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ENUMERATION PROBLEMS FOR A LINEAR CONGRUENCE EQUATION

Wun-Seng Chou1,*, Tian-Xiao He2 and Peter J.-S. Shiue2

Dedicated to Prof. Peter Bundschuh for the occasion of his 70th birthday

Abstract. Let m ≥ 2 and r ≥ 1 be integers and let c ∈ Zm = {0, 1, . . . , m −
1}. In this paper, we give an upper bound and a lower bound for the number
of unordered solutions x1, . . . , xn ∈ Zm of the congruence x1 + x2 + · · · +
xr ≡ c mod m. Exact formulae are also given when m or r is prime. This
solution number involves the Catalan number or generalized Catalan number in
some special cases. Moreover, the enumeration problem has relationship with the
restricted integer partition.

1. INTRODUCTION

Consider the congruence equation x1 +x2 + · · ·+xn ≡ 0 mod n+1, where n is a
positive integer. It is well-known that the number of unordered solutions x1, x2, . . . , xn

in Zn+1 = {0, 1, . . . , n} with repetition allowed is 1
n+1

(2n
n

)
= Cn, the nth Catalan

number (see Guy [3] and Stanley [7]). In this paper, we consider the generalized
congruence

(1) x1 + x2 + · · ·+ xr ≡ c mod m

where m ≥ 2 and r ≥ 1 are integers and c ∈ Zm = {0, 1, . . . , m − 1}.
If x1 = a1, . . . , xr = ar is a solution of (1), the multiset {a1, . . . , ar} is called

an unordered solution. If the multiset {a1, . . . , ar} is actually a set, we call it an
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unordered solution without repetition. Note that each unordered solution represents
several solutions because the coefficients of (1) are all the same. Moreover, different
unordered solutions represent different solutions.

In Section 2, we deal with enumeration problems of both unordered solutions and
unordered solutions without repetition. One of our results (Theorem 4) involves the
Catalan numbers and generalized Catalan numbers (see Sands [6]). We give an rela-
tionship with the restricted integer partitions for our problems in Section 3. We give
explicit closed forms for numbers of unordered solutions of (1) with either prime m or
prime r in Section 4.

2. UNORDERED SOLUTIONS AND CATALAN NUMBERS

Let Mm,r be the set of all unordered solutions of (1) with c ranging over all
numbers in Zm. Every element of Mm,r is a multiset containing r numbers in Zm and
so, can be uniquely represented by a non-decreasing sequence of r elements in Zm,
i.e., Mm,r = {{a1 ≤ a2 ≤ · · · ≤ ar}|a1, . . . , ar ∈ Zm}.

Lemma 1. Let m ≥ 2 and r ≥ 1 be integers. Then

|Mm,r| =
(

m + r − 1
r

)
,

where the number on the right hand side is the usual binomial coefficient.

Proof. This is trivial because |Mm,r| is in fact the number of choices with repetition
from the set Zm within r times.

Let Mm,r(c) be the set of all unordered solutions of (1). Trivially, |Mm,1(c)| = 1
for any 0 ≤ c < m. If c1 �= c2, then Mm,r(c1) ∩ Mm,r(c2) = ∅. So, Mm,r =
Mm,r(0) ∪ · · · ∪ Mm,r(m − 1) is a disjoint union.

Lemma 2. Let m ≥ 2 and r ≥ 1 be integers. For 0 ≤ c1, c2 ≤ m − 1, if
gcd(m, r, c1) = gcd(m, r, c2), then |Mm,r(c1)| = |Mm,r(c2)|.

Proof. Let c ∈ Zm and write e = gcd(m, r, c). For proving this lemma, it is
enough to show |Mm,r(c)| = |Mm,r(e)|.

