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MULTIPLE SOLUTIONS FOR PERIODIC SCHRÖDINGER EQUATIONS
WITH SPECTRUM POINT ZERO

Dongdong Qin, Fangfang Liao and Yi Chen

Abstract. This paper is concerned with the following Schrödinger equation:{
−�u + V (x)u = f(x, u), x ∈ R

N ,

u(x) → 0 as |x| → ∞,

where the potential V and f are periodic with respect to x and 0 is a boundary
point of the spectrum σ(−� + V ). By a generalized variant fountain theorem
and an approximation technique, for old f , we are able to obtain the existence of
infinitely many large energy solutions.

1. INTRODUCTION

In this paper, we consider the semilinear Schrödinger equation:

(1.1)

{
−�u + V (x)u = f(x, u), x ∈ R

N ,

u(x) → 0 as |x| → ∞,

where V (x) : R
N → R is a potential and f : R

N × R → R is a nonlinear coupling
which is superlinear as |u| → ∞. As we know, the nonlinear Schrödinger equation
with periodic potential and nonlinearities has been widely investigated in the literature
over the past several decades for both its importance in applications and mathematical
interest, see, e.g., [1-3], [7-11] and [21-24]. It is well know (see, e.g., [13]) that the
spectrum of the self-adjoint operator A = −�+V is purely absolutely continuous and
bounded below. There are many results on the existence and multiplicity of solutions
for problem (1.1) depending on the location of 0 in σ(A).

For the case of 0 < σ(A), Coti-zelati and Rabinowitz proved in [25] the existence of
infinitely many solutions with f ∈ C2 and the so called Ambrosetti-Rabinowitz super-
quadratic condition. In [9], under a general superlinear assumption and monotone
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condition on f , Li, Wang and Zeng obtained the existence of ground state solutions by
concentration compactness argument. We also refer reader to [10] and [14-19] where
the condition (AR) was replaced by more general superlinear assumptions.

A lot work has been done under assumption that 0 lies in a spectral gap of σ(A). In
[8], relying on a degree theory and a linking-type argument developed there, Kryszeuski
and Szulkin obtained a nontrival solution under condition (AR) and infinitely many ge-
ometrically distinct nontrival solutions with additional locally Lipschitzian assumption
on f (see (A8) in [8]). The stronger results to date appear to be those of Szulkin
and Weth [18], following the approach of Pankov [11], they proved the existence of
ground state solutions under hypotheses weaker than those previously assumed. Yang
[23] also obtained the same results using a different method (based on the approach of
[16]) which is much simpler. In recent paper [2], using a generalized variant fountain
theorem established there, Batkan and Colin proved the existence of infinitely many
large energy solutions for (1.1).

As far as we know, there are only several papers deal with the case that 0 is a
boundary point of the spectrum σ(A). In [3], Bartsch and Ding obtained a nontrival
solution with condition (AR). Later, this result was improved by Willem and Zou in
[22] by using an improved generalized weak link theorem. In [24], Yang, Chen, Ding
proved a nontrival solution under the following assumptions:

(V1) V ∈ C(RN , R) is 1-periodic in xi, i = 1, 2, · · · , N ;

(V2) 0 ∈ σ(A) and there exists β > 0 such that (0, β]∩ σ(A) = ∅;

(S1) f ∈ C(RN+1, R) is 1-periodic in xi, i = 1, 2, · · · , N and there exist constants
c > 0, 2 < μ ≤ p < 2∗ such that

(1.2) |f(x, u)| ≤ c(1 + |u|p−1), ∀ (x, u) ∈ R
N × R,

where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2;
(S2) f(x, u) = o(u) as |u| → 0 uniformly in x;
(S3) There exists constant c0 > 0 such that

F (x, u) ≥ c0|u|μ, ∀ (x, u) ∈ R
N × R,

where F (x, u) is the primitive function of f ;

(S4) u → f(x,u)
|u| is strictly increasing on R \ {0}.

To the best of our knowledge, there are no results concerning the existence of
infinitely many large energy solutions for (1.1) with spectrum point zero, which is
exactly what we will do in this paper with assumptions (V1), (V2) and (S2). Instead
of (S1), (S3) and (S4), we give the following assumptions:

(S1′) f ∈ C(RN+1, R) is 1-periodic in xi, i = 1, 2, · · · , N and there exist constants
c > 0,
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2 < μ ≤ p < 2∗ and a(x) ∈ L
2∗

2∗−p (RN) ∩ L∞(RN) such that

(1.3) |f(x, u)| ≤ c(1 + a(x)|u|p−1), ∀ (x, u) ∈ R
N × R,

where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2;

(S3′) f(x, u)u ≥ 0, ∀ (x, u) ∈ R
N × R, and there exists constant c0 > 0 such that

F (x, u) ≥ c0a(x)|u|μ, ∀ (x, u) ∈ R
N × R;

(S4′) There exists a function W (x) ∈ L1(RN) such that

F (x, u+v)−F (x, u)+
[
(t−1)2u

2
−tv

]
f(x, u)≥W (x), ∀ x∈R

N , u, v∈R, t∈ [0, 1];

(S5) f(x,−u) = −f(x, u), ∀ (x, u) ∈ R
N × R.

Now, we are ready to state the main results of this paper.

Theorem 1.1 Suppose that (V1), (V2), (S1′), (S2), (S3′), (S4′) and (S5) are satis-
fied, then problem (1.1) possesses infinitely many large energy solutions in H2

loc(R
N )∩

Lt(RN ) for μ ≤ t ≤ 2∗.

Obviously, condition (V2) implies that V can not be constant. Condition (S4′) first
introduced in [15] is weaker than the monotonicity condition (S4), which together with
(S2) and (S3), by an standard argument (see [18]), implies that

F (x, u + v)− F (x, u) +
[
(t − 1)2u

2
− tv

]
f(x, u) > 0,

∀ x ∈ R
N , u ∈ R, v ∈ R \ {0}, t ∈ [0, +∞).

One point we need to mention is that on multiple solutions for (1.1) with spectrum
point zero, Bartsch and Ding obtained the existence of infinitely many geometrically
distinct solutions with condition (AR) and the following assumption, see (g4) in [3],
i.e.,

(g4) There are constant a3, ε > 0 such that for all x, u, v

|f(x, u + v)− f(x, u)| ≤ a3(|u|p−2 + |v|p−2 + |u|p−1)|v|, if |v| ≤ ε,

which implies that f is locally Lipschitzian with respect to u and can also be found
in a similar fashion in [8] as condition (A8). Consequently, f(x, u) = f(x, 0) +∫ u
0 f ′

u(x, ξ)dξ for each x ∈ RN . It is therefore easy to see that (g4) is equivalent to
f being locally Lipschitzian in u and satisfying |f ′

u(x, u)| ≤ a3(|u|p−2 + |u|p−1) for
some a3 and all x ∈ R

N , u ∈ R for which the derivative f ′
u(x, u) exists.
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At the end of this introduction, we state another result dealing with the case that 0
is a left end point of σ(A), i.e. we replace (V2) by

(V2′) 0 ∈ σ(A) and there exists β > 0 such that [−β, 0) ∩ σ(A) = ∅.

Theorem 1.2 Suppose that (V1), (V2′) hold and −f satisfies (S1′), (S2), (S3′),
(S4′) and (S5), then problem (1.1) possesses infinitely many large energy solutions in
H2

loc(R
N) ∩ Lt(RN) for μ ≤ t ≤ 2∗.

The proof of theorem 1.2 is analogous to theorem 1.1 working with −Φ instead of
Φ, where functional Φ is defined in Section 2.

Inspired by the above recent works and using an argument of concentration com-
pactness type and an approximation technique (see e.g., [2], [3], [24]), we are able to
obtain the existence of infinitely many large energy solutions for problem (1.1). This
paper is organized as follows. In Section 2, we introduce the variational framework
and main variational tool. In Section 3, the existence of critical points for functional
Φ restricted on suitable subspace of H1(RN) is proved. In the last Section, The proof
of theorem 1.1 is given.

2. VARIATIONAL SETTING

Throughout this paper, we denote by | · |s with the usual Ls(RN) norm for s ∈
[1,∞) ∪ {∞}. For any s ∈ [2, 2∗], by Soblev embedding theorem, there exists an
embedding constant γs ∈ (0,∞) such that

(2.1) |u|s ≤ γs‖u‖H1, ∀ u ∈ H1(RN).

Proof of the main result are based on variational methods applied to the following
functional:

(2.2) Φ(u) =
1
2

∫
RN

(|∇u|2 + V (x)|u|2)dx−
∫

RN

F (x, u)dx =
1
2
(Au, u)L2 − Ψ(u)

where and in the sequel Ψ(u) :=
∫

RN F (x, u)dx, (·, ·)L2 denote the inner product of
L2(RN). The hypotheses on f(x, u) imply that Φ ∈ C1(H1(RN), R) and

(2.3) 〈Φ′(u), v〉 =
∫

RN

(∇u∇v+V (x)uv)dx−
∫

RN

f(x, u)vdx, ∀ u, v ∈ H1(RN),

and a standard argument shows that the critical points of Φ are weak solutions of (1.1).
Under assumption (V1), A = −� + V is a self-adjoint operator, acting on H :=

L2(RN) with domain D(A) = H2(RN , R). Setting H− := P0H and H+ := (id −
P0)H , where (Pλ)λ∈R : H → H denote the spectral family of A, then we have the
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orthogonal decomposition H = H− + H+. Let E = D(|A| 12 ) be equipped with the
inner product

(2.4) (u, v) = (|A| 12 u, |A| 12 v)L2

and norm ‖u‖ = ||A| 12 u|2. Then H1(RN) ⊂ E and we have the decomposition

E = E− ⊕ E+, u = Pu + Qu

with Pu ∈ E− and Qu ∈ E+, where E± = E ∩ H± orthogonal with respect to both
(·, ·)L2 and (·, ·), and the orthogonal projections are denoted by

(2.5) P : E → E−, Q : E → E+.

