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THE EQUITABLE CHROMATIC THRESHOLD OF THE CARTESIAN
PRODUCT OF BIPARTITE GRAPHS IS AT MOST 4

Zhidan Yan, Wu-Hsiung Lin* and Wei Wang

Abstract. A graph G is equitably k-colorable if its vertex set can be partitioned
into k independent sets, any two of which differ in size by at most 1. We prove
a conjecture of Lin and Chang which asserts that for any bipartite graphs G and
H , their Cartesian product G�H is equitably k-colorable whenever k ≥ 4.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and non-trivial.
We assume that all variables present positive integers. Let G be a graph with vertex set
V (G) and edge set E(G). A k-coloring of G is a mapping f : V (G) → {1, 2, . . . , k}
such that f(x) �= f(y) whenever xy ∈ E(G). The chromatic number of G, denoted
by χ(G), is the smallest integer k such that G admits a k-coloring. We call the set
f−1(i) = {x ∈ V (G) : f(x) = i} a color class for each i = 1, 2, . . . , k. Notice that
each color class is an independent set, i.e., a pairwise non-adjacent subset of V (G),
and hence a k-coloring is a partition of V (G) into k independent sets. An equitable
k-coloring of G is a k-coloring for which any two color classes differ in size by at
most one, or equivalently, each color class is of size �|V (G)|/k� or �|V (G)|/k	. A
graph is equitably k-colorable if it admits an equitable k-coloring. The equitable
chromatic number of G, denoted by χ=(G), is the smallest integer k such that G is
equitably k-colorable. The concept of equitable colorability was first introduced by
Meyer [5]. Unlike the ordinary colorability, an equitably k-colorable graph may admit
no equitable k′-coloring for some k′ > k. A typical example is the complete bipartite
graph Kn,n where n ≥ 3 is odd, which is clearly equitably 2-colorable but not equitably
n-colorable. This phenomena suggests the concept of equitable chromatic threshold.
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The equitable chromatic threshold of G, denoted by χ∗
=(G), is the smallest integer k

such that G is equitably k′-colorable for all k′ ≥ k. The notion of equitable coloring
has received a lot of attention and we refer to [3] for a good survey.

For two graphs G and H , the Cartesian product G�H of G and H is the graph with
vertex set {(x, y) : x ∈ V (G), y ∈ V (H)} and edge set {(x, y)(x′, y′) : (x = x′ and
yy′ ∈ E(H)) or (xx′ ∈ E(G) and y = y′)}. Sabidussi [6] showed that χ(G�H) =
max{χ(G), χ(H)}. However, the analogous question for the equitable colorability is
less satisfactory. The following result due to Chen, Lih and Yan [1] gives a partial
answer.

Theorem 1. ([1, Theorem 4]). If G and H are equitably k-colorable, then so is
G�H .

Theorem 1 immediately implies the following upper bounds on χ=(G�H) and
χ∗

=(G�H).

Corollary 2. χ=(G�H) ≤ min{k : both G and H are equitably k-colorable}.

Corollary 3. χ∗
=(G�H) ≤ max{χ∗

=(G), χ∗
=(H)}.

Chen et al. [1] also gave the exact values of χ=(G�H) and χ∗
=(G�H) when G

and H are both complete graphs or both cycles, and Furmańczyk [2] gave χ(G�H) =
χ=(G�H) = χ∗

=(G�H) = max{χ(G), χ(H)} when G and H are cycles, paths,
hypercubes, or complete graphs, and χ=(K1,m+2�P2n+1) = 3. Lin and Chang [4]
gave the following result for more classes of graphs.

Corollary 4. ([4, Corollary 3]). If G and H are graphs with χ(G) = χ∗
=(G) and

χ(H) = χ∗
=(H), then χ(G�H) = χ=(G�H) = χ∗

=(G�H) = max{χ(G), χ(H)}.

Note that the equitable chromatic number and threshold of bipartite graphs can
be arbitrarily large but the chromatic number is just 2. For example, χ=(K1,n) =
χ∗

=(K1,n) = �n
2 	 + 1. Lin and Chang [4] gave the following two results to indicate

that the bounds given in Corollaries 2 and 3 may be far from the exact values for
bipartite graphs.

Theorem 5. ([4, Theorem 11]). Km,n�Km′,n′ is equitably 4-colorable.

Theorem 6. ([4, Theorem 14]). If n, n′ ≥ 3 then χ∗
=(K1,n�K1,n′) = 4 except for

χ∗
=(K1,n�K1,n′) = 3, when (n − 2)(n′ − 2) ≤ 5.