Since gcd(m
e , r

e , c
e) = 1, there are integers x and y so that c

e + xr
e + ym

e = p > m

is a prime. So gcd(m, p) = 1. Let 0 ≤ x0, p0 ≤ m − 1 satisfy x ≡ x0 mod m
and p ≡ p0 mod m. Then gcd(m, p0) = 1 and c + x0r ≡ p0e mod m. Now,
define f : Mm,r(c) −→ Mm,r(p0e) by f({a1, . . . , ar}) = {a1 + x0, . . . , ar + x0}
for all {a1, . . . , ar} ∈ Mm,r(c). It is trivial that f is a bijection. So, |Mm,r(c)| =
|Mm,r(p0e)|. On the other hand, define a map g : Mm,r(e) −→ Mm,r(p0e) by
g({a1, . . . , ar}) = {p0a1, . . . , p0ar} for all {a1, . . . , ar} ∈ Mm,r(e). Since gcd(m, p0)
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= 1, g is a bijection. This implies |Mm,r(e)| = |Mm,r(p0e)|. Therefore, |Mm,r(c)| =
|Mm,r(e)|.

The following result from this lemma is easy and so its proof is omitted.

Corollary 3. Let m ≥ 2 and r be positive integers. If gcd(m, r) = 1, then
|Mm,r(0)| = · · · = |Mm,r(m − 1)|.

The last result cannot hold if m and r are not relatively prime. For instance,
M4,2(0) = {{0, 0}, {1, 3}, {2, 2}}, M4,2(1) = {{0, 1}, {2, 3}}, M4,2(2) = {{0, 2},
{1, 1}, {3, 3}}, and M4,2(3) = {{0, 3}, {1, 2}}, and so their cardinalities are not
identical.

The following result is easy to see from Corollary 3 and Lemma 1.

Theorem 4. Let m ≥ 2 and r be positive integers. If gcd(m, r) = 1, then for any
integer 0 ≤ c < m, we have

|Mm,r(c)| = 1
m

(
m + r − 1

r

)
.

Remark. The anonymous referee points out that Lemma 2 and Theorem 4 can
also be proved by the cycle lemma, see Sands [6] for a combinatorial explanation of
generalized Catalan numbers by using cycle lemma.

Example 1. Take m = n + 1 and r = n. Then |Mn+1,n(c)| = 1
n+1

(
2n
n

)
= Cn is

the number of unordered solution of x1 + · · ·+ xn ≡ c mod (n + 1). Similarly, if
m = n and r = n + 1, we also have |Mn,n+1(c)| = 1

n

(
2n

n+1

)
= 1

n+1

(
2n
n

)
= Cn. The

interested readers can refer to Stanley [7] and Stanley’s website [8] for an extensive
list of combinatorial interpretations of Catalan numbers. Furthermore, G. Birkhoff [2]
asked in 1934 whether or not Bn = 1

2n−1

(
2n−1

n

)
is an integer. Indeed, Bn = Cn−1 is

an integer for all positive integer n because we have 1
2n−1

(2n−1
n

)
= 1

n

(2(n−1)
n−1

)
.

Example 2. Take m = n(k − 1) + 1 and r = n. We have |Mn(k−1)+1,n(c)| =
1

n(k−1)+1

(
nk
n

)
= Cn,k , a generalized Catalan number. If m = n and r = (k− 1)n + 1,

then |Mn,(k−1)n+1(c)| = 1
n

(
nk

n(k−1)+1

)
= 1

n

(
nk

n−1

)
= 1

n(k−1)+1

(
nk
n

)
= Cn,k .

When considering unordered solutions without repetition instead of unordered so-
lutions, we take r ≤ m. In the case r = m, there is only one c (say, c = 0 if m is odd
while c = m

2 if m is even) so that (1) has unordered solutions without repetition (in
fact, there is only one unordered solution {0, 1, . . . , m − 1}). Let Nm,r be the set of
all unordered solutions of (1) without repetition with c ranging over all numbers in Zm

and let Nm,r(c) be the set of all unordered solutions without repetition for any c in Zm.
It is trivial that |Nm,r| =

(
m
r

)
and Nm,r = ∪m−1

c=0 Nm,r(c), a disjoint union. Note that
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Lemma 2 and Corollary 3 still hold. So, if gcd(m, r) = 1, then |Nm,r(c)| = 1
m

(m
r

)
.

From 1
m+r

(
m+r
m

)
= 1

m

(
m+r−1

r

)
, we have |Nm+r,r(a)| = |Mm,r(b)| with 0 ≤ a < m+r

and 0 ≤ b < m, whenever gcd(m, r) = 1.

Example 3. Take m = 2n + 1 and r = n or n + 1. We have |Nm,r(c)| =
1

2n+1

(
2n+1

n

)
= 1

n+1

(
2n
n

)
= Cn. If m = nk + 1 and r = n, then |Nm,r(c)| =

1
nk+1

(
nk+1

n

)
= 1

n(k−1)+1

(
nk
n

)
= Cn,k .

Let m ≥ r and let Mm,r(c; j) = {{a1 ≤ a2 ≤ · · · ≤ ar} ∈ Mm,r(c)|a1 = j}
for 0 ≤ c, j < m. Then Mm,r(c) = ∪m−1

j=0 Mm,r(c; j), a disjoint union. It is trivial
that |Mm,2(c; j)| = 1 if either c ≥ 2j or m + j > m + c ≥ 2j, and |Mm,2(c; j)| = 0
otherwise. This terminology will be used in the proof of the following proposition,
which gives a relation between |Mm,r(c)| and |Nm,r(c)|.

Proposition 5. For integers m ≥ r > 1 and any integer c with 0 ≤ c < m,

|Mm,r(c)| = (−1)r−1|Nm,r(c)|+
r−1∑
k=1

(−1)k−1
m−1∑
a=0

|Nm,k(c− a)||Mm,r−k(a)|.

Proof. For 0 ≤ c < m, we have

|Mm,r(c)| =
m−1∑
i1=0

|Mm,r(c; i1)|

=
m−1∑
i1=0

|Mm,r−1(c− i1)| −
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−1(c − i1; i2)|

=
m−1∑
i1=0

|Mm,r−1(c− i1)| −
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−2(c − i1 − i2)|

+
m−1∑
i1=2

i1−1∑
i2=1

i2−1∑
i3=0

|Mm,r−2(c − i1 − i2; i3)|.

Continuing this process, we finally have

(2)

|Mm,r(c)| =
m−1∑
i1=0

|Mm,r−1(c − i1)| −
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−2(c− i1 − i2)|

+ · · ·+ (−1)r−2
m−1∑

i1=r−2

· · ·
ir−2−1∑
ir−1=0

|Mm,1(c− i1 − · · · − ir−1)|

+(−1)r−1
m−1∑

i1=r−2

· · ·
ir−1−1∑
ir=0

|Mm,1(c−
r−1∑
j=1

ij; ir)|
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Let 0 < k < r. For a ∈ Zm, the total number of terms |Mm,r−k(a)| in the
summation

∑m−1
i1=k−1 · · ·

∑ik−1−1
ik=0 |Mm,r−k(c − i1 − · · · − ik)| of (2), with a ≡ c −

i1−· · ·−ik mod m, equals |Nm,k(c−a)|, the number of unordered solutions without
repetition of x1+x2+· · ·+xk ≡ c−a mod m. So,

∑m−1
i1=k−1· · ·

∑ik−1−1
ik=0 |Mm,r−k(c−

i1−· · ·−ik)| =
∑m−1

a=0 |Nm,k(c−a)||Mm,r−k(a)|. Note that |Mm,1(c−
∑r−1

j=1 ij; ir)| =
1 if and only if c − i1 − · · · − ir−1 ≡ ir mod m. So, the last term of (2) becomes∑m−1

i1=r−2 · · ·
∑ir−1−1

ir=0 |Mm,1(c −
∑r−1

j=1 ij; ir)| = |Nm,r(c)|. Combining together, we
get the result.

