
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 18, No. 3, pp. 909-923, June 2014
DOI: 10.11650/tjm.18.2014.3705
This paper is available online at http://journal.taiwanmathsoc.org.tw

COMPLEX DIFFERENTIAL EQUATIONS WITH SOLUTIONS
IN THE HARDY SPACES

Li-peng Xiao

Abstract. In this paper, sufficient conditions for the analytic coefficients of the
differential equation

(f(k))nk + Ak−1(f(k−1))nk−1 + · · ·+ A1(f ′)n1 + A0f = 0

are found such that all analytic solutions belong to a given H∞
p − space, or to

the Hardy space Hp. The results we obtain are a generalization of some earlier
results by Heittokangas, Korhonen and Rättyä.

1. INTRODUCTION AND MAIN RESULTS

The growth of solutions of the linear differential equation

(1.1) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0

with coefficients Aj in the unit disc has caused the attention and interest of many
researchers recently. Nevanlinna theory has been applied for fast-growing analytic
solutions [2, 3, 6, 7, 8, 13, 17], but the analysis on slowly growing solutions seems to
require a different approach [12, 14, 15, 20, 21].

Pommerenke [20] studied the second-order equation

(1.2) f
′′

+ A(z)f = 0,

where A(z) is analytic in the unit disc D = {z : |z| < 1}. He found sufficient
conditions for the coefficient function A(z) such that all solutions of (1.2) belong to
the Hardy space H2, the space of analytic functions in D with square summable Taylor
coefficients.
Received August 29, 2013, accepted November 22, 2013.
Communicated by Alexander Vasiliev.
2010 Mathematics Subject Classification: Primary 34M10; Secondary 30D50, 30D55.
Key words and phrases: Differential equation, Hardy space, Dirichlet-type space, Unit disc.
This work is supported by the National Natural Science Foundation of China (Nos. 11301232, 11171119),
the Youth Science Foundation of Education Bureau of Jiangxi Province (Grant No. GJJ12207) and the
Natural Science Foundation of Jiangxi Province (No. 20132BAB211009).

909



910 Li-peng Xiao

Theorem 1.1. [20]. There is a positive constant α with the following property:
If the coefficient A(z) of (1.2) is analytic in D and satisfies

sup
a∈D

∫
D

|A(z)|2(1 − |z|2)3 1 − |a|2
|1− az|2 dσ(z) ≤ α,

then all solutions of (1.2) belong to H2.

In the proof of Theorem 1.1, Pommerenke used the classical result by Carleson
[4, 5] on bounded measures μ satisfying μ(S(I)) = O(|I |), |I| → 0, where |I | denotes
the arc length of a subarc I of the boundary T = {z : |z| = 1} and S(I) = {z ∈ D :
z/|z| ∈ I, 1− |I | ≤ |z|}. These measures are known as Carleson measures and the set
S(I) is called the Carleson box based on I. Pommerenke also proved the following
formulation of Theorem 1.1 .

Theorem 1.2. [20]. Let 0 < δ ≤ 1. There is a positive constant α with the
following property: If the coefficient A(z) of (1.2) is analytic in D and satisfies

sup
|I|≤δ

1
|I |
∫

S(I)

|A(z)|2(1 − |z|2)3dσ(z) ≤ α,

then all solutions of (1.2) belong to H2.

The element of the Lebesgue area measure on D is denoted by dσ(z).
Recently, Heittokangas et al. [16] studied equation (1.1) and found sufficient

conditions for the analytic coefficients such that all solutions belong to H∞
p . For 0 <

p < ∞, the growth space H∞
p consists of those analytic functions f in D, for which

‖f‖H∞
p

= sup
z∈D

|f(z)|(1− |z|2)p < ∞.

Theorem 1.3. [16]. Let 0 ≤ δ < 1. For every p > 0 there exists a positive
constant α, depending only on p and k, such that if the coefficients Aj(z) of (1.1) are
analytic in D and satisfy

sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 0, · · · , k − 1,

then all solutions of (1.1) belong to H∞
p .

Sufficient conditions for the coefficients such that all solutions belong to Dp were
found in [21]. For 0 < p < ∞, the Dirichlet-type space Dp consists of those analytic
functions f in D for which the integral∫

D

|f ′(z)|p(1 − |z|2)p−1dσ(z)

converges.
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Theorem 1.4. [21]. Let 0 ≤ δ < 1. For every 0 < p ≤ 2, there is a positive
constant α, depending only on p and k, such that if the coefficients Aj(z) of (1.1) are
analytic in D and satisfy

sup
|a|≥δ

∫
D

|A0(z)|p(1 − |z|2)pk−1 1− |a|2
|1 − az|2dσ(z) ≤ α

and
sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 1, · · · , k − 1,

then all solutions of (1.1) belong to Dp ∩ H∞
p .

Sufficient conditions for the coefficients such that all solutions belong to Hp were
also found in [21]. For 0 < p < ∞, the Hardy space Hp consists of those functions
f , analytic in D, for which

‖f‖Hp = sup
0<r<1

(
1
2π

∫ 2π

0
|f(reiθ)|pdθ

) 1
p

< ∞.

See [10] for the theory of Hardy spaces.

Theorem 1.5. [21]. Let 0 ≤ δ < 1. For every 0 < p < ∞ there is a positive
constant α, depending only on p and k, such that if the coefficients Aj(z) of (1.1) are
analytic in D and satisfy

sup
|a|≥δ

∫
D

|A0(z)|2(1 − |z|2)2k−1 1− |a|2
|1− az|2dσ(z) ≤ α

and
sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 1, · · · , k − 1,

then all solutions of (1.1) belong to Hp ∩ H∞
p .

Theorem 1.5 has a different formulation in terms of Carleson measures.

Theorem 1.6. [21]. Let 0 ≤ δ < 1. For every 0 < p < ∞ there is a positive
constant α, depending only on p and k, such that if the coefficients Aj(z) of (1.1) are
analytic in D and satisfy

sup
|I|≤1−δ

1
|I |
∫

S(I)
|A0(z)|2(1− |z|2)2k−1dσ(z) ≤ α

and
sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 1, · · · , k − 1,

then all solutions of (1.1) belong to Hp ∩ H∞
p .
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The purpose of this study is to find sufficient conditions for the analytic coefficients
of the differential equation

(1.3) (f (k))nk + Ak−1(f (k−1))nk−1 + · · ·+ A1(f ′)n1 + A0f = 0

where nj ≥ 1 for all j = 1, · · · , k and nj ≤ nk for all j = 1, · · · , k − 1, such that
all analytic solutions belong to the H∞

p space, or to the Dirichlet-type space Dp, or to
the Hardy space Hp. The Eq.(1.3) was mentioned in [18]. Using the same idea with
Rättyä and Heittokangas, we can obtain some results about the nonlinear differential
equation (1.3).

The first result generalizes Theorem 1.3 to the differential equation (1.3).

Theorem 1.7. Let 0 ≤ δ < 1. For every p > 0 there exists a positive constant α,
depending only on p, k and nk, such that if the coefficients Aj(z) of (1.3) are analytic
in D and satisfy

(1.4) sup
|z|≥δ

|Aj(z)|(1− |z|2)nk(p+k)−nj (p+j) ≤ α, j = 0, · · · , k − 1,

where n0 = 1, then all analytic solutions of (1.3) belong to H∞
p .

The second result of this article, Theorem 1.8 is also a generalization of Theorem
1.4.

Theorem 1.8. Let 0 ≤ δ < 1. For every 0 < p ≤ 2, there is a positive constant α,

depending only on p, k and nk, such that if the coefficients Aj(z) of (1.3) are analytic
in D and satisfy

(1.5) sup
|a|≥δ

∫
D

|A0(z)|p(1 − |z|2)pk−1 1− |a|2
|1 − az|2dσ(z) ≤ α

and

(1.6)
∫
|z|≥δ

|Aj(z)|
p

nk−nj (1 − |z|2)
p(knk−jnj )

nk−nj
−1

dσ(z) ≤ α, if nj < nk

(1.7) sup
|z|≥δ

|Aj(z)|(1− |z|2)nk(k−j) ≤ α, if nj = nk

for j = 1, · · · , k − 1, then all analytic solutions of (1.3) belong to Dp ∩ H∞
p .

It is worth noticing that in Theorem 1.8 the containment in H∞
p follows by Theorem

1.7, since the condition in Theorem 1.7 is weaker than the conditions in Theorem 1.8
by a simply straightforward calculation. Theorem 1.9 below generalizes Theorem 1.5.
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Theorem 1.9. Let 0 ≤ δ < 1. For every 0 < p < ∞ there is a positive constant α,

depending only on p, k and nk, such that if the coefficients Aj(z) of (1.3) are analytic
in D and satisfy

sup
|a|≥δ

∫
D

|A0(z)|2(1 − |z|2)2k−1 1− |a|2
|1− az|2dσ(z) ≤ α

and ∫
|z|≥δ

|Aj(z)|
2

nk−nj (1 − |z|2)
2(knk−jnj )

nk−nj
−2

dσ(z) ≤ α, if nj < nk

sup
|z|≥δ

|Aj(z)|(1− |z|2)nk(k−j) ≤ α, if nj = nk

for j = 1, · · · , k − 1, then all analytic solutions of (1.3) belong to Hp ∩ H∞
p .

Theorem 1.9 has a different formulation similar to Theorem 1.6 in terms of Carleson
measures.

Theorem 1.10. Let 0 ≤ δ < 1. For every 0 < p < ∞ there is a positive constant
α, depending only on p and k, such that if the coefficients Aj(z) of (1.3) are analytic
in D and satisfy

(1.8) sup
|I|≤1−δ

1
|I |
∫

S(I)
|A0(z)|2(1− |z|2)2k−1dσ(z) ≤ α

and

(1.9)
∫
|z|≥δ

|Aj(z)|
2

nk−nj (1− |z|2)
2(knk−jnj )

nk−nj
−2

dσ(z) ≤ α, if nj < nk

(1.10) sup
|z|≥δ

|Aj(z)|(1− |z|2)nk(k−j) ≤ α, if nj = nk

for j = 1, · · · , k − 1, then all analytic solutions of (1.3) belong to Hp ∩ H∞
p .

2. LEMMAS FOR THE PROOF OF THEOREMS

Lemma 2.1. ([24]). Let f be an analytic function in D, 1 < α < ∞ and n ∈ N.
Then the following quantities are comparable:

(1) ‖f‖H∞
α−1

,

(2) ‖f‖Bα + |f(0)|,
(3) sup

z∈D

|f (n)(z)|(1− |z|2)n−1+α +
n−1∑
j=0

|f (j)(0)|.
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Two quantities A and B are comparable, if there exists a positive constant C such
that C−1B ≤ A ≤ CB. The α-Bloch spaces Bα consist of those functions f , analytic
in D, for which

‖f‖Bα = sup
z∈D

|f ′(z)|(1− |z|2)α < ∞, 0 < α < ∞.

Lemma 2.2. ([10]). Let an ≥ 0 for n = 1, · · · , N. Then(
N∑

n=1

an

)p

≤
(

N∑
n=1

ap
n

)
, 0 < p ≤ 1,

and (
N∑

n=1

an

)p

≤ N p−1

(
N∑

n=1

ap
n

)
, 1 ≤ p < ∞.

Lemma 2.3. ([19]). Let f be an analytic function in D, and let 0 < p < ∞. Then,

‖f‖p
Dp =

∫
D

|f ′(z)|p(1 − |z|2)p−1dσ(z)

	
∫

D

|f (n)(z)|p(1− |z|2)np−1dσ(z) +
n−1∑
j=1

|f (j)(0)|p, n ≥ 2,

where the symbol 	 means that the quantities on the two sides of the symbol are
comparable.

Lemma 2.4. Let μ be a positive measure on D, and let 0 < p ≤ 2 and 0 ≤ δ < 1.
Then μ is a bounded Carleson measure if and only if there is a positive constant C,

depending only on p, such that

(2.1)
∫

D\D(0,δ)
|f(z)|pdμ(z) ≤ C(‖f‖p

Dp + |f(0)|p)

for all analytic functions f in D, in particular for all f ∈ Dp. Moreover, if μ is a
bounded Carleson measure, then C = C1C2, where C1 is a positive constant and

(2.2) C2 = sup
|I|≤1−δ

μ(S(I))
|I | ≤ 10 sup

|a|≥δ

∫
D

1 − |a|2
|1− az|2dμ(z).