By (2.2) and (2.4), we have

(2.6) Φ(u) =
1
2
‖Qu‖ − 1

2
‖Pu‖ − Ψ(u), ∀ u ∈ H1(RN).

Since the spectrum of A restricted on H+ is contained in (β, +∞), the norm ‖ · ‖
is equivalent to the H1(RN ) norm on E+. But it is not true on H1(RN)∩H− = H−

because of 0 ∈ σ(A) as a right end point of σ(A), thus the norm ‖ · ‖ is weaker than
H1(RN) norm and H− is not complete with respect to ‖ · ‖. Moreover, we can not
look for solutions of (1.1) in the completion E of H1(RN) under norm ‖ · ‖, because
Ψ(u) is not well defined due to our assumption on f(x, u).

To solve this problem, we set

(2.7) En
− := E− ∩ P− 1

n
H ⊂ E−, En := En

− ⊕ E+ ⊂ E, ∀ n ∈ N
∗.

Since the spectrum of A restricted on En is bounded away from 0, the norm ‖ · ‖ is
equivalent to the H1(RN ) norm on En, i.e., there exist positive constants c1, c2 such
that

(2.8) c1‖u‖E ≤ ‖u‖H1 ≤ c2‖u‖, ∀ u ∈ En.

Denote orthogonal projection Qn as follows

(2.9) Qn = P− 1
n

+ (id− P0) : E → En.

Then for any u ∈ H1(RN),

(2.10) Qnu → u as n → ∞, with respect to ‖ · ‖ and | · |s, 2 ≤ s < 2∗.

Define another norm on E

(2.11) ‖u‖μ := (‖u‖2 + |u|2μ)
1
2 , ∀ u ∈ E.
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Let E−
μ be the completion of H− with respect to ‖ · ‖μ, then Eμ := E−

μ ⊕ E+ is
the completion of H1(RN) with respect to ‖ · ‖μ, moreover, Eμ is a reflective Banach
space such that H1(RN) ⊂ Eμ ⊂ E and all norms ‖ · ‖, ‖ · ‖H1 , ‖ · ‖μ are equivalent
on E+ (see e.g., [3]), i.e.,

(2.12) ‖u‖μ ∼ ‖u‖ ∼ ‖u‖H1, ∀ u ∈ E+.

The following abstract critical point theorem plays an important role in proving our
main results.

Let X be a Hilbert space with norm ‖ · ‖ and has an orthogonal decomposition

X = Y ⊕ Z, Z = Y ⊥ = ⊕∞
j=0Rej,

where ‖ej‖ = 1, Y ⊂ X is a closed and separable subspace. Let P : X → Y and
Q : X → Z be the orthogonal projections and {bn}n ⊂ Y be an orthogonal base of
Y . Define another norm on X by setting

(2.13) ‖u‖τ = max

{ ∞∑
i=0

|(Pu, bi)|
2i+1

, ‖Qu‖
}

, ∀ u = Pu + Qu ∈ X.

The topology generated by ‖u‖τ is called τ -topology (see [8], [21]). Observe that
‖Qu‖ ≤ ‖u‖τ ≤ ‖u‖ for all u ∈ X , moreover, if un is a bounded sequence in X , then

‖un − u‖τ → 0 ⇐⇒ Pun ⇀ u, Qun → u.

For 0 < rk < ρk, k ∈ N∗ and λ ∈ [1, 2], define the following notations:

Yk := Y ⊕ (⊕k
j=0Rej), Zk := ⊕∞

j=kRej, Bk := {Yk : ‖u‖ ≤ ρk}

Γk(λ):={ γ|γ : Bk → X is odd, τ -continuous and γ|tialBk
= id; Φλ(γ(u)) ≤

Φλ(u), ∀ u ∈ Bk; For every u ∈ int(Bk), there is a τ -neighborhood Nu in Yk

such that (id−γ)(Nu∩ int(Bk)) is contained in a finite-dimensional subspace of X}.
For any λ ∈ [1, 2], functional Φλ(γ(u)) : X → R is defined as follows

(2.14) Φλ(γ(u)) := L(u)− λJ(u), ∀ u ∈ E,

with the following assumptions:

(A1) J(u) ≥ 0 for every u ∈ X , L(u) → ∞ or J(u) → ∞ as ‖u‖ → ∞;
(A2) Φλ is a τ -upper semicontinuous and ∇Φλ is weakly sequentially continuous,

∀ λ ∈ [1, 2].
(A3) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2] and Φλ(−u) =

Φλ(u), ∀ (λ, u) ∈ [1, 2]× X ;
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The generalized variant fountain theorem is:

Lemma 2.1. [2]. Under assumptions (A1)− (A3), if there are 0 < rk < ρk such
that bk(λ) > ak(λ) for all λ ∈ [1, 2], then ck(λ) > bk(λ) for all λ ∈ [1, 2]. Moreover,
for a.e. λ ∈ [1, 2], there exists a sequence {un

k (λ)}n ⊂ X such that

sup
n

‖un
k (λ)‖ < ∞, Φλ(un

k(λ)) → ck(λ), Φ′
λ(un

k(λ)) → 0,

as n → ∞, where

ak(λ) := sup
u∈Yk ,‖u‖=ρk

Φλ(u), bk(λ) = inf
u∈Zk,‖u‖=rk

Φλ(u), ck(λ) = inf
γ∈Γk(λ)

sup
u∈Bk

Φλ(γ(u)).

3. CRITICAL POINTS FOR Φn

In this section, we assume that (V1), (V2), (S1′), (S2), (S3′), (S4′) and (S5) are all
satisfied. In order to apply Lemma 2.1, we consider the family of modified functionals
Φλ : E → R

(3.1)
Φλ(u) =

1
2
‖Qu‖2 − λ

2
‖Pu‖2 − λ

∫
RN

F (x, u)dx

=
1
2
‖Qu‖2 − λ

2
‖Pu‖2 − λΨ(u), ∀ λ ∈ [1, 2].

Set
Φn,λ = Φλ|En, Ψn = Ψ|En , ∀ n ∈ N

∗.

Then Ψn is well defined in E , moreover Φn,λ, Ψn ∈ C1(E, R) with

(3.2) 〈Ψ′
n(u), v〉 =

∫
RN

f(x, u)vdx, ∀ u, v ∈ E,

and

(3.3) 〈Φ′
n,λ(u), v〉 = (Qu, Qv)− λ(Pu, Pv)− λ

∫
RN

f(x, u)vdx.

Obviously, Φn,1(u) = Φn(u), ∀ u ∈ E .
For 0 < rk < ρk, k ∈ N∗ and λ ∈ [1, 2], we define

Yk := E−⊕(⊕k
j=0Rej), Zk := ⊕∞

j=kRej, Bk := {Yk : ‖u‖ ≤ ρk}, E = Yk⊕Zk+1,

an,k(λ) := sup
u∈Yk ,‖u‖=ρk

Φn,λ(u), bn,k(λ) = inf
u∈Zk,‖u‖=rk

Φn,λ(u),

cn,k(λ) = inf
γ∈Γk(λ)

sup
u∈Bk

Φn,λ(γ(u)).
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Lemma 3.1. Φn,λ is of τ -upper semicontinuous and ∇Φn,λ is weakly sequentially
continuous. Moreover, Φn,λ maps bounded sets to bounded sets.

The proof of the preceding Lemma is standard (see for example [8, 21]).

Lemma 3.2. For any fixed k, n ∈ N
∗ and almost every λ ∈ [1, 2], there exists a

sequence {um
k (λ)}m ⊂ E such that

(3.4) sup
m

‖um
k (λ)‖ < ∞, Φn,λ(um

k (λ)) → cn,k(λ), Φ′
n,λ(um

k (λ)) → 0,

as m → ∞.

Proof. By (S3′), (S5), (3.1) and Lemma 3.1, condition (A1)−(A3) are all satisfied,
in order to use Lemma 2.1, we only need to prove bn,k(λ) > an,k(λ), ∀ λ ∈ [1, 2].

Step 1. We claim that for every λ ∈ [1, 2], there exists ρk > 0 (independent of
n) big enough such that Φn,λ(u) ≤ 0 for all u ∈ Yk, with ‖u‖ = ρk. If k = 0, (S3′)
yields that F (x, t) ≥ 0 for any (x, t) ∈ R

N+1, so we have Φn,λ(u) ≤ 0 for u ∈ E−.
If k ∈ N∗, Arguing by contradiction, suppose that there exist sequences {λm} ⊂ [1, 2],
{um} ⊂ Yk , with um = Qum + Pum, Pum ∈ E−, Qum ∈ ⊕k

j=0Rej such that

Φn,λm(um) ≥ 0, ‖um‖ → ∞, m → ∞.

Let wm = um/‖um‖ = Pwm + Qwm, then

(3.5) 1 = ‖wm‖2 = ‖Pwm‖2 + ‖Qwm‖2

and

(3.6) 0 ≤ Φn,λm(um)
‖um‖2

=
1
2
‖Qwm‖2 − λm

2
‖Pwm‖2 − λm

∫
RN

F (x, um)
|um|2 |wm|2dx.

Then we deduce from (S3′), (3.5), (3.6) and the fact λm ∈ [1, 2] that

(3.7) ‖Pwm‖2 ≤ λm‖Pwm‖2 ≤ ‖Qwm‖2 = 1 − ‖Pwm‖2,

thereforce

(3.8) 0 ≤ ‖Pwm‖ ≤ 1√
2
,

1√
2
≤ ‖Qwm‖ ≤ 1.

Note that wm is bounded, Qwm ∈ ⊕k
j=0Rej and all norms are equivalent in finite-

dimentional vector space, then we may assume

wm ⇀ w = Pw + Qw, Pwm ⇀ Pw, Qwm → Qw.
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By (3.8), then Qw �= 0 and |um| = ‖um‖|wm| → ∞ as m → ∞. By (S3′) and Fatou’s
Lemma, we have

(3.9)
∫

RN

F (x, um)
|um|2 |wm|2dx → ∞,

as m → ∞. By (3.6), this is a contradiction.