Using this proposition, one can prove that
∑r

k=0(−1)k
(
m
k

)(
m+r−k−1

r−k

)
= 0 for

integers m ≥ r > 0.
It seems that the expression for |Mm,r(c)| is quite complicated in general. The

only cases which we can give exact formulae for |Mm,r(c)| are either m or r is prime.
Those formulae will be given in Section 4. Here we present a lower bound and an
upper bound of |Mm,r(c)|.

Theorem 6. Let m, r ≥ 4 and 0 ≤ c < m be integers. Then

⌈ 1
m

(
m + r − 2

r − 1

)⌉
≤ |Mm,r(c)| ≤

� r−3
2

�∑
i=1

(
m + r − 2i− 1

r − 2i + 1

)
+

⌈ 1
m

(
m + 2

3

)⌉
,

where �a� denotes the least integer greater than or equal to a and 
a� denotes the
greatest integer less than or equal to a.

Proof. Note that |Mm,r(c; 0)| = |Mm,r−1(c)| and |Mm,r(c; i)| = |Mm,r−1(c −
i)| − ∑i−1

j=0 |Mm,r−1(c− i; j)| for r ≥ 2 and 1 ≤ i < m. So,

|Mm,r(c)| =
m−1∑
i=0

|Mm,r−1(c − i)| −
m−1∑
i=1

i−1∑
j=0

|Mm,r−1(c− i; j)|

=
(

m + r − 2
r − 1

)
−

m−1∑
i=1

i−1∑
j=0

|Mm,r−1(c− i; j)|.

This implies

|Mm,r(c)| ≤
(

m + r − 2
r − 1

)
−

m−1∑
i=0

|Mm,r−1(c − i; 0)|+ |Mm,r−1(c; 0)|

=
(

m + r − 2
r − 1

)
−

(
m + r − 3

r − 2

)
+ |Mm,r−2(c)|

=
(

m + r − 3
r − 1

)
+ |Mm,r−2(c)|.
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The last inequality holds for all r > 3. Moreover, |Mm,i(c)| ≤ |Mm,3(c)| ≤ � 1
m

(m+2
3

)�
(see Theorem 8 in Section 4) for i = 1, 2, 3. Iteratedly, we have an upper bound
|Mm,r(c)| ≤

∑� r−3
2

�
i=1

(
m+r−2i−1

r−2i+1

)
+ � 1

m

(
m+2

3

)�.
Let |Mm,r−1(c0)| be a largest one among all values |Mm,r−1(c)|, 0 ≤ c < m. So,

|Mm,r−1(c0)| ≥ � 1
m

(
m+r−2

r−1

)�. For 0 ≤ c < m, define f : Mm,r−1(c0) −→ Mm,r(c)
by f({y1, . . . , yr−1}) = {c − c0, y1, . . . , yr−1}. Then f is injective and so we get a
lower bound |Mm,r(c)| ≥ |Mm,r−1(c0)| ≥ � 1

m

(
m+r−2

r−1

)�.
3. RELATION WITH THE RESTRICTED INTEGER PARTITIONS

In this section, we are going to give two relations with the restricted integer parti-
tions for |Mm,r(c)|.
3.1. First Relation

For 0 ≤ c < m, |Mm,r(c)| is the total number of integral solutions of equations

x1 + x2 + · · ·+ xr = km + c, 0 ≤ k < r,

with 0 ≤ x1 ≤ · · · ≤ xr ≤ m − 1.(3)

For 0 ≤ k < r, each unordered solution of (3) represents a restricted partition of
km + c into at most r parts with each part ≤ m − 1. For each non-negative integer
n, let pm−1,r(n) be the number of restricted partitions of n into at most r parts, each
≤ m − 1, with the convention pm−1,r(0) = 1. Let Gm−1,r(x) =

∑∞
n=0 pm−1,r(n)xn

be the generating function of restricted partitions of non-negative integers into at most
r parts with each part ≤ m − 1. According to Theorem 3.1 in [1],

(4) Gm−1,r(x) =
(1− xm+r−1) · · ·(1 − xr+1)

(1 − xm−1) · · · (1 − x)
.

Note that for 0 ≤ k < r, the number of solutions of x1 +x2 + · · ·+xr = km+ c with
0 ≤ x1 ≤ · · · ≤ xr ≤ m − 1 equals pm−1,r(km + c). From (3),

(5) |Mm,r(c)| =
r−1∑
k=0

pm−1,r(km + c) =
r−1∑
k=0

[
xkm+c

]
Gm−1,r(x),

where
[
x�

]
Gm−1,r(x) is the coefficient of the term x� in Gm−1,r(x).

As an example, consider the case m = 6 and r = 3. Using (4), we have G5,3(x) =
((1−x8)(1−x7)(1−x6)(1−x5)(1−x4))/((1−x5)(1−x4)(1−x3)(1−x2)(1−x)) =
x15 + x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 6x8 + 6x7 + 6x6 + 5x5 + 4x4 +
3x3 + 2x2 + x + 1. By (5), we get |M6,3(0)| =

∑2
k=0[x

6k]G5,3(x) = 1 + 6 + 3 =

10 =
⌈

1
6

(
6+2
3

)⌉
, |M6,3(1)| =

∑2
k=0[x

6k+1]G5,3(x) = 9 =
⌊

1
6

(
6+2
3

)⌋
, |M6,3(2)| =



Enumeration Problems for a Linear Congruence Equation 271

∑2
k=0[x

6k+2]G5,3(x) = 9 =
⌊

1
6

(
6+2
3

)⌋
, |M6,3(3)| =

∑2
k=0[x

6k+3]G5,3(x) = 10 =⌈
1
6

(
6+2
3

)⌉
, |M6,3(4)| =

∑1
k=0[x

6k+4]G5,3(x) = 9 =
⌊

1
6

(
6+2
3

)⌋
, and |M6,3(5)| =∑1

k=0[x
6k+5]G5,3(x) = 9 =

⌊
1
6

(
6+2
3

)⌋
. These are consistent to the results computed

by Theorem 8 in next section.
Write yr = x1, yr−1 = x2 − x1, . . . , y1 = xr − xr−1. Then (3) becomes

y1 + 2y2 + · · ·+ ryr = km + c, 0 ≤ k < r,

with y1, . . . , yr ≥ 0 and y1 + · · ·+ yr ≤ m − 1.(6)

Since the changing variable yr = x1, yr−1 = x2−x1, . . . , y1 = xr −xr−1 is linear and
non-singular, the total number of solutions (y1, . . . , yr) of (6) is equal to |Mm,r(c)|.
Moreover, for 0 ≤ k < r, the equation y1+2y2+· · ·+ryr = km+c with y1, . . . , yr ≥ 0
and y1 + · · ·+yr ≤ m−1 represents a restricted partition of km+c into at most m−1
parts with each part ≤ r. As in the last paragraph, let pr,m−1(n) be the number of
restricted partitions of n into at most m − 1 parts, each part ≤ r, with the convention
pr,m−1(0) = 1, and let Gr,m−1(x) =

∑∞
n=0 pr,m−1(n)xn be the generating function.

According to Theorem 3.1 in [1] again, we have

(7) Gr,m−1(x) =
(1 − xm+r−1) · · · (1− xm)

(1− xr) · · · (1− x)
.

It is easy to see that Gr,m−1(x) = Gm−1,r(x). So, using (6) to compute |Mm,r(c)| is
the same as using (3) to compute |Mm,r(c)|.
3.2. Second Relation

Denote xr+1 = m − 1 and write yr+1 = x1, yr = x2 − x1, . . ., y1 = xr+1 − xr.
Then (3) becomes

y1 + 2y2 + · · ·+ (r + 1)yr+1 = km + c− 1, 1 ≤ k < r + 1,

with y1, . . . , yr+1 ≥ 0 and y1 + · · ·+ yr+1 = m − 1.(8)

For integers �, n ≥ 0, let qr+1(�, n) be the number of restricted partitions of n
into � parts, each part ≤ r + 1, with the convention qr+1(�, 0) = 1 = qr+1(0, n). Let
Hr+1(y, z) =

∑∞
�=0

∑∞
n=0 qr+1(�, n)y�zn. Then

(9) Hr+1(y, z) =
r+1∏
i=1

1
1 − yzi

by formula (2.1.1) in [1]. From (8), we have

(10) |Mm,r(c)| =
r∑

k=1

qr+1(m − 1, km + c − 1) =
r∑

k=1

[
ym−1zkm+c−1

]
Hr+1(y, z).
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As an example, considering the case m = 2 and r = 2�, we have

|M2,2�(c)| =
2�∑

k=1

[
yz2k+c−1

] 2�+1∏
i=1

1
1− yzi

=
{

� + 1, c = 0
�, c = 1.

These results are consistent with the results obtained by Theorem 7 in next section.
Note that even though we know the exact forms (7) and (9), it seems that there is

no computationally closed form for either pr,m−1(km+c) or qr+1(m−1, km+c−1).
So, it is not easy to get an exact form for |Mm,r(c)| using either (5) or (10). However,
there are algorithms to compute both pr,m−1(n) and qr+1(m − 1, km + c − 1) (see
[4] and [5] for instance). One might employ those algorithms and either (5) or (10) to
compute the number |Mm,r(c)|.

4. SOME SPECIAL CASES FOR COMPUTING |Mm,r(c)|

In this section, we compute Mm,r(c) whenever either m or r is prime.

Theorem 7. Let m be a prime number. Then, for any positive integer r,

|Mm,r(c)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌈ 1
m

(
m + r − 1

r

)⌉
if c ≡ 0 mod m,

⌊ 1
m

(
m + r − 1

r

)⌋
if c �≡ 0 mod m.

Proof. If gcd(m, r) = 1, the theorem holds by Theorem 4. So, we consider only
that m and r are not relatively prime. Then, gcd(m, r) = m and r ≥ m because m is
prime. For any 0 ≤ c < m − 1,

|Mm,r(c)| =
m−1∑
i1=0

|Mm,r(c; i1)|

=
m−1∑
i1=0

|Mm,r−1(c− i1)| −
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−1(c − i1; i2)|

=
m−1∑
i1=0

|Mm,r−1(c− i1)| −
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−2(c − i1 − i2)|

+
m−1∑
i1=2

i1−1∑
i2=1

i2−1∑
i3=0

|Mm,r−2(c − i1 − i2; i3)|.

Continuing this process, we finally have
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(11)

|Mm,r(c)| =
m−1∑
i1=0

|Mm,r−1(c − i1)|−
m−1∑
i1=1

i1−1∑
i2=0

|Mm,r−2(c−i1−i2)|+. . .

+(−1)m−2
m−1∑

i1=m−2

. . .

im−2−1∑
im−1=0

|Mm,r−m+1(c− i1−. . .−im−1)|

+(−1)m−1|Mm,r−m+1(c−
m−1∑
j=1

j; 0)|

Write r = tm. We show the result by induction on t. At first, let t = 1. If m = 2,
the last term of (11) is −|Mm,1(c − 1; 0)| = −1 if c = 1, and −|Mm,1(c − 1; 0)| = 0
if c = 0. So, the theorem holds. If m is an odd prime, the last term of (11) becomes
|Mm,1(c − m(m − 1)/2; 0)| = |Mm,1(c; 0)| = 1 if c = 0 and |Mm,1(c; 0)| = 0 if
c �= 0. Hence, the theorem also holds in this case.

Finally, assume r = tm with t > 1 and that the theorem holds for r < tm. The
last term of (11) becomes (−1)m−1|Mm,r−m(c − m(m − 1)/2)|. By the assumption
of induction, (−1)m−1|Mm,r−m(0−m(m− 1)/2)| = (−1)m−1|Mm,r−m(c−m(m−
1)/2)| + 1 for any c �= 0. By the assumption again, the theorem holds because of
Theorem 4.