Beside Theorem 6, Lin and Chang in [4] also determined χ∗
=(G�H) for some

other classes of bipartite graphs. For instance, for bipartite graph H , χ=(P2n+1�H) =
χ∗

=(P2n+1�H) = 3 except that χ=(P2n+1�H) = χ∗
=(P2n+1�H) = 2, when χ=(H) ≤

2; χ=(C2�+2�Km,n) = χ∗
=(C2�+2�Km,n) = χ=(P2��Km,n) = χ∗

=(P2��Km,n) = 2
except for χ∗

=(C4�Km,n) = χ∗
=(P2�Km,n) = 4, when m + n + 2 < 3 min{m, n}.

Based on these exact values, they raised the following conjecture.
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Conjecture 7. ([4, Conjecture 2]). χ∗
=(G�H) ≤ 4 for bipartite graphs G and H .

It is easy to see that Conjecture 7 is true if it holds for complete bipartite graphs.
Hence, we can restate the conjecture as the following theorem.

Theorem 8. χ∗
=(Km,n�Km′,n′) ≤ 4.

In this paper, we prove Theorem 8.

2. PROOF OF THEOREM 8

In what follows, we always assume m ≤ n and m′ ≤ n′. Noting that Theorem 8
is true when one factor is K1,1 = P2, or K1,2 = P3, or K2,2 = C4, so it is sufficient
to consider for n ≥ 3 and n′ ≥ 3.

We say that Km,n is almost balanced if |m − n| ≤ 1. First, when one factor is
almost balanced, we apply the following theorem given by Lin and Chang.

Theorem 9. ([4, Theorem 9]). If m, n, m′ and n′ are positive integers such that
m ≤ n, m′ ≤ n′, m + n ≥ 4 and m′ + n′ ≥ 4, then Km,n�Km′,n′ is equitably
k-colorable for k ≥ � (m+n)(m′+n′)

max{m(n′−1),m′(n−1)}+1	.

Lemma 10. For positive integers n, m′ and n′ with n ≥ 3, n′ ≥ 3 and n′ ≥ m′,
χ∗

=(Kn−1,n�Km′,n′) ≤ 5 and χ∗
=(Kn,n�Km′,n′) ≤ 5.

Proof. We consider four cases as follows.

Case 1. Kn−1,n�Km′,n′ with m′ < n′. In this case, we have (n − 1)(n′ − 1) −
(n−1)m′ = (n−1)(n′−m′−1) ≥ 0 and 5((n−1)(n′−1)+1)−(2n−1)(m′+n′) =
(2n− 1)(n′−m′ − 1) + (n− 3)(n′ − 3) ≥ 0. By Theorem 9, χ∗

=(Kn−1,n�Km′,n′) ≤
� (2n−1)(m′+n′)

max{(n−1)(n′−1),(n−1)m′}+1	 = � (2n−1)(m′+n′)
(n−1)(n′−1)+1	 ≤ 5.

Case 2. Kn,n�Km′,n′ with m′ < n′. In this case, we have n(n′−1)−(n−1)m′ =
n(n′ −m′ − 1) + m′ ≥ 0 and 5(n(n′ − 1) + 1)− 2n(m′ + n′) = n(n′ − 3) + 2n(n′ −
m′ − 1) + 5 ≥ 0. By Theorem 9, χ∗

=(Kn,n�Km′,n′) ≤ � 2n(m′+n′)
max{n(n′−1),(n−1)m′}+1	 =

� 2n(m′+n′)
n(n′−1)+1	 ≤ 5. This case includes the case of Kn−1,n�Kn′,n′ .

Case 3. Kn,n�Kn′,n′ except n = n′ = 3. In this case, we may assume n′ ≥ n.
Then we have n(n′ − 1) − (n − 1)n′ = n′ − n ≥ 0 and 5(n(n′ − 1) + 1) − 4nn′ =
n(n′ − 5) + 5 ≥ 0. By Theorem 9, χ∗

=(Kn,n�Kn′,n′) ≤ � 4nn′
max{n(n′−1),(n−1)n′}+1	 =

� 4nn′
n(n′−1)+1	 ≤ 5.

Case 4. K3,3�K3,3. In this case, we show that K3,3�K3,3 is equitably 5-colorable
by giving an equitable 5-coloring illustrated in Fig. 1.
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Figure 1: An equitable 5-coloring of K3,3�K3,3.

By commutativity of Cartesian product, we can assume m′ ≥ m. Moreover, if
m′ = 1 then m = 1 and hence Theorem 8 holds by Theorem 6. Therefore, we can
assume m′ ≥ 2. Now we give the following lemma to deal with the remaining cases.

Lemma 11. For positive integers m, n, m′ and n′ with n ≥ m + 2, n′ ≥ m′ + 2,
m′ ≥ m and m′ ≥ 2, χ∗

=(Km,n�Km′,n′) ≤ 5.

Proof. We shall give a particular ordering of V (Km,n�Km′,n′) and show that any
set consisting of consecutive vertices in this ordering of size no more than �1

5 (m +
n)(m′ + n′)	 is an independent set. Then, for each k ≥ 5, we can obtain an equitable
k-coloring of Km,n�Km′,n′ by partitioning its vertex set consecutively in the ordering
into k sets of size � 1

k (m + n)(m′ + n′)� or � 1
k (m + n)(m′ + n′)	, each of which is

clearly independent.
Namely, we say the bipartition of Km,n consists of {x1, . . . , xm} and {y1, . . . , yn}

and the bipartition of Km′,n′ consists of {x′
1, . . . , x

′
m′} and {y′1, . . . , y′n′}. We order

the vertices of Km,n�Km′,n′ as follows, where X1, . . . , X9 are shown in Fig. 2, and
label the vertices in this ordering as v1, v2, . . . , v(m+n)(m′+n′).

X1 : (x1, y
′
1), (x2, y

′
1), . . . , (xm, y′1), (x1, y

′
2), (x2, y

′
2), . . . , (xm, y′2), . . . , . . .,

(x1, y
′
�n′

2
�), (x2, y

′
�n′

2
�), . . . , (xm, y′�n′

2
�);

X2 : (y1, x
′
1), (y2, x

′
1), . . . , (y�n

2
�, x′

1), (y1, x
′
2), (y2, x

′
2), . . . , (y�n

2
�, x′

2), . . . , . . .,
(y1, x

′
m′), (y2, x

′
m′), . . . , (y�n

2
�, x′

m′);
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. . . , . . . , . . . , . . .;
X9 : (x1, y

′
�n′

2
�+1

), (x2, y
′
�n′

2
�+1

), . . . , (xm, y′�n′
2
�+1

), (x1, y
′
�n′

2
�+2

),

(x2, y
′
�n′

2
�+2

), . . . , (xm, y′�n′
2
�+2

), . . . , . . ., (x1, y
′
n′), (x2, y

′
n′), . . . , (xm, y′n′).
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Figure 2: Vertex ordering for Km,n�Km′,n′ .

More precisely, vertices in X1 appear first followed by those in X2, X3, . . . , X9

continuously, and we always have s < t for any two distinct vertices vs = (xi, x
′
j)

(resp. (xi, y
′
j), (yi, x

′
j) or (yi, y

′
j)) and vt = (xp, x

′
q) (resp. (xp, y

′
q), (yp, x

′
q) or

(yp, y
′
q)) in the same X� for � = 1, . . . , 9 if either j < q, or j = q and i < p.

Let γ = min{t−s−1: 1 ≤ s < t ≤ (m+n)(m′+n′), vsvt ∈ E(Km,n�Km′,n′)}.
Clearly γ is well-defined since Km,n�Km′,n′ is non-empty, and any set consisting of
consecutive vertices in the ordering of size no more than γ + 1 is independent.

By the definition of Cartesian product, one easily check that X3 ∪ X4 ∪ · · · ∪ X7

and Xi ∪ Xi+1 ∪ Xi+2 for i ∈ {1, 2, 5, 6, 7} are independent. Hence, γ attends only
when vs ∈ Xi and vt ∈ Xi+3 for some i ∈ {1, 2, 5, 6}. When the minimality of
t − s − 1 occurs with vs ∈ X1 and vt ∈ X4, if m ≤ �n

2 	, then vs = (xm, y′1) and
vt = (y�n

2
�+1, y

′
1) which gives γ = |X1|+|X2|+|X3|−m; otherwise, if m > �n

2 	, then
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vs = (xm, y′�n′
2
�) and vt = (y�n

2
�+1, y

′
�n′

2
�) which gives γ = |X2|+ |X3|+ |X4| − �n

2 	.
Similar consideration for other three possible values of i leads that γ = min{|X1| +
|X2|+|X3|−m, |X2|+|X3|+|X4|−�n

2	, |X2|+|X3|+|X4|−�n
2�, |X3|+|X4|+|X5|−

m, |X5|+ |X6|+ |X7|−m, |X6|+ |X7|+ |X8|−�n
2 	, |X6|+ |X7|+ |X8|−�n

2 �, |X7|+
|X8| + |X9| − m}. For simplicity, in what follows let ai = |Xi| for i = 1, . . . , 9, see
Table 1 for exact values of ai’s.