Step 2. For any fixed k, n ∈ N
∗, we certify that bn,k(λ) > 0, ∀ λ ∈ [1, 2]. For any

ε > 0, by (S1′) and (S2), there exists Cε > 0 such that

(3.10) |f(x, u)| ≤ ε|u| + Cεa(x)|u|p−1, ∀ (x, u) ∈ R
N × R,

and Rε > 0 such that

(3.11) |a(x)|
L

2∗
2∗−p (RN\Ωε)

=

{∫
RN\Ωε

|a(x)| 2∗
2∗−p dx

} 2∗−p
2∗

≤ ε,

where

(3.12) Ωε = {x ∈ R
N | 0 ≤ |x| ≤ Rε}.

By (2.1), (2.12), (3.1), (3.10), (3.11) and the fact λ ∈ [1, 2], for any u ∈ E+, we get

Φn,λ(u) ≥ 1
2
‖u‖2 − λε

2

∫
RN

|u|2dx − λCε

p

∫
RN

a(x)|u|pdx

≥ 1
2
‖u‖2 − ε|u|22 −

2Cε

p

(∫
Ωε

a(x)|u|pdx +
∫

RN\Ωε

a(x)|u|pdx

)

≥ 1
2
‖u‖2−εc2

2γ
2
2‖u‖2− 2Cε|a(x)|∞

p
|u|p

Lp(Ωε)
− 2Cε

p
|u|p2∗|a(x)|

L
2∗

2∗−p (RN\Ωε)

≥ (
1
2
−εc2

2γ
2
2)‖u‖2− 2Cε|a(x)|∞

p
β

p
k‖u‖p − 2εCε

p
c
p
2γ

p
2∗‖u‖p

≥ 1
2
(
1
2
− c

p
βp

k‖u‖p−2)‖u‖2

where ε := min
{

1
4c22γ2

2
,

βp
k |a(x)|∞
cp
2γp

2∗

}
, βk := supv∈Zk,‖v‖=1 |v|Lp

loc
> 0, k ∈ N

∗, and c

is a positive constant. Similar to the proof of Lemma 3.8 in [21], by (2.12), we have

(3.13) lim
k→∞

βk = 0.

For u ∈ Zk with ‖u‖ = rk, if we choose rk := (cβp
k)

1
2−p (independent of n), we have

bn,k(λ) ≥ Φn,λ(u) ≥ b̃k :=
1
2
(
1
2
− 1

p
)(cβp

k)
2

2−p > 0
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and by (3.13), b̃k → ∞, as k → ∞. Step 1 and step 2 imply that bn,k(λ) > 0 ≥ an,k(λ)
for all λ ∈ [1, 2]. By Lemma 2.1, we get the conclusion.

Observe that, id ∈ Γk(λ), by (3.1), (S3′) and the definition of cn,k(λ), we know

cn,k(λ) ≤ sup
u∈Yk ,‖u‖=ρk

Φn(u) ≤ c̃k :=
1
2
ρ2

k,

thus cn,k(λ) ∈ [b̃k, c̃k], ∀ k, n ∈ N
∗.

The following result can be found in [3] as Lemma 2.1 and corollary 2.3, see also
Lemma 3.1 in [22].

Lemma 3.3. ([3]). Eμ embeds continuously into H2
loc(R

N), hence compactly into
Lt

loc(R
N) for 2 ≤ t < 2∗. Furthermore, E−

μ embeds continuously into Lt(RN) for
μ ≤ t ≤ 2∗. Au ∈ L2(RN) for u ∈ E−

μ . On the other hand, if u ∈ Eμ solves (1.1),
then u(x) → 0 as |x| → ∞.

Lemma 3.4. For any fixed k, n ∈ N
∗ and almost every λ ∈ [1, 2], there exists

uk(λ) ∈ E\{0} such that

(3.14) Φn,λ(uk(λ)) = cn,k(λ) ∈ [b̃k, c̃k], Φ′
n,λ(uk(λ)) = 0.

Proof. Let {vm
k (λ)}m ⊂ En be the sequence obtained in Lemma 3.2. Here

for notational simplicity, throughout this paragraph, for any fixed k ∈ N
∗, we set

vm = vm
k (λ). by (3.4), we have

(3.15) sup
m

‖vm‖ < ∞, Φn,λ(vm) → cn,k(λ), Φ′
n,λ(vm) → 0.

If
δ := lim sup

m→∞
sup

y∈RN

∫
B1(y)

|Qvm|2dx = 0

then by (2.12) and Lion’s concentration compactness principle (see [21], Lemma 1.21),
we have that Qvm → 0 in Ls(RN), for 2 < s < 2∗. By (2.1), (2.8), (3.10), (3.15) and
Hölder’s inequality, we know∫

RN
|f(x, vm)Qvm|dx ≤ ε

∫
RN

|vm||Qvm|dx + Cε

∫
RN

a(x)|vm|p−1|Qvm|dx

≤ ε|vm|2|Qvm|2 + Cε|a(x)|∞|vm|p−1
p |Qvm|p

≤ εc2
2γ

2
2‖vm‖2 + Cεc

p−1
2 γp−1

p |a(x)|∞‖vm‖p−1|Qvm|p → 0,

since ε is chosen arbitrarily. By (3.1), (3.3), (S3′) and (3.15), we get

Φn,λ(vm) ≤ 1
2
‖Qvm‖2 =

1
2
〈Φ′

n,λ(vm), Qvm〉+
1
2
λ

∫
RN

f(x, vm)Qvmdx → 0.
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This contradicts with the fact that Φn,λ(vm
k ) ≥ b̃k > 0, thus δ > 0.