Theorem 8. Let r ≥ 2 be a prime number. Then for integers m > 1 and 0 ≤ c <
m,

|Mm,r(c)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌈ 1
m

(
m + r − 1

r

)⌉
if c ≡ 0 mod r,

⌊ 1
m

(
m + r − 1

r

)⌋
if c �≡ 0 mod r.

Proof. If gcd(m, r) = 1, the theorem holds by Theorem 4. So, let m = �r for
some positive integer �. If � = 1, the theorem holds by Theorem 7. Hence, let � > 1.
Since r is prime, gcd(m, r, c) is either 1 or r for any integer 0 ≤ c < m. From Lemma
2, we only consider either c = 0 or c = 1.

We are going to show |M�r,r(0)| = |Mr,�r(0)| and |M�r,r(1)| = |Mr,�r(1)|. Let
G�r−1,r(x) and Gr−1,�r(x) be generating functions, respectively, as those defined in
the last section. Write G�r−1,r(x) =

∑(�r−1)r
i=0 aix

i and Gr−1,�r(x) =
∑(r−1)�r

i=0 cix
i.

Then we have |M�r,r(0)| =
∑r−1

k=0 ak�r , |M�r,r(1)| =
∑r−1

k=0 ak�r+1, |Mr,�r(0)| =∑�(r−1)
k=0 ckr, and |Mr,�r(1)| = ∑�(r−1)−1

k=0 ckr+1 from (5).
As in (4) and (7), G�r−1,r(x) = ((1−x�r+r−1) · · · (1−x�r)/((1−xr) · · ·(1−x))

and Gr−1,�r(x) = G�r,r−1(x) = ((1−x�r+r−1) · · · (1−x�r+1)/((1−xr−1) · · · (1−x)).
These imply (1−xr)G�r−1,r(x) = (1−x�r)Gr−1,�r(x) =

∑�r2

i=0 bix
i. Multiplying out

both sides of the first equality, we have
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r−1∑
i=0

aix
i +

(�r−1)r∑
i=r

(ai − ai−r)xi −
r∑

i=1

a(�r−2)r+ix
(�r−1)r+i =

�r2∑
i=0

bix
i

=
�r−1∑
i=0

cix
i +

�r(r−1)∑
i=�r

(ci − ci−�r)xi −
�r∑

i=1

c�r(r−2)+ix
�r(r−1)+i

The first equality implies that akr+j =
∑k

i=0 bir+j for all 0 ≤ k ≤ �(r−1) and for all
0 ≤ j < r. Combining with the second equality, we have |M�r,r(0)| =

∑r−1
k=0 ak�r =∑r−1

k=0

∑k�
i=0 bir = rb0 + (r − 1)

∑�
i=1 bir + · · · + ∑(r−1)�

i=(r−2)�+1
bir =

∑(r−1)�
i=0 cir =

|Mr,�r(0)|. Similarly, we have |M�r,r(1)| = |Mr,�r(1)|.
Since r is prime, |Mr,�r(0)| = �1

r

(�r+r−1
�r

)� and |Mr,�r(1)| = 
1
r

(�r+r−1
�r

)� by
Theorem 7. From 1

�r

(�r+r−1
r

)
= 1

r

(�r+r−1
�r

)
, we have |M�r,r(0)| = � 1

�r

(�r+r−1
r

)� and
|M�r,r(1)| = 
 1

�r

(
�r+r−1

r

)�. This completes the proof.

In general, the numbers |Mm,r(c)| may not assume only two values as those in
Theorems 7 and 8. For instance, |M4,4(0)| = 10, |M4,4(1)| = |M4,4(3)| = 8,
and |M4,4(2)| = 9, which means that |M4,4(c)| takes 3 values. On the other hand,
|Mm,r(c)| might takes two values even though gcd(m, n) �= 1. For instance, |M4,2(c)|
has only values 3 and 2 as we have seen right after Corollary 3. Unfortunately, we are
unable to give simple expressions as those stated in theorems above for arbitrary m

and r.
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