In (2.1) and from there on D(0, δ) denotes the Euclidean disc centered at the origin
and of radius δ. The case δ = 0 of Lemma 2.4 is a consequence of a well-known result
by Carleson [4, 5] and the inequality ‖f‖Hp ≤ C(‖f‖Dp + |f(0)|) for 0 < p ≤ 2
[11, 22, 23]. If 0 < δ < 1, then an application of the case δ = 0 to the measure μδ
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such that dμδ(z) = χD\D(0,δ)dμ(z) shows that C is of the form C = C1C2, where χE

is the characteristic function of the set E, C1 is a positive constant and

C2 = sup
I

μ(S(I) \ D(0, δ))
|I | .

Then (2.2) follows by the inequalities

(2.3)

sup
I

μ(S(I) \D(0, δ))
|I | ≤ 2 sup

|I|≤1−δ

μ(S(I))
|I |

≤ 20 sup
|a|≥δ

∫
D

1 − |a|2
|1− az|2dμ(z).

See [16] for a proof of (2.3).
Lemma 2.5. ([1]). If 0 < p < ∞, n ∈ N and f is an analytic function in D, then

‖f‖p
Hp 	

∫
T

(∫
Γ(ζ)

|f (n)(z)|2(1 − |z|2)2n−2dσ(z)

)p/2

|dζ|+
n−1∑
j=0

|f (j)(0)|p,

where Γ(ζ) = {z ∈ D : |1− zζ| < 1−|z|2} is the nontangential approach region with
vertex ζ on T, and the constants of the comparison depend only on p and n.

Lemma 2.6. ([9]). Let 0 < p < ∞. Let u be an analytic function in D and let h
be a function defined on D. There is a positive constant C, depending only on p, such
that ∫

T

(∫
Γ(ζ)

|u(z)|2|h(z)|2
(1− |z|2)2 dσ(z)

)p/2

|dζ|

≤ C‖u‖p
Hp

(
sup

I

1
|I |
∫

S(I)

|h(z)|2 dσ(z)
1 − |z|2

)p/2

.

3. PROOF OF THEOREM 1.7

Proof. Let 0 ≤ δ < 1, 1/2 ≤ ρ < 1, and let f be an analytic solution of (1.3).
Denote fρ(z) = f(ρz). Then, by Lemma 2.1, Lemma 2.2, (1.3) and the assumption
(1.4),

‖fρ‖H∞
p

≤ C1

⎛
⎝sup

z∈D

|f (k)(ρz)|(1− |z|2)p+k +
k−1∑
j=0

|f (j)(0)|
⎞
⎠

= C1 sup
z∈D

∣∣∣∣∣∣
k−1∑
j=0

Aj(ρz)(f (j)(ρz))nj

∣∣∣∣∣∣
1

nk

(1 − |z|2)p+k

+C1

k−1∑
j=0

|f (j)(0)|
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≤ C1 sup
z∈D

k−1∑
j=0

|Aj(ρz)|
1

nk |f (j)(ρz)|
nj
nk (1 − |z|2)p+k

+C1

k−1∑
j=0

|f (j)(0)|

≤ C1 sup
|z|≥δ

k−1∑
j=0

|Aj(ρz)|
1

nk |f (j)(ρz)|
nj
nk (1 − |z|2)p+k

+C1C2 + C1

k−1∑
j=0

|f (j)(0)|

≤ C1

k−1∑
j=0

‖fρ‖
nj
nk
H∞

p

(
sup
|z|≥δ

|Aj(ρz)|(1− |z|2)nk(p+k)−nj (p+j)

) 1
nk

+C1C2 + C1

k−1∑
j=0

|f (j)(0)|

≤ C1

⎛
⎝k−1∑

j=0

‖fρ‖
nj
nk
H∞

p
α

1
nk + C2 +

k−1∑
j=0

|f (j)(0)|
⎞
⎠ ,

where C1 is a positive constant, depending only on p and k,

C2 = sup
0≤|z|<δ

k−1∑
j=0

|Aj(ρz)|
1

nk |f (j)(ρz)|
nj
nk (1− |z|2)p+k.

Without loss of generality, we can assume that ‖fρ‖H∞
p

> 1, for otherwise the conclu-
sion is clearly established. It follows that

‖fρ‖H∞
p

≤ C1(α
1

nk k‖fρ‖H∞
p

+ C2 +
k−1∑
j=0

|f (j)(0)|),

or

‖fρ‖H∞
p

(1 − C1α
1

nk k) ≤ C1C2 + C1

k−1∑
j=0

|f (j)(0)|.

The assertion is obtained by choosing α sufficiently small and letting ρ → 1−. This
completes the proof of Theorem 1.7.

4. PROOF OF THEOREM 1.8

Proof. By Theorem 1.7 it suffices to show that all analytic solutions belong to
Dp under the assumption (1.5)-(1.7). Let 0 ≤ δ < 1, 1/2 ≤ ρ < 1, and let f be an
analytic solution of (1.3). Then, by Lemma 2.3 and (1.3),
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(4.1)

‖fρ‖p
Dp ≤ C1

⎛
⎝∫

D

|f (k)(ρz)|p(1− |z|2)pk−1dσ(z) +
k−1∑
j=1

|f (j)(0)|p
⎞
⎠

= C1

⎛
⎝∫

D

|
k−1∑
j=0

Aj(ρz)(f (j)(ρz))nj |
p

nk (1 − |z|2)pk−1dσ(z) + C2

⎞
⎠

≤ C3

⎛
⎝k−1∑

j=0

∫
D

|Aj(ρz)|
p

nk |f (j)(ρz)|
njp

nk (1 − |z|2)pk−1dσ(z) + C2

⎞
⎠

= C3

k−1∑
j=0

∫
D\D(0,δ)

|Aj(ρz)|
p

nk |f (j)(ρz)|
njp

nk (1− |z|2)pk−1dσ(z)

+C3C2 + C3C4

= C3

∫
D\D(0,δ)

|A0(ρz)|
p

nk |f(ρz)|
p

nk (1 − |z|2)pk−1dσ(z)

+C3

k−1∑
j=1

∫
D\D(0,δ)

|Aj(ρz)|
p

nk |f (j)(ρz)|
njp

nk (1− |z|2)pk−1dσ(z)

+C3C2 + C3C4

= C3(I0 +
k−1∑
j=1

Ij + C2 + C4),

where C1 is a positive constant, depending only on p and k, C2 =
∑k−1

j=1 |f (j)(0)|p,
C3 is a positive constant, depending only on p, k and nk,

C4 =
k−1∑
j=0

∫
D(0,δ)

|Aj(ρz)|
p

nk |f (j)(ρz)|
njp

nk (1− |z|2)pk−1dσ(z),

I0 =
∫

D\D(0,δ)
|A0(ρz)|

p
nk |f(ρz)|

p
nk (1− |z|2)pk−1dσ(z),

Ij =
∫

D\D(0,δ)
|Aj(ρz)|

p
nk |f (j)(ρz)|

njp

nk (1− |z|2)pk−1dσ(z),

for j = 1, · · · , k − 1.

By Lemma 2.4 and the Hölder inequality, we have
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(4.2)

I0 =
∫

D\D(0,δ)
|A0(ρz)|

p
nk |f(ρz)|

p
nk (1 − |z|2)pk−1dσ(z)

≤
(∫

D\D(0,δ)
|A0(ρz)|p|f(ρz)|p(1− |z|2)pk−1dσ(z)

) 1
nk

×
(∫

D\D(0,δ)
(1 − |z|2)pk−1dσ(z)

)1− 1
nk

≤ (C5C6(‖fρ‖p
Dp + |f(0)|p))

1
nk C7,

where C5 is an absolute positive constant,

C6 = sup
|a|≥δ

∫
D

|A0(ρz)|p(1− |z|2)pk−1 1 − |a|2
|1− az|2dσ(z),

C7 =

(∫
D\D(0,δ)

(1− |z|2)pk−1dσ(z)

)1− 1
nk

.

For Ij (j = 1, · · · , k − 1), when nj = nk, by the assumption (1.7) and Lemma
2.3, we have,

(4.3)

Ij =
∫

D\D(0,δ)
|Aj(ρz)|

p
nk |f (j)(ρz)|p(1 − |z|2)pk−1dσ(z)

≤ α
p

nk

∫
D\D(0,δ)

|f (j)(ρz)|p(1 − |z|2)pj−1dσ(z)

≤ C8α
p

nk ‖fρ‖p
Dp ,

where C8 > 1 is a positive constant, depending only on p and k.

When nj < nk, by assumption (1.6) and the Hölder inequality, we have,

(4.4)

Ij =
∫

D\D(0,δ)
|Aj(ρz)|

p
nk |f (j)(ρz)|

njp

nk (1− |z|2)pk−1dσ(z)

≤
(∫

D\D(0,δ)
|f (j)(ρz)|p(1 − |z|2)pj−1dσ(z)

)nj
nk

×
(∫

D\D(0,δ)
|Aj(ρz)|

p
nk−nj (1 − |z|2)

p(knk−jnj )

nk−nj
−1

dσ(z)

)1− nj
nk

≤
(∫

D\D(0,δ)
|Aj(ρz)|

p
nk−nj (1−|z|2)

p(knk−jnj)

nk−nj
−1

dσ(z)

)1−nj
nk

C

nj
nk
8 ‖fρ‖

nj
nk

p

Dp .
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Without loss of generality, we can assume that ‖fρ‖p
Dp > 1, then combing (4.1)-(4.4),

and letting ρ → 1−, the assumptions (1.5),(1.6) yield

‖f‖p
Dp

(
1 − C3C

1
nk
5 α

1
nk C7 − (k − 1)C3C8α

1
nk

min{p,1}
)

≤C3C
1

nk
5 α

1
nk |f(0)|

p
nk C7 + C2C3 + C3C4,

from which the assertion follows. This completes the proof of Theorem 1.8.

5. PROOF OF THEOREM 1.9 AND THEOREM 1.10

It suffices to prove Theorem 1.10 since Theorem 1.9 then follows by the second
inequality in (2.2).

Proof. By Theorem 1.7, it suffices to show that all solutions belong to Hp under
the assumptions (1.8)-(1.10). Let 0 ≤ δ < 1, 1/2 ≤ ρ < 1, and let f be an analytic
solution of (1.3). Then, by Lemma 2.2, Lemma 2.5, Eq. (1.3),

(5.1)

‖fρ‖p
Hp

≤ C1

∫
T

(∫
Γ(ζ)

|f (k)(ρz)|2(1−|z|2)2k−2dσ(z)

)p/2

|dζ|+C1

k−1∑
j=0

|f (j)(0)|p

= C1

∫
T

⎛
⎝∫

Γ(ζ)
|
k−1∑
j=0

Aj(ρz)(f (j)(ρz))nj |
2

nk (1− |z|2)2k−2dσ(z)

⎞
⎠

p/2

|dζ|

+ C1

k−1∑
j=0

|f (j)(0)|p

≤ C2

k−1∑
j=0

∫
T

(∫
Γ(ζ)

|Aj(ρz)|
2

nk |f (j)(ρz)|
2nj
nk (1 − |z|2)2k−2dσ(z)

)p/2

|dζ|

+ C1

k−1∑
j=0

|f (j)(0)|p

= C2

k−1∑
j=1

∫
T

(∫
Γ(ζ)\D(0,δ)

|Aj(ρz)|
2

nk |f (j)(ρz)|
2nj
nk (1−|z|2)2k−2dσ(z)

)p/2

|dζ|

+ C2

∫
T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|
2

nk |f(ρz)|
2

nk (1 − |z|2)2k−2dσ(z)

)p/2

|dζ|

+ C1

k−1∑
j=0

|f (j)(0)|p + C3,
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where C1 and C2 are positive constants, depending only on p, k and nk ,

C3 = C2

k−1∑
j=0

∫
T

(∫
D(0,δ)

⋂
Γ(ζ)

|Aj(ρz)|
2

nk |f (j)(ρz)|
2nj
nk (1 − |z|2)2k−2dσ(z)

)p/2

|dζ|.

To deal with the second term in (5.1), denote

J0 :=
∫

T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|
2

nk |f(ρz)|
2

nk (1− |z|2)2k−2dσ(z)

)p/2

|dζ|.