Going to a subsequence if necessary, we may assume the existence of km ∈ Z
N ,

such that ∫
B1+

√
N (km)

|Qvm|2dx >
δ

2
, ∀ m ∈ N

∗.

Define um(x) = vm(x + km), then

(3.16)
∫

B1+
√

N (0)

|Qum|2dx >
δ

2
, ∀ m ∈ N

∗.

(V1) and (S1′) imply that Φn,λ and Φ′
n,λ are invariant by above translation, hence by

(3.15),

(3.17) Φn,λ(um) → cn,k(λ) ∈ [b̃k, c̃k], Φ′
n,λ(um) → 0,

and ‖um‖ = ‖vm‖ is bounded. Going to a subsequence if necessary, we may assume
um ⇀ u in Eμ as m → ∞. By Lemma 3.3, we have

(3.18) um → u, in Ls
loc(R

N), 2 ≤ s < 2∗

and um → u a.e. on RN . It then follows from (3.16) and (3.17) that Qu �= 0 in
Eμ ⊂ E and

(3.19) Φ′
n,λ(u) = 0.

By (2.1), (2.8), (3.10)–(3.12) and (3.18), for u restricted on En, we have∣∣∣ ∫
RN

F (x, um − u)dx
∣∣∣

≤
∫

RN

|F (x, um − u)|dx

≤ ε

∫
RN

|um − u|2dx + Cε

∫
Ωε

a(x)|um − u|pdx + Cε

∫
RN\Ωε

a(x)|um − u|pdx

≤ εc2
2γ

2
2‖um − u‖2 + Cε|a(x)|∞|um − u|p

Lp(Ωε)
+ Cε|um − u|p2∗|a(x)|

L
2∗

2∗−p (RN\Ωε)

≤ εc2
2γ

2
2‖um − u‖2 + o(1) + εCεc

p
2γ

p
2∗‖um − u‖p → 0,

since ε is chosen arbitrarily. Similarly, we have∫
RN

f(x, um − u)(um − u)dx → 0.

Since the function s �→ F (x, s) satisfies the conditions of Brézis-Lieb Lemma (see
[21], Lemma 1.32), it then follows that

(3.20)
∫

RN
F (x, um)dx →

∫
RN

F (x, u)dx.
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Similarly we have

(3.21)
∫

RN

f(x, um)umdx →
∫

RN

f(x, u)udx.

Observe that

(3.22) Φn,λ(um) =
1
2
〈Φ′

n,λ(um), um〉+
λ

2

∫
RN

f(x, um)umdx−λ

∫
RN

F (x, um)dx.

Then, by (3.17), (3.20) and (3.21), taking the limit m → ∞ in (3.22), we obtain

cn,k(λ) =
λ

2

∫
RN

f(x, u)udx− λ

∫
RN

F (x, u)dx

This implies, by (3.19), that Φn,λ(u) = cn,k(λ) ∈ [b̃k, c̃k], thus (3.14) holds.

By Lemma 3.4, we directly obtain the following lemma:

Lemma 3.5. For any fixed k, n ∈ N
∗, there are sequences {uk(λm)}m ⊂ E \ {0}

and {λm}m ⊂ [1, 2] with λm → 1 such that

(3.23) Φ′
n,λm

(uk(λm)) = 0, Φn,λm(uk(λm)) = cn,k(λm) ∈ [b̃k, c̃k].

Lemma 3.6. For any u ∈ H1(RN), there is a constant C such that

(3.24)
Φ(u) ≥ Φ(tQu) +

t2‖Pu‖2

2
+

1 − t2

2
〈Φ′(u), u〉

+t2〈Φ′(u), Pu〉+ C, ∀ t ∈ [0, 1].

Proof. Take v = (t − 1)u − tPu in (S5), then we have

(3.25)

∫
RN

[
F (x, tQu) − F (x, u) +

(
1 − t2

2
u + t2Pu

)
f(x, u)

]
dx

≥
∫

RN

W (x)dx, ∀ t ∈ [0, 1].

Then

(3.26)

Φ(u)− Φ(tQu)− 〈Φ′(u), w〉

=
1 − t2

2
‖Qu‖2 − 1

2
‖Pu‖2 − (Qu, Qw) + (Pu, Pw)

+
∫

RN
[F (x, tQu)− F (x, u) + f(x, u)w]dx, ∀ w ∈ H1(RN ).
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Take w = 1−t2

2 u + t2Pu in (3.26) and by (3.25), we have

Φ(u) − Φ(tQu) − 〈Φ′(u),
1 − t2

2
u + t2Pu〉

=
t2

2
‖Pu‖2 +

∫
RN

[
F (x, tQu) − F (x, u) +

(
1 − t2

2
u + t2Pu

)
f(x, u)

]
dx,

which implies (3.24) with C =
∫

RN W (x)dx.

