of the nonexpansive mapping (see Lemma 2.5) and
(3.19), we deduce w € F'(S). Furthermore, by the similar argument as that of Theorem
3.1, we can show that w is also in EP. Hence, we have w € F(S)NEP. This implies
that

limsup(z, v, — ) = lim (Z,v,, — ) = (Z,w — T).
n—00 j—00 i

Note that # = Pr(s)ngp(0). Then, (Z,w — &) > 0,w € F(S) N EP. Therefore,

lim sup(z, v, — Z) > 0.
n—oo

From (3.12), we have
|41 — 22

< Bullen -z

< Bullzn — 2

+ (1= Bu)llST,un — 7|7
+(
= Bullzn — Z[|* + (
+(
+(

)
1= Bu) | T, un — &2
1= Bo) | T, tn — T, (& — An AT)|>
< Bullen — Z|* + (1 - Ba)
1= )

= Bnllzn — 57H2

Bi)llun — (& — XpAZ) |2
Bll(1 = )y, — ApAxy, — (& — M\ AT) |

An - An - e
= (1—=70n)|[(1 = an)((a:n -1 anAa:n) —(z— . anAa:)) — an® ’
+Bnllzn — 57H2
An - An 12
= (1-p(0- an)2H(a:n A — (- %A@H
A D )
~200(1 = ) (3. (2, — T2 Awy) = (& = 77 AR) ) 4o J3?)
+Bnllzn — 57H2
< Ballzn = 12+ (1= B2) (1 = an)?lln - 71
20, (1 a,) (&, 2, f"a (Azy — AT) — &) + 03 )

IN

[1— (1= Ba)ew]lzn — 2|
+(1 = Ba)an{ = 2(1 = an) (7,00 — &) + anl7l?}.
It is clear that >~ (1 — B,)a, = oo and limsup,, . (—2(1 — o, )(T, v, — &) +

an|Z|?) < 0. We can therefore apply Lemma 2.6 to conclude that x,, — Z. This
completes the proof. [ |

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H and let ' : C x C — R be a bifunction satisfying conditions (H1)-(H4). Let
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A : C — H be an a-inverse-strongly monotone mapping. Suppose that EP # (). Let
xo € C and let {z,} C C and {z,} C C be sequences generated by

{F<Znu y) + <A$nu Yy — Zn> + ,\%<y — Zny%n — (1 - an>xn> Z Ouvy € Ca
Tn+l1 = 6n$n + (1 - Bn)znu n > 07

where {\,} C (0,2a), {a,} € (0,1) and {5,} C (0, 1) satisfy
(¢) limp—oo a0y, =0 and ), o, = 00;
(i1) 0 <ec< B, <d<1,;
(131) a(l—ay) < A\, < b(1—ay,) where [a, b] C (0, 2«) and limy, oo (A r1—Apn) = 0.

Then {z,} converges strongly to the minimum norm element z* in EP.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space
H and let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Suppose
that EP # 0. Let 2o € C and let {z,} C C and {x,} C C be sequences generated
by

{F<Znu y) + )%n<y — Zn, &n — (1 — Qp — /\n>$n> >0,Vy e C,
Tn+l = 6n$n + (1 - Bn)zna n > 07

where {\,} C (0,2a), {a,} € (0,1) and {5,} C (0, 1) satisfy
(i) limy oo oy =0 and )" oy, = o0;
(i1) 0 <ec< B, <d<1,;
(131) a(l—ay) < A\, < b(1—ay,) Where [a, b] C (0, 2«) and limy, oo (A r1—Apn) = 0.

Then {z,,} converges strongly to the minimum norm element z* in EP.
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