TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 3, pp. 773-780, June 2014 DOI: 10.11650/tjm.18.2014.3645 This paper is available online at http://journal.taiwanmathsoc.org.tw

THE EQUITABLE CHROMATIC THRESHOLD OF THE CARTESIAN PRODUCT OF BIPARTITE GRAPHS IS AT MOST 4

Zhidan Yan, Wu-Hsiung Lin* and Wei Wang

Abstract. A graph G is equitably k-colorable if its vertex set can be partitioned into k independent sets, any two of which differ in size by at most 1. We prove a conjecture of Lin and Chang which asserts that for any bipartite graphs G and H, their Cartesian product $G \Box H$ is equitably k-colorable whenever $k \ge 4$.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and non-trivial. We assume that all variables present positive integers. Let G be a graph with vertex set V(G) and edge set E(G). A k-coloring of G is a mapping $f: V(G) \to \{1, 2, \ldots, k\}$ such that $f(x) \neq f(y)$ whenever $xy \in E(G)$. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G admits a k-coloring. We call the set $f^{-1}(i) = \{x \in V(G) : f(x) = i\}$ a color class for each $i = 1, 2, \dots, k$. Notice that each color class is an independent set, i.e., a pairwise non-adjacent subset of V(G), and hence a k-coloring is a partition of V(G) into k independent sets. An equitable k-coloring of G is a k-coloring for which any two color classes differ in size by at most one, or equivalently, each color class is of size ||V(G)|/k| or ||V(G)|/k|. A graph is *equitably k-colorable* if it admits an equitable k-coloring. The *equitable* chromatic number of G, denoted by $\chi_{=}(G)$, is the smallest integer k such that G is equitably k-colorable. The concept of equitable colorability was first introduced by Meyer [5]. Unlike the ordinary colorability, an equitably k-colorable graph may admit no equitable k'-coloring for some k' > k. A typical example is the complete bipartite graph $K_{n,n}$ where $n \ge 3$ is odd, which is clearly equitably 2-colorable but not equitably *n*-colorable. This phenomena suggests the concept of equitable chromatic threshold.

Received August 8, 2013, accepted October 25, 2013.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C15, 05C76.

Key words and phrases: Equitable coloring, Equitable chromatic threshold, Cartesian product, Bipartite graph.

^{*}Corresponding author.

The equitable chromatic threshold of G, denoted by $\chi^*_{=}(G)$, is the smallest integer k such that G is equitably k'-colorable for all $k' \ge k$. The notion of equitable coloring has received a lot of attention and we refer to [3] for a good survey.

For two graphs G and H, the Cartesian product $G \Box H$ of G and H is the graph with vertex set $\{(x, y) : x \in V(G), y \in V(H)\}$ and edge set $\{(x, y)(x', y') : (x = x' \text{ and } yy' \in E(H)) \text{ or } (xx' \in E(G) \text{ and } y = y')\}$. Sabidussi [6] showed that $\chi(G \Box H) = \max\{\chi(G), \chi(H)\}$. However, the analogous question for the equitable colorability is less satisfactory. The following result due to Chen, Lih and Yan [1] gives a partial answer.

Theorem 1. ([1, Theorem 4]). If G and H are equitably k-colorable, then so is $G \Box H$.

Theorem 1 immediately implies the following upper bounds on $\chi_{=}(G \Box H)$ and $\chi_{=}^{*}(G \Box H)$.

Corollary 2. $\chi_{=}(G \Box H) \leq \min\{k: both \ G \text{ and } H \text{ are equitably } k\text{-colorable}\}.$

Corollary 3. $\chi_{=}^{*}(G \Box H) \leq \max\{\chi_{=}^{*}(G), \chi_{=}^{*}(H)\}.$

Chen et al. [1] also gave the exact values of $\chi_{=}(G \Box H)$ and $\chi_{=}^{*}(G \Box H)$ when G and H are both complete graphs or both cycles, and Furmańczyk [2] gave $\chi(G \Box H) = \chi_{=}(G \Box H) = \chi_{=}^{*}(G \Box H) = \max{\chi(G), \chi(H)}$ when G and H are cycles, paths, hypercubes, or complete graphs, and $\chi_{=}(K_{1,m+2} \Box P_{2n+1}) = 3$. Lin and Chang [4] gave the following result for more classes of graphs.

