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ANNIHILATORS IN IDEALS OF COEFFICIENTS OF ZERO-DIVIDING
POLYNOMIALS

Yasuyuki Hirano, Chan Yong Hong, Hong Kee Kim,
Nam Kyun Kim and Yang Lee*

Abstract. We continue the study of the McCoy ring property through examining
constant annihilators in the ideals of coefficients of zero-dividing polynomials.
In the process we introduce the ideal-McCoy property which is between strongly
McCoy and McCoy properties, showing that none of implications can be replaced
by an equivalence. We give an example of a right ideal-McCoy ring that is not
left ideal-McCoy. We also investigate relations between the ideal-McCoy property
and other standard ring theoretic properties. For example, we find possible basic
forms of finite right ideal-McCoy rings of minimal order.

1. RIGHT IDEAL-MCCOY RINGS

Throughout this note every ring is associative with identity unless otherwise stated.
Let R be a ring and we use R[x] to denote the polynomial ring with an indeterminate
x over R. Denote the n by n full matrix ring over R by Matn(R) and the n by n
upper (resp. lower) triangular matrix ring over R by Un(R) (resp. Ln(R)). Use eij

for the matrix with (i, j)-entry 1 and elsewhere 0. Z and Zn denote the set of integers
and the ring of integers modulo n, respectively. Note Matn(R)[x] ∼= Matn(R[x])
and Un(R)[x] ∼= Un(R[x]), Ln(R)[x] ∼= Ln(R[x]). We will apply these isomorphisms
freely.

McCoy [20, Theorem 2] showed the following fact in 1942:

f(x)g(x) = 0 implies f(x)r = 0 for some nonzero r ∈ R,

where f(x) and 0 �= g(x) are polynomials over a commutative ring R. Many gener-
alizations have been studied based on this result. Nielsen [21] in 2006 called a ring
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R (possibly without identity) right McCoy when the equation f(x)g(x) = 0 implies
f(x)r = 0 for some nonzero r ∈ R, where f(x), 0 �= g(x) are polynomials in R[x].
Left McCoy rings are defined symmetrically. Nielsen [21, Section 3 and Section 4]
showed that the McCoy condition is not left-right symmetric. Hong et al. [9] called
a ring R (possibly without identity) strongly right McCoy if f(x)g(x) = 0 implies
f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of
g(x), where f(x) and 0 �= g(x) are polynomials in R[x]. Strongly left McCoy rings
are defined symmetrically. This strong McCoy condition is not left-right symmetric
by [12, Remark 2.6(3)]. A ring is called reduecd if it has no nonzero nilpotent ele-
ments. Due to Cohn [3], a ring R is called reversible if ab = 0 implies ba = 0 for
a, b ∈ R. Reduced rings are reversible through a simple computation. Reversible rings
are strongly left and right McCoy by [9, Theorem 1.6] or the proof of [21, Theorem 2].
A ring is called right (resp. left) duo if each right (resp. left) ideal is two-sided. Right
(resp. left) duo rings are strongly right (resp. left) McCoy by [9, Theorem 1.11] or the
proof of [2, Theorem 8.2]. A ring is called Abelian if every idempotent is central. The
class of Abelain rings contains reversible rings and one-sided duo rings. But one-sided
strongly McCoy rings need not be Abelian by [9, Example 1.10].

Now we will study a natural generalization of the strongly McCoy property, con-
sidering annihilators in two-sided ideals of coefficients. So a ring R (possibly without
identity) will be called right ideal-McCoy if f(x)g(x) = 0 implies f(x)r = 0 for some
nonzero r in the ideal of R generated by the coefficients of g(x), where f(x) and
0 �= g(x) are polynomials in R[x]. Left ideal-McCoy rings are defined symmetrically.
In the following we see that the ideal-McCