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THE EQUITABLE CHROMATIC THRESHOLD OF THE CARTESIAN
PRODUCT OF BIPARTITE GRAPHS IS AT MOST 4

Zhidan Yan, Wu-Hsiung Lin* and Wei Wang

Abstract. A graph G is equitably k-colorable if its vertex set can be partitioned
into &k independent sets, any two of which differ in size by at most 1. We prove
a conjecture of Lin and Chang which asserts that for any bipartite graphs G and
H, their Cartesian product GOH is equitably k-colorable whenever k > 4.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and non-trivial.
We assume that all variables present positive integers. Let G be a graph with vertex set
V(G) and edge set E(G). A k-coloring of G is a mapping f : V(G) — {1,2,...,k}
such that f(x) # f(y) whenever xy € E(G). The chromatic number of G, denoted
by x(G), is the smallest integer & such that G admits a k-coloring. We call the set
f7Yi) = {x € V(G): f(z) = i} a color class for each i = 1,2,..., k. Notice that
each color class is an independent set, i.e., a pairwise non-adjacent subset of V(G),
and hence a k-coloring is a partition of V(G) into k independent sets. An equitable
k-coloring of G is a k-coloring for which any two color classes differ in size by at
most one, or equivalently, each color class is of size ||V(G)|/k] or [|V(G)|/k]. A
graph is equitably k-colorable if it admits an equitable k-coloring. The equitable
chromatic number of G, denoted by x—(G), is the smallest integer & such that G is
equitably k-colorable. The concept of equitable colorability was first introduced by
Meyer [5]. Unlike the ordinary colorability, an equitably k-colorable graph may admit
no equitable £’-coloring for some &’ > k. A typical example is the complete bipartite
graph K, ,, where n > 3 is odd, which is clearly equitably 2-colorable but not equitably
n-colorable. This phenomena suggests the concept of equitable chromatic threshold.
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The equitable chromatic threshold of G, denoted by x* (G), is the smallest integer &
such that G is equitably %’-colorable for all " > k. The notion of equitable coloring
has received a lot of attention and we refer to [3] for a good survey.

For two graphs G and H, the Cartesian product GOH of G and H is the graph with
vertex set {(z,y): = € V(G),y € V(H)} and edge set {(z,y)(2',y/): (x = 2’ and
yy' € E(H)) or (x2’ € E(G) and y = y/)}. Sabidussi [6] showed that x(GOH) =
max{x(G), x(H)}. However, the analogous question for the equitable colorability is
less satisfactory. The following result due to Chen, Lih and Yan [1] gives a partial
answer.

Theorem 1. ([1, Theorem 4]). If G and H are equitably k-colorable, then so is
GOH.

Theorem 1 immediately implies the following upper bounds on y—(GOH) and
XZ(GOH).

Corollary 2. x—(GOH) < min{k: both G and H are equitably k-colorable}.
Corollary 3. x* (GOH) < max{x*(G),x*(H)}.

Chen et al. [1] also gave the exact values of x_(GOH) and x*(GOH) when G
and H are both complete graphs or both cycles, and Furmanczyk [2] gave x(GOH) =
Xx=(GOH) = xL(GOH) = max{x(G),x(H)} when G and H are cycles, paths,
hypercubes, or complete graphs, and x— (K1 m+20Psn+1) = 3. Lin and Chang [4]
gave the following result for more classes of graphs.

Corollary 4. ([4, Corollary 3]). If G and H are graphs with x(G) = x*(G) and
X(H) = xZ(H), then x(GOH) = x=(GOH) = xL(GOH) = max{x(G), x(H)}.

Note that the equitable chromatic number and threshold of bipartite graphs can
be arbitrarily large but the chromatic number is just 2. For example, x—(K;,) =
X2 (K1) = [5] + 1. Lin and Chang [4] gave the following two results to indicate
that the bounds given in Corollaries 2 and 3 may be far from the exact values for
bipartite graphs.

Theorem 5. ([4, Theorem 11]). K,, ,0OK,, , is equitably 4-colorable.

Theorem 6. ([4, Theorem 14]). If n,n’ > 3 then x* (K, ,0K ,/) = 4 except for
XE (K1 nOK ) = 3, when (n — 2)(n' —2) <5.

Beside Theorem 6, Lin and Chang in [4] also determined x* (GOH) for some
other classes of bipartite graphs. For instance, for bipartite graph H, x—(Ps,+10H) =
X (Pony10H) = 3 exceptthat x— (Pop10H) = X2 (Popy 1 OH) = 2, when x—(H) <
2; X:<C2Z+2DKm,n> = X*:<02Z+2DKm,n> = XZ(P%DKm,n) = XL(PZZDKm,n> =2
except for x£(C40K,, ) = X2 (POKy,n) = 4, when m 4+ n + 2 < 3min{m, n}.
Based on these exact values, they raised the following conjecture.
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Conjecture 7. ([4, Conjecture 2]). x* (GOH) < 4 for bipartite graphs G and H.

It is easy to see that Conjecture 7 is true if it holds for complete bipartite graphs.
Hence, we can restate the conjecture as the following theorem.

Theorem 8. x* (K, nOK,y ) < 4.

In this paper, we prove Theorem 8.

2. ProoF oF THEOREM 8

In what follows, we always assume m < n and m’ < n’. Noting that Theorem 8
is true when one factor is K ; = P, or K19 = P3, or Koo = Cy, so it is sufficient
to consider for n > 3 and n’ > 3.

We say that K, ,, is almost balanced if [m — n| < 1. First, when one factor is
almost balanced, we apply the following theorem given by Lin and Chang.

Theorem 9. ([4, Theorem 9]). If m, n, m’ and n’ are positive integers such that
m<n,m <n, m+n>4andm +n >4, then K,, ,0K,, , is equitably

k-colorable for k > (max{n%ﬂign;;m/_)l)}HW

Lemma 10. For positive integers n, m’ and n’ with n > 3, n’ > 3 and n’ > m/,
XL(Kn—l,nDKm/,n/> <5 and XL(Kn,nDKm/,n/> <5.

Proof. We consider four cases as follows.

Case 1. K,,—1,0Ky s With m' < n'. In this case, we have (n —1)(n' — 1) —
(n=1)m'=(n—-1)(n'=m'—1)>0and 5((n—1)(n'=1)+1)—(2n—1)(m'+n') =
(2n—1)(n'—m' —1)+ (n—3)(n' —3) > 0. By Theorem 9, x* (K1 n DKy n) <

(2n—1)(m'+n’) _ r(@2n=1)(m'+n))
’Vmax{(n—l)(n/—l),(n—l)m/}—i—l—‘ - ’V(n—l)(n/—l)—f—l—‘ < 5.

Case 2. K, ,0K, ,» Withm’ < n’. In this case, we have n(n’—1) — (n—1)m’ =
n(n'—m/'—1)+m/ > 0and 5(n(n' —1)+1) —2n(m' +n') = n(n’ — 3)+2n(n’ —
)

m' —1)+5 > 0. By Theorem 9, x* (Ky 0O Ko w) < [smror oyt | =
[2n(m/+n/)

m} < 5. This case includes the case of K,,_1 ,0K, .

Case 3. K, ,0K,,,  except n = n’ = 3. In this case, we may assume n’ > n.
Then we have n(n’ — 1) — (n —1)n" =n'—n > 0and 5(n(n’ — 1)+ 1) — 4nn’ =

n(n' —5) +5 > 0. By Theorem 9, x* (K, ,OK ) < [ max{n(n/_‘*{;"(/n_l)n/} —1=
[ (4nn/ " < 5.

n(n’—1)+1

Case 4. K330K3 3. Inthis case, we show that K3 300K 3 is equitably 5-colorable
by giving an equitable 5-coloring illustrated in Fig. 1. ]
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Kzz oy oy oy yi vy s
K373 d (o ° .H. ° o)
zi(e) 4 5 5 2 2 3
To| e 5 5 5 2 2 3
T3 j: 5 5 5 2 3 3
Y| e 1 1 1 3 4 4
Ya| e 1 1 2 3 4 4
Ys \:/ 1 1 2 3 4 4

Figure 1: An equitable 5-coloring of K3 30K3 3.

By commutativity of Cartesian product, we can assume m’ > m. Moreover, if
m’ = 1 then m = 1 and hence Theorem 8 holds by Theorem 6. Therefore, we can
assume m’ > 2. Now we give the following lemma to deal with the remaining cases.

Lemma 11. For positive integers m, n, m’ and n’ with n > m +2, n’ > m’ + 2,
m' >m and m’ > 2, x£ (K nOKyy n) < 5.

Proof. We shall give a particular ordering of V' (K, ,OK,, /) and show that any
set consisting of consecutive vertices in this ordering of size no more than [1(m +
n)(m’+n')] is an independent set. Then, for each & > 5, we can obtain an equitable
k-coloring of K,, ,OK,, ,, by partitioning its vertex set consecutively in the ordering
into k sets of size | (m + n)(m’' +n')] or [£(m + n)(m’ + n')], each of which is
clearly independent.

Namely, we say the bipartition of K, ,, consists of {x1,...,zx} and {y1,...,yn}
and the bipartition of K, consists of {z,..., 2/ ,} and {y{,...,y/,}. We order
the vertices of K, ,0K,, . as follows, where X, ..., Xy are shown in Fig. 2, and
label the vertices in this ordering as v, va, . . ., V(m-yn)(m/4n’)-

X1 (@n,0), (22,91), o5 (Bmy 01), (21,95), (T2, 85), -+ (T Ya)s -5

/

/ / .
<x1’yl_%/J>’<x2’yl_%/J>"<xm’yl_%/J>1
X2 : (yl,xll), (yg,x/1>,..., (yL%J,$/1>, <y1,$/2>, <y2,$/2>,..., (yLﬁJ,$2>, ey ey
(y1,$/m/>,(y2,$;n/> ""<yL%J’x;n/>;
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Cey e ey e ey ey

Xg: (acl,

~—

// ,[E,// ,...,IE,// !xal/ 9
y/L%J+1 @2 Y ) @Yy ) (E1Y )

<x2’y|_%/J+2>’ HERE) <[Em’y1%/J+2>’ R (xlay;/% <x27y;/>7 EERE (xmay;LJ

zi (o)
™)
y.lf?
| X2 || x7 X
vz ()
vzl (e)
||| Xs Xy X3
un 4

Figure 2: Vertex ordering for K, ,OK,, /.

More precisely, vertices in X7 appear first followed by those in X5, X3,..., Xg
continuously, and we always have s < ¢ for any two distinct vertices v; = (z;, 2)
(resp. (@i, yj), (wi, ) or (yi,y})) and vy = (xp, ) (resp. (2p,9g), (Yp, ) OF
(Yp, yy)) in the same X, for £=1,...,9if either j < g, or j =g and i < p.

Lety =min{t—s—1: 1 <s <t < (m+n)(m +n'),vsvs € E(KpnOKpy 1)}
Clearly ~ is well-defined since K, ,,0K,,  is non-empty, and any set consisting of
consecutive vertices in the ordering of size no more than ~ + 1 is independent.

By the definition of Cartesian product, one easily check that X3 U X, U---U X7
and X; U X; 11 U X, 1o for i € {1,2,5,6,7} are independent. Hence, ~ attends only
when v, € X; and v; € X3 for some i € {1,2,5,6}. When the minimality of
t — s — 1 occurs with v, € Xy and vy € Xy, if m < [§], then v, = (2, 97) and
vt = (Y 2|11, Y1) Which gives v = [ X3 |+|Xo|+[X3| —m; otherwise, if m > [3], then



778 Zhidan Yan, Wu-Hsiung Lin and Wei Wang

a = (0] ) AN = (341, ) Which gives 7 = [ X+ X5 +|Xi| ~ 4]
Similar consideration for other three possible values of i leads that v = min{|X;| +
| Xo|+| X3 —m, | Xo|+[Xs|+| Xa| = [5], | Xo| +[ X5+ Xu| = [ 5], [ Xs|+ ]| Xa|+ | Xs5| -
m, | Xs| + | Xe| + [ X7 —m, | Xo| + | X7| + [ Xs[ = [5], [ Xo| + [ X7 +[Xs| = [5], [ X7] +
| Xs| + | Xg| —m}. For simplicity, in what follows let a; = | X;| for i = 1,...,9, see
Table 1 for exact values of a;’s

Table 1: List of exact values of a;’s

i 1 2 3 4 5 6 7 8 9

ai ml%] [Em (2% T31%) mm’ [2][%]

Since [5] > | 5], (a2+a3+a4—[%}) (a6+a7+a8—[%-‘
,an

3D =3 JnH@W m' —15]) = ([3] =Lz )) (' —m )

) =
nd
(a5+a6+a7 m) = ([5]n +mm’—m)—(mm/+| 5 |n/ ) F
(m

([5]m +[5]n" -
3+aq4+a5—m )—
1=15])n" >0, we

(

:

IS

\—IL\Dl:

have v = min{a; +as+as—m, as+ag+a7r —m, a6—|—a7+a8— ar+ag+ag—m}.

Lastly, we shall prove a stronger result that v > (m + n)(m’ +n') by checking
all the four expressions a; + as + a3 — m, as + ag + ar —m, ag + a7 +ag — [ 5],
a7+ ag -+ ag —m are not less than %(m+n)(m’+n’). Note that [ 5] > g, 5] > ”T‘l
and [§] + [5] = n. Thus, by the assumption that n > m + 2, n' > m’' +2, m' > m
and m’ > 2, we have the following four inequalities.

20(a1 + ag + az — m) — 4(m+n)(m’ +n’)

n n

= 20(m {;J + {gJ m' + [5-‘ [%ﬂ‘ —m) —4(m+n)(m +n')

ORI 10m(n' — 1) +10(n — 1)m’ + 5nn/ — 20m — 4(m + n)(m' +n')
= (m+n)n +m —5)+5(n—m—2)(m'+ 1)+ 5m(n’ —4) + 10
> 0.

20(as + ag + ar — m) — 4(m + n)(m’ + n’)

20(mm’ + bJ n' —m) —4(m+n)(m' +n')

(2 > 20mm’ +10(n — 1)n’ — 20m — 4(m +n)(m’ +n’)
= (m+n)(m'+n'=5)+5(n—m—2)(n'—m'+1)+10(m—1)(m'-1)
> 0.



Equitable Colorings of Cartesian Products of Bipartite Graphs 779

20(ag + a7 + ag — [g-‘) —4(m +n)(m' +n)

= 20(| 5] ' + [ 5] (m' = 1)) = d(m+ m) (0’ + )

) > 10(n — 1)n’ +10n(m’' — 1) — 4(m +n)(m’ +n')
= (m+n)(m' +n —=5)+5n—-—m—-2)(n"+m' —1) +10(m' — 1)
> 0.
20(ar + ag + ag — m) — 4(m + n)(m’ +n’)

n n'

= 20({§J {%/J + [g-‘ m' +m [3-‘ —m) —4(m+n)(m' +n')
5(n—1)(n’ — 1) 4+ 10nm’ 4+ 10mn’ — 20m — 4(m +n)(m’ +n’)

= (m+n)(m'+n'=5)+5(n—m—2)m'+5(m—1)(n'=3) + 10(m’ — 1)
> 0.

(4)

v

By inequalities (1) to (4) and the definition of , we have v > L (m+n)(m’ +n)
* + '+n/
and hence X (K, nOKpy 1) < (W+")} <5. [
According to Theorem 5, Lemmas 10 and 11, we have x* (K, n 0Ky ) < 4 for
n>3,n' >3, m' >mand m’ > 2, and this completes the proof of Theorem 8.

REFERENCES

1. B.-L. Chen, K.-W. Lih and J.-H. Yan, Equitable coloring of interval graphs and products
of graphs, arXiv:0903.1396v1.

2. H. Furmanczyk, Equitable coloring of graph products, Opuscula Math., 26 (2006), 31-44.

3. K.-W. Lih, The equitable coloring of graphs, in: Handbook of Combinatorial Optimiza-
tion, D.-Z. Du, P. Pardalos (eds.), Vol. 3, Kluwer, Dordrecht, 1998, pp. 543-566.

4. W.-H. Lin and G. J. Chang, Equitable colorings of Cartesian products of graphs, Discrete
Appl. Math., 160 (2012), 239-247.

5. W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973), 920-922.

6. G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad.
J. Math., 9 (1957), 512-525.

Zhidan Yan and Wei Wang

College of Information Engineering

Tarim University

Alar 843300

P. R. China

E-mail: yanzhidan.math@gmail.com
wangwei.math@gmail.com



780 Zhidan Yan, Wu-Hsiung Lin and Wei Wang

Wu-Hsiung Lin

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30010, Taiwan

E-mail: d92221001@ntu.edu.tw