Corollary 4. ([4, Corollary 3]). If G and H are graphs with $\chi(G) = \chi_{=}^{*}(G)$ and $\chi(H) = \chi_{=}^{*}(H)$, then $\chi(G \Box H) = \chi_{=}(G \Box H) = \chi_{=}^{*}(G \Box H) = \max{\chi(G), \chi(H)}.$

Note that the equitable chromatic number and threshold of bipartite graphs can be arbitrarily large but the chromatic number is just 2. For example, $\chi_{=}(K_{1,n}) = \chi_{=}^{*}(K_{1,n}) = \lceil \frac{n}{2} \rceil + 1$. Lin and Chang [4] gave the following two results to indicate that the bounds given in Corollaries 2 and 3 may be far from the exact values for bipartite graphs.

Theorem 5. ([4, Theorem 11]). $K_{m,n} \Box K_{m',n'}$ is equitably 4-colorable.

Theorem 6. ([4, Theorem 14]). If $n, n' \ge 3$ then $\chi^*_{=}(K_{1,n} \Box K_{1,n'}) = 4$ except for $\chi^*_{=}(K_{1,n} \Box K_{1,n'}) = 3$, when $(n-2)(n'-2) \le 5$.

Beside Theorem 6, Lin and Chang in [4] also determined $\chi_{=}^*(G\Box H)$ for some other classes of bipartite graphs. For instance, for bipartite graph H, $\chi_{=}(P_{2n+1}\Box H) = \chi_{=}^*(P_{2n+1}\Box H) = 3$ except that $\chi_{=}(P_{2n+1}\Box H) = \chi_{=}^*(P_{2n+1}\Box H) = 2$, when $\chi_{=}(H) \leq 2$; $\chi_{=}(C_{2\ell+2}\Box K_{m,n}) = \chi_{=}^*(C_{2\ell+2}\Box K_{m,n}) = \chi_{=}(P_{2\ell}\Box K_{m,n}) = \chi_{=}^*(P_{2\ell}\Box K_{m,n}) = 2$ except for $\chi_{=}^*(C_4\Box K_{m,n}) = \chi_{=}^*(P_2\Box K_{m,n}) = 4$, when $m + n + 2 < 3 \min\{m, n\}$. Based on these exact values, they raised the following conjecture.

Conjecture 7. ([4, Conjecture 2]). $\chi_{=}^{*}(G \Box H) \leq 4$ for bipartite graphs G and H.

It is easy to see that Conjecture 7 is true if it holds for complete bipartite graphs. Hence, we can restate the conjecture as the following theorem.

Theorem 8. $\chi_{=}^{*}(K_{m,n} \Box K_{m',n'}) \leq 4.$

In this paper, we prove Theorem 8.

2. Proof of Theorem 8

In what follows, we always assume $m \le n$ and $m' \le n'$. Noting that Theorem 8 is true when one factor is $K_{1,1} = P_2$, or $K_{1,2} = P_3$, or $K_{2,2} = C_4$, so it is sufficient to consider for $n \ge 3$ and $n' \ge 3$.

We say that $K_{m,n}$ is *almost balanced* if $|m - n| \le 1$. First, when one factor is almost balanced, we apply the following theorem given by Lin and Chang.

Theorem 9. ([4, Theorem 9]). If m, n, m' and n' are positive integers such that $m \leq n$, $m' \leq n'$, $m + n \geq 4$ and $m' + n' \geq 4$, then $K_{m,n} \Box K_{m',n'}$ is equitably k-colorable for $k \geq \lceil \frac{(m+n)(m'+n')}{\max\{m(n'-1),m'(n-1)\}+1} \rceil$.

Lemma 10. For positive integers n, m' and n' with $n \ge 3$, $n' \ge 3$ and $n' \ge m'$, $\chi^*_{=}(K_{n-1,n} \Box K_{m',n'}) \le 5$ and $\chi^*_{=}(K_{n,n} \Box K_{m',n'}) \le 5$.

Proof. We consider four cases as follows.

Case 1. $K_{n-1,n} \Box K_{m',n'}$ with m' < n'. In this case, we have $(n-1)(n'-1) - (n-1)m' = (n-1)(n'-m'-1) \ge 0$ and $5((n-1)(n'-1)+1) - (2n-1)(m'+n') = (2n-1)(n'-m'-1) + (n-3)(n'-3) \ge 0$. By Theorem 9, $\chi_{=}^{*}(K_{n-1,n} \Box K_{m',n'}) \le \lceil \frac{(2n-1)(m'+n')}{\max\{(n-1)(n'-1),(n-1)m'\}+1} \rceil = \lceil \frac{(2n-1)(m'+n')}{(n-1)(n'-1)+1} \rceil \le 5$.

Case 2. $K_{n,n} \Box K_{m',n'}$ with m' < n'. In this case, we have $n(n'-1) - (n-1)m' = n(n'-m'-1) + m' \ge 0$ and $5(n(n'-1)+1) - 2n(m'+n') = n(n'-3) + 2n(n'-m'-1) + 5 \ge 0$. By Theorem 9, $\chi^*_{=}(K_{n,n} \Box K_{m',n'}) \le \lceil \frac{2n(m'+n')}{\max\{n(n'-1),(n-1)m'\}+1} \rceil = \lceil \frac{2n(m'+n')}{n(n'-1)+1} \rceil \le 5$. This case includes the case of $K_{n-1,n} \Box K_{n',n'}$.

Case 3. $K_{n,n} \Box K_{n',n'}$ except n = n' = 3. In this case, we may assume $n' \ge n$. Then we have $n(n'-1) - (n-1)n' = n' - n \ge 0$ and $5(n(n'-1)+1) - 4nn' = n(n'-5) + 5 \ge 0$. By Theorem 9, $\chi^*_{=}(K_{n,n} \Box K_{n',n'}) \le \lceil \frac{4nn'}{\max\{n(n'-1),(n-1)n'\}+1} \rceil = \lceil \frac{4nn'}{n(n'-1)+1} \rceil \le 5$.

Case 4. $K_{3,3} \Box K_{3,3}$. In this case, we show that $K_{3,3} \Box K_{3,3}$ is equitably 5-colorable by giving an equitable 5-coloring illustrated in Fig. 1.

j	$K_{3,3}$	x'_1	x'_2	x'_3	y'_1	y'_2	y'_3
$K_{3,3}$		•	٠	•)	•	٠	•
x_1	•	4	5	5	2	2	3
x_2	•	5	5	5	2	2	3
x_3	J	5	5	5	2	3	3
y_1	•	1	1	1	3	4	4
y_2	•	1	1	2	3	4	4
y_3	•	1	1	2	3	4	4

Figure 1: An equitable 5-coloring of $K_{3,3} \Box K_{3,3}$.

By commutativity of Cartesian product, we can assume $m' \ge m$. Moreover, if m' = 1 then m = 1 and hence Theorem 8 holds by Theorem 6. Therefore, we can assume $m' \ge 2$. Now we give the following lemma to deal with the remaining cases.

Lemma 11. For positive integers m, n, m' and n' with $n \ge m+2, n' \ge m'+2$, $m' \ge m$ and $m' \ge 2$, $\chi_{=}^{*}(K_{m,n} \Box K_{m',n'}) \le 5$.

Proof. We shall give a particular ordering of $V(K_{m,n} \Box K_{m',n'})$ and show that any set consisting of consecutive vertices in this ordering of size no more than $\lceil \frac{1}{5}(m+n)(m'+n') \rceil$ is an independent set. Then, for each $k \ge 5$, we can obtain an equitable k-coloring of $K_{m,n} \Box K_{m',n'}$ by partitioning its vertex set consecutively in the ordering into k sets of size $\lfloor \frac{1}{k}(m+n)(m'+n') \rfloor$ or $\lceil \frac{1}{k}(m+n)(m'+n') \rceil$, each of which is clearly independent.

Namely, we say the bipartition of $K_{m,n}$ consists of $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ and the bipartition of $K_{m',n'}$ consists of $\{x'_1, \ldots, x'_{m'}\}$ and $\{y'_1, \ldots, y'_{n'}\}$. We order the vertices of $K_{m,n} \Box K_{m',n'}$ as follows, where X_1, \ldots, X_9 are shown in Fig. 2, and label the vertices in this ordering as $v_1, v_2, \ldots, v_{(m+n)(m'+n')}$.

$$\begin{aligned} X_1 : & (x_1, y_1'), (x_2, y_1'), \dots, (x_m, y_1'), (x_1, y_2'), (x_2, y_2'), \dots, (x_m, y_2'), \dots, , \\ & (x_1, y_{\lfloor \frac{n'}{2} \rfloor}'), (x_2, y_{\lfloor \frac{n'}{2} \rfloor}'), \dots, (x_m, y_{\lfloor \frac{n'}{2} \rfloor}'); \\ X_2 : & (y_1, x_1'), (y_2, x_1'), \dots, (y_{\lfloor \frac{n}{2} \rfloor}, x_1'), (y_1, x_2'), (y_2, x_2'), \dots, (y_{\lfloor \frac{n}{2} \rfloor}, x_2'), \dots, , \\ & (y_1, x_{m'}'), (y_2, x_{m'}'), \dots, (y_{\lfloor \frac{n}{2} \rfloor}, x_{m'}'); \end{aligned}$$

Figure 2: Vertex ordering for $K_{m,n} \Box K_{m',n'}$.

More precisely, vertices in X_1 appear first followed by those in X_2, X_3, \ldots, X_9 continuously, and we always have s < t for any two distinct vertices $v_s = (x_i, x'_j)$ (resp. (x_i, y'_j) , (y_i, x'_j) or (y_i, y'_j)) and $v_t = (x_p, x'_q)$ (resp. (x_p, y'_q) , (y_p, x'_q) or (y_p, y'_q)) in the same X_ℓ for $\ell = 1, \ldots, 9$ if either j < q, or j = q and i < p.

Let $\gamma = \min\{t-s-1: 1 \le s < t \le (m+n)(m'+n'), v_s v_t \in E(K_{m,n} \Box K_{m',n'})\}$. Clearly γ is well-defined since $K_{m,n} \Box K_{m',n'}$ is non-empty, and any set consisting of consecutive vertices in the ordering of size no more than $\gamma + 1$ is independent.

By the definition of Cartesian product, one easily check that $X_3 \cup X_4 \cup \cdots \cup X_7$ and $X_i \cup X_{i+1} \cup X_{i+2}$ for $i \in \{1, 2, 5, 6, 7\}$ are independent. Hence, γ attends only when $v_s \in X_i$ and $v_t \in X_{i+3}$ for some $i \in \{1, 2, 5, 6\}$. When the minimality of t - s - 1 occurs with $v_s \in X_1$ and $v_t \in X_4$, if $m \leq \lceil \frac{n}{2} \rceil$, then $v_s = (x_m, y'_1)$ and $v_t = (y_{\lceil \frac{n}{2} \rceil + 1}, y'_1)$ which gives $\gamma = |X_1| + |X_2| + |X_3| - m$; otherwise, if $m > \lceil \frac{n}{2} \rceil$, then $\begin{aligned} v_s &= (x_m, y_{\lfloor \frac{n'}{2} \rfloor}') \text{ and } v_t = (y_{\lfloor \frac{n}{2} \rfloor + 1}, y_{\lfloor \frac{n'}{2} \rfloor}') \text{ which gives } \gamma = |X_2| + |X_3| + |X_4| - \lceil \frac{n}{2} \rceil. \end{aligned} \\ \text{Similar consideration for other three possible values of } i \text{ leads that } \gamma = \min\{|X_1| + |X_2| + |X_3| - m, |X_2| + |X_3| + |X_4| - \lceil \frac{n}{2} \rceil, |X_2| + |X_3| + |X_4| - \lfloor \frac{n}{2} \rfloor, |X_3| + |X_4| + |X_5| - m, |X_5| + |X_6| + |X_7| - m, |X_6| + |X_7| + |X_8| - \lceil \frac{n}{2} \rceil, |X_6| + |X_7| + |X_8| - \lfloor \frac{n}{2} \rfloor, |X_7| + |X_8| + |X_9| - m \}. \end{aligned}$ For simplicity, in what follows let $a_i = |X_i|$ for $i = 1, \ldots, 9$, see Table 1 for exact values of a_i 's.

Table 1: List of exact values of a_i 's

i	1	2	3	4	5	6	7	8	9
a_i	$m\lfloor \frac{n'}{2} \rfloor$	$\lfloor \frac{n}{2} \rfloor m'$	$\left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n'}{2} \right\rceil$	$\left\lceil \frac{n}{2} \right\rceil \left\lfloor \frac{n'}{2} \right\rfloor$	mm'	$\lfloor \frac{n}{2} \rfloor \lceil \frac{n'}{2} \rceil$	$\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n'}{2} \right\rfloor$	$\lceil \frac{n}{2} \rceil m'$	$m\lceil \frac{n'}{2}\rceil$

Since $\lceil \frac{n}{2} \rceil \ge \lfloor \frac{n}{2} \rfloor$, $(a_2 + a_3 + a_4 - \lceil \frac{n}{2} \rceil) - (a_6 + a_7 + a_8 - \lceil \frac{n}{2} \rceil) = (\lfloor \frac{n}{2} \rfloor m' + \lceil \frac{n}{2} \rceil n' - \lceil \frac{n}{2} \rceil) - (\lfloor \frac{n}{2} \rfloor n' + \lceil \frac{n}{2} \rceil m' - \lceil \frac{n}{2} \rceil) = (\lceil \frac{n}{2} \rceil - \lfloor \frac{n}{2} \rfloor)(n' - m') \ge 0$, and $(a_3 + a_4 + a_5 - m) - (a_5 + a_6 + a_7 - m) = (\lceil \frac{n}{2} \rceil n' + mm' - m) - (mm' + \lfloor \frac{n}{2} \rfloor n' - m) = (\lceil \frac{n}{2} \rceil - \lfloor \frac{n}{2} \rfloor)n' \ge 0$, we have $\gamma = \min\{a_1 + a_2 + a_3 - m, a_5 + a_6 + a_7 - m, a_6 + a_7 + a_8 - \lceil \frac{n}{2} \rceil, a_7 + a_8 + a_9 - m\}$.

Lastly, we shall prove a stronger result that $\gamma \geq \frac{1}{5}(m+n)(m'+n')$ by checking all the four expressions $a_1 + a_2 + a_3 - m$, $a_5 + a_6 + a_7 - m$, $a_6 + a_7 + a_8 - \lceil \frac{n}{2} \rceil$, $a_7 + a_8 + a_9 - m$ are not less than $\frac{1}{5}(m+n)(m'+n')$. Note that $\lceil \frac{n}{2} \rceil \geq \frac{n}{2}$, $\lfloor \frac{n}{2} \rfloor \geq \frac{n-1}{2}$ and $\lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor = n$. Thus, by the assumption that $n \geq m+2$, $n' \geq m'+2$, $m' \geq m$ and $m' \geq 2$, we have the following four inequalities.

$$20(a_1 + a_2 + a_3 - m) - 4(m+n)(m'+n')$$

$$= 20(m \left\lfloor \frac{n'}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor m' + \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n'}{2} \right\rceil - m) - 4(m+n)(m'+n')$$

$$(1) \geq 10m(n'-1) + 10(n-1)m' + 5nn' - 20m - 4(m+n)(m'+n')$$

$$= (m+n)(n'+m'-5) + 5(n-m-2)(m'+1) + 5m(n'-4) + 10$$

$$\geq 0.$$

$$20(a_{5} + a_{6} + a_{7} - m) - 4(m + n)(m' + n')$$

$$= 20(mm' + \left\lfloor \frac{n}{2} \right\rfloor n' - m) - 4(m + n)(m' + n')$$

$$\geq 20mm' + 10(n - 1)n' - 20m - 4(m + n)(m' + n')$$

$$= (m + n)(m' + n' - 5) + 5(n - m - 2)(n' - m' + 1) + 10(m - 1)(m' - 1)$$

$$\geq 0.$$

$$20(a_{6} + a_{7} + a_{8} - \left\lceil \frac{n}{2} \right\rceil) - 4(m+n)(m'+n') \\= 20(\left\lfloor \frac{n}{2} \right\rfloor n' + \left\lceil \frac{n}{2} \right\rceil (m'-1)) - 4(m+n)(m'+n') \\\geq 10(n-1)n' + 10n(m'-1) - 4(m+n)(m'+n') \\= (m+n)(m'+n'-5) + 5(n-m-2)(n'+m'-1) + 10(m'-1) \\\geq 0. \\20(a_{7} + a_{8} + a_{9} - m) - 4(m+n)(m'+n') \\= 20(\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n'}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil m' + m \left\lceil \frac{n'}{2} \right\rceil - m) - 4(m+n)(m'+n') \\\geq 5(n-1)(n'-1) + 10nm' + 10mn' - 20m - 4(m+n)(m'+n') \\= (m+n)(m'+n'-5) + 5(n-m-2)m' + 5(m-1)(n'-3) + 10(m'-1) \\\geq 0.$$

By inequalities (1) to (4) and the definition of γ , we have $\gamma \geq \frac{1}{5}(m+n)(m'+n')$ and hence $\chi_{=}^{*}(K_{m,n} \Box K_{m',n'}) \leq \lceil \frac{(m+n)(m'+n')}{\gamma+1} \rceil \leq 5.$

According to Theorem 5, Lemmas 10 and 11, we have $\chi^*_{=}(K_{m,n} \Box K_{m',n'}) \leq 4$ for $n \geq 3, n' \geq 3, m' \geq m$ and $m' \geq 2$, and this completes the proof of Theorem 8.

REFERENCES

- 1. B.-L. Chen, K.-W. Lih and J.-H. Yan, Equitable coloring of interval graphs and products of graphs, arXiv:0903.1396v1.
- 2. H. Furmańczyk, Equitable coloring of graph products, Opuscula Math., 26 (2006), 31-44.
- 3. K.-W. Lih, The equitable coloring of graphs, in: *Handbook of Combinatorial Optimization*, D.-Z. Du, P. Pardalos (eds.), Vol. 3, Kluwer, Dordrecht, 1998, pp. 543-566.
- 4. W.-H. Lin and G. J. Chang, Equitable colorings of Cartesian products of graphs, *Discrete Appl. Math.*, **160** (2012), 239-247.
- 5. W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973), 920-922.
- 6. G. Sabidussi, Graphs with given group and given graph-theoretical properties, *Canad. J. Math.*, **9** (1957), 512-525.

Zhidan Yan and Wei Wang College of Information Engineering Tarim University Alar 843300 P. R. China E-mail: yanzhidan.math@gmail.com wangwei.math@gmail.com Zhidan Yan, Wu-Hsiung Lin and Wei Wang

Wu-Hsiung Lin Department of Applied Mathematics National Chiao Tung University Hsinchu 30010, Taiwan E-mail: d92221001@ntu.edu.tw

780