Table 1: List of exact values of ai’s

i 1 2 3 4 5 6 7 8 9

ai m�n′
2 � �n

2 �m′ �n
2 ��n′

2 � �n
2 ��n′

2 � mm′ �n
2 ��n′

2 � �n
2 ��n′

2 � �n
2 �m′ m�n′

2 �

Since �n
2 	 ≥ �n

2 �, (a2+a3 +a4−�n
2 	)−(a6 +a7 +a8−�n

2 	) = (�n
2 �m′+�n

2 	n′−
�n

2 	)−(�n
2 �n′+�n

2 	m′−�n
2 	) = (�n

2 	−�n
2 �)(n′−m′) ≥ 0, and (a3 +a4 +a5−m)−

(a5+a6+a7−m) = (�n
2 	n′+mm′−m)−(mm′+�n

2 �n′−m) = (�n
2 	−�n

2 �)n′ ≥ 0, we
have γ = min{a1+a2+a3−m, a5+a6+a7−m, a6+a7+a8−�n

2 	, a7+a8+a9−m}.
Lastly, we shall prove a stronger result that γ ≥ 1

5 (m + n)(m′ + n′) by checking
all the four expressions a1 + a2 + a3 − m, a5 + a6 + a7 − m, a6 + a7 + a8 − �n

2 	,
a7 +a8 +a9−m are not less than 1

5(m+n)(m′+n′). Note that �n
2 	 ≥ n

2 , �n
2 � ≥ n−1

2
and �n

2 	 + �n
2 � = n. Thus, by the assumption that n ≥ m + 2, n′ ≥ m′ + 2, m′ ≥ m

and m′ ≥ 2, we have the following four inequalities.

(1)

20(a1 + a2 + a3 − m)− 4(m + n)(m′ + n′)

= 20(m
⌊
n′

2

⌋
+

⌊n

2

⌋
m′ +

⌈n

2

⌉ ⌈
n′

2

⌉
− m) − 4(m + n)(m′ + n′)

≥ 10m(n′ − 1) + 10(n − 1)m′ + 5nn′ − 20m − 4(m + n)(m′ + n′)

= (m + n)(n′ + m′ − 5) + 5(n − m − 2)(m′ + 1) + 5m(n′ − 4) + 10

≥ 0.

(2)

20(a5 + a6 + a7 − m)− 4(m + n)(m′ + n′)

= 20(mm′ +
⌊n

2

⌋
n′ − m) − 4(m + n)(m′ + n′)

≥ 20mm′ + 10(n − 1)n′ − 20m − 4(m + n)(m′ + n′)

= (m+n)(m′+n′−5)+5(n−m−2)(n′−m′+1)+10(m−1)(m′−1)

≥ 0.
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(3)

20(a6 + a7 + a8 −
⌈n

2

⌉
) − 4(m + n)(m′ + n′)

= 20(
⌊n

2

⌋
n′ +

⌈n

2

⌉
(m′ − 1))− 4(m + n)(m′ + n′)

≥ 10(n − 1)n′ + 10n(m′ − 1)− 4(m + n)(m′ + n′)

= (m + n)(m′ + n′ − 5) + 5(n− m − 2)(n′ + m′ − 1) + 10(m′ − 1)

≥ 0.

(4)

20(a7 + a8 + a9 − m)− 4(m + n)(m′ + n′)

= 20(
⌊n

2

⌋ ⌊
n′

2

⌋
+

⌈n

2

⌉
m′ + m

⌈
n′

2

⌉
− m) − 4(m + n)(m′ + n′)

≥ 5(n − 1)(n′ − 1) + 10nm′ + 10mn′ − 20m − 4(m + n)(m′ + n′)

= (m+n)(m′+n′−5)+5(n−m−2)m′+5(m−1)(n′−3) + 10(m′ − 1)

≥ 0.

By inequalities (1) to (4) and the definition of γ , we have γ ≥ 1
5 (m+ n)(m′ + n′)

and hence χ∗
=(Km,n�Km′,n′) ≤ � (m+n)(m′+n′)

γ+1 	 ≤ 5.
According to Theorem 5, Lemmas 10 and 11, we have χ∗

=(Km,n�Km′,n′) ≤ 4 for
n ≥ 3, n′ ≥ 3, m′ ≥ m and m′ ≥ 2, and this completes the proof of Theorem 8.
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