Lemma 3.7. The sequence {uk(λm)}m obtained in Lemma 3.4 is bounded.

Proof. Here for notational simplicity, throughout this paragraph, for any fixed
k, n ∈ N

∗, we set um = uk(λm), then

(3.27) Φ′
n,λm

(um) = 0, Φn,λm(um) = cn,k(λm) ∈ [b̃k, c̃k].

Arguing by contradiction that ‖um‖ → ∞ as m → ∞. Define wm = um/‖um‖, then
‖wm‖ = 1. If

δ := lim sup
m→∞

sup
y∈RN

∫
B1(y)

|Qwm|2dx = 0,

by (2.12) and Lion’s concentration compactness principle (see [21], Lemma 1.21), we
have Qwm → 0 in Ls(RN), for 2 < s < 2∗. By (S1′), (2.1), (2.8) and (3.10), for any
r > 0,

(3.28)

∫
RN

F (x, rQwm)dx ≤ ε

∫
RN

|rQwm|2dx + Cε

∫
RN

a(x)|rQwm|pdx

≤ εr2|Qwm|22 + rpCε|a(x)|∞|Qwm|pp
≤ εc2

2γ
2
2r2‖Qwm‖2 + o(1) → 0,

since ε is chosen arbitrarily. By (3.1) and (3.27), we get

0 ≤ Φn,λm(um)
‖um‖2

=
1
2
‖Qwm‖2 − λm

2
‖Pwm‖2 − λm

∫
RN

F (x, um)
|um|2 |wm|2dx.

Then, by (S3′) and the fact {λm} ⊂ [1, 2], one has ‖Qwm‖ ≥ ‖Pwm‖. Observe that

1 = ‖wm‖2 = ‖Qwm‖2 + ‖Pwm‖2

then ‖Qwm‖2 ≥ 1
2 . By (3.27), (3.28) and take t = r/‖um‖ in Lemma 3.6, then for m

big enough, we have t ∈ [0, 1] and

c̃k − C ≥ Φn,λm(um) − C ≥ Φn,λm(rQwm) +
r2‖Pwm‖2

2

=
r2‖Qwm‖2

2
− λm

∫
RN

F (x, rQwm)dx ≥ r2

4
+ o(1).
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This leads to a contradiction if we take r big enough, thus δ > 0.
Going to a subsequence if necessary, we may assume the existence of km ∈ Z

N ,
such that ∫

B1+
√

N(km)

|Qwm|2dx >
δ

2
, ∀ m ∈ N

∗.

Define vm(x) = wm(x + km), then

(3.29)
∫

B1+
√

N (0)
|Qvm|2dx >

δ

2
, ∀ m ∈ N

∗.

Since V (x) is periodic, ‖vm‖ = ‖wm‖ = 1. Passing to a subsequence if necessary, we
may assume that vm ⇀ v in E . By Lemma 3.3, we have

(3.30) vm → v, in L2
loc(R

N)

and vm → v a.e. on RN . By (3.29), Qv �= 0.
Now we define ũm(x) = um(x + km), then ũm/‖um‖ = vm → v a.e. on R

N ,
v �= 0 in En.

For x ∈ {y ∈ R
N : v(y) �= 0}, we have limm→∞ ũm(x) = ∞. Hence, it follows

from (3.1), (3.27), (S1′), (S3′), Fatou’s lemma and the fact {λm} ⊂ [1, 2] that

0 = lim
m→∞

cn,k(λm) + o(1)
‖um‖2

= lim
m→∞

Φn,λm(um)
‖um‖2

= lim
m→∞

[
1
2
‖Qwm‖2 − λm

2
‖Pwn‖2 − λm

∫
RN

F (x, ũm)
ũ2

m

v2
mdx

]
≤ 1

2
− lim inf

m→∞

∫
RN

F (x, ũm)
ũ2

m

v2
mdx

≤ 1
2
−
∫

RN
lim inf
m→∞

F (x, ũm)
ũ2

m

v2
mdx = −∞.

This contradiction shows that {um} is bounded, i.e. {uk(λm)}m is bounded.

Corollary 3.8. If {uk(λm)}m is the sequence obtained in Lemma 3.5, then for
any fixed k, n ∈ N∗, there exists cn,k ∈ [b̃k, c̃k] such that {uk(λm)}m is a (PS)cn,k

sequence for Φn, i.e.,

(3.31) lim
m→∞ Φ′

n(uk(λm)) = 0, lim
m→∞Φn(uk(λm)) = cn,k ∈ [b̃k, c̃k].