Then by the Hölder inequality and Lemma 2.6,

(5.2)

J0 ≤
∫

T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|2|f(ρz)|2(1− |z|2)2k−2dσ(z)

) p
2nk

×
(∫

Γ(ζ)\D(0,δ)
(1− |z|2)2k−2dσ(z))

)(1− 1
nk

) p
2

|dζ|

≤ C4

∫
T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|2|f(ρz)|2(1− |z|2)2k−2dσ(z)

) p
2nk

|dζ|

≤ C5

⎛
⎝∫

T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|2|f(ρz)|2(1−|z|2)2k−2dσ(z)

)p/2

|dζ|
⎞
⎠

1
nk

,

where C4, C5 are positive constants.
Choosing u(z) = fρ(z) and h(z) = |A0(ρz)|(1 − |z|2)kχD\D(0,δ)(z) in Lemma

2.6, it follows that there are positive constants C6, C7, depending only on p, such that

(5.3)

∫
T

(∫
Γ(ζ)\D(0,δ)

|A0(ρz)|2|f(ρz)|2(1 − |z|2)2k−2dσ(z)

)p/2

|dζ|

≤ C6‖fρ‖p
Hp

(
sup

I

1
|I |
∫

S(I)\D(0,δ)
|A0(ρz)|2(1− |z|2)2k−1dσ(z)

)p/2

≤ C7‖fρ‖p
Hp

(
sup

|I|≤1−δ

1
|I |
∫

S(I)
|A0(ρz)|2(1− |z|2)2k−1dσ(z)

)p/2

,

where the last inequality follows by (2.3).
To deal with the first sum in (5.1), denote

Jj :=
∫

T

(∫
Γ(ζ)\D(0,δ)

|Aj(ρz)|
2

nk |f (j)(ρz)|
2nj
nk (1 − |z|2)2k−2dσ(z)

)p/2

|dζ|,
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for j = 1, · · · , k − 1.

When nj = nk, by (1.10) and Lemma 2.5,

(5.4)

Jj =
∫

T

(∫
Γ(ζ)\D(0,δ)

|Aj(ρz)|
2

nk |f (j)(ρz)|2(1 − |z|2)2k−2dσ(z)

)p/2

|dζ|

≤
∫

T

α
2

nk

(∫
Γ(ζ)\D(0,δ)

|f (j)(ρz)|2(1 − |z|2)2j−2dσ(z)

)p/2

|dζ|

≤ C8α
p

nk ‖fρ‖p
Hp,

where C8 is a positive constant, depending only on p and k.
When nj < nk, by the Hölder inequality and Lemma 2.5,

(5.5)

Jj =
∫

T

(∫
Γ(ζ)\D(0,δ)

|Aj(ρz)|
2

nk |f (j)(ρz)|
2nj
nk (1 − |z|2)2k−2dσ(z)

)p/2

|dζ|

≤
∫

T

(∫
Γ(ζ)\D(0,δ)

|f (j)(ρz)|2(1 − |z|2)2j−2dσ(z)

) pnj
2nk

×
(∫

Γ(ζ)\D(0,δ)
|Aj(ρz)|

2
nk−nj (1 − |z|2)

2(knk−jnj )

nk−nj
−2

dσ(z)

)p
2
(1−nj

nk
)

|dζ|

=
∫

T

C
1− nj

nk
9

(∫
Γ(ζ)\D(0,δ)

|f (j)(ρz)|2(1 − |z|2)2j−2dσ(z)

) pnj
2nk

|dζ|

≤
⎛
⎝∫

T

(∫
Γ(ζ)\D(0,δ)

|f (j)(ρz)|2(1 − |z|2)2j−2dσ(z)

)p
2

|dζ|
⎞
⎠

nj
nk

×
(∫

T

C9|dζ|
)1−nj

nk

≤ (C8‖fρ‖p
Hp

) nj
nk

(∫
T

C9|dζ|
)1−nj

nk
,

where

C9 =

(∫
Γ(ζ)\D(0,δ)

|Aj(ρz)|
2

nk−nj (1 − |z|2)
2(knk−jnj )

nk−nj
−2

dσ(z)

)p
2

.

Without loss of generality, we can assume that ‖fρ‖p
Hp > 1, then combining (5.1)-(5.5)

and letting ρ → 1−, the assumption (1.8) and (1.9),
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‖f‖p
Hp

(
1 − 2π(k − 1)C2C8α

p
2nk − C2C5C

1
nk
7 α

p
2nk

)

≤ C1

k−1∑
j=0

|f (j)(0)|p + C3,

from which the assertion follows by choosing α sufficiently small. This completes the
proof of Theorem 1.10.
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