Proof. By Lemma 3.7, {uk(λm)}m is bounded, then we obtain the conclusion
from (3.23) and the following relations

lim
m→∞Φn(uk(λm))

= lim
m→∞

{
Φn,λm(uk(λm))+(λm−1)

[
1
2
‖Puk(λm)‖2+

∫
RN

F (x, uk(λm))dx

]}
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and

lim
m→∞〈Φ′

n(uk(λm)), v〉

= lim
m→∞

{
〈Φ′

n,λm
(uk(λm)), v〉+(λm−1)

[
−b(Puk(λm), v)+

∫
RN

f(x, uk(λm))vdx

]}
uniformly in ‖v‖ ≤ 1.

Lemma 3.9. For any fixed k ∈ N∗, there is vn
k ∈ En \ {0} such that

(3.32) Φ′
n(vn

k ) = 0, Φn(vn
k ) = cn,k ∈ [b̃k, c̃k].

Proof. By Lemma 3.7 and Corollary 3.8, we know {uk(λm)}m is a bounded
(PS)cn,k

sequence for Φn. By a similar argument as in Lemma 3.4, we can prove that
there exists vn

k ∈ En ⊂ E \ {0}, such that Φ′
n(vn

k )=0 and Φn(vn
k ) =cn,k ∈ [b̃k, c̃k].

4. PROOF OF MAIN RESULTS

Lemma 4.1. For any fixed k ∈ N
∗, if vn

k is the critical point obtained in Lemma
3.9 for Φn, then {vn

k}n is bounded in Eμ.

Proof. By (3.32), there exists a sequence still denote by {vn
k}n such that

(4.1) Φ′
n(vn

k ) = 0, lim
n→∞Φn(vn

k ) = ck

where ck ∈ [b̃k, c̃k]. Hence {vn
k}n is a (PS)∗ck

sequence for Φ. By a similar fashion
as in the the proof of Lemma 3.7, we can prove that {vn

k}n is bounded in E . Thus by
(2.11), we only need to prove {|vn

k |μ}n is bounded. Arguing by contradiction, suppose
that |vn

k |μ → ∞ as n → ∞. Let wn
k = vn

k /|vn
k |μ, by the boundedness of {‖vn

k‖}n,
then we have |wn

k |μ = 1, ‖wn
k‖ = ‖vn

k‖/|vn
k |μ → 0 as n → ∞. Thus {‖wn

k‖μ}n is
bounded, passing to a subsequence in necessary, we may assume wn

k ⇀ wk in Eμ. By
Lemma 3.3, wn

k → wk in Lt
loc(R

N), 2 ≤ t < 2∗, wn
k → wk a.e. on R

N as n → ∞. By
a similar argument as in the proof of Lemma 3.7, we can prove that {Qwn

k}n is non-
vanishing and passing to a Z

N -translation if necessary, we may assume that Qwn
k �= 0.

Then |vn
k | = |wn

k ||vn
k |μ → ∞, as n → ∞. By (S3′), (4.1) and Fatou’s Lemma, we

have

0 ≤ Φn(vn
k )

|vn
k |2μ

=
1
2
‖Qwn

k‖2 − 1
2
‖Pwn

k‖2 −
∫

RN

F (x, vn
k )

|vn
k |2

|wn
k |2dx → −∞,

as n → ∞. This contradiction implies that {vn
k}n is bounded in Eμ.
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Proof of Theorem 1.1. By Lemma 4.1, {vn
k}n ⊂ En is bounded in Eμ. Going to

a subsequence if necessary, we may assume vn
k ⇀ vk in Eμ, as n → ∞. By Lemma

3.3, we have vn
k → vk in Ls

loc(R
N), 2 ≤ s < 2∗ and vn

k → vk a.e. on R
N , as n → ∞.

By a similar fashion as in the the proof of Lemma 3.7, we can prove that {Qvn
k}n

is non-vanishing and passing to a Z
N -translation if necessary, we may assume that

Qvk �= 0. For each φ ∈ C∞
0 (RN), by (3.10), Lemma 3.3, and Hölder’s inequality, we

have

(4.2)
|
∫

RN

f(x, vn
k )(id− Qn)φdx|

≤ ε

∫
RN

|vn
k ||(id−Qn)φ|dx + Cε|a(x)|∞

∫
RN

|vn
k |p−1|(id−Qn)φ|dx → 0,

as n → ∞. Since

(4.3)

(Avn
k , φ)L2 = (Avn

k , Qnφ)L2

= (Φ′
n(vn

k ), Qnφ)L2 +
∫

RN

f(x, vn
k )φdx−

∫
RN

f(x, vn
k )(id− Qn)φdx.

By (4.1) and (4.2), taking limit n → ∞ in (4.3), we have

(Avk, φ)L2 =
∫

RN

f(x, vk)φdx,

this implies vk is a weak solution of problem (1.1). By the same fashion as in the
the proof of Lemma 3.4, we can prove that Φ(vk) = ck ∈ [b̃k, c̃k]. By Lemma 3.3,
since b̃k → ∞ as k → ∞, we know that problem (1.1) possesses infinitely many large
energy solutions in H2

loc(R
N ) ∩ Lt(RN ) for μ ≤ t ≤ 2∗.
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43 (1992), 270-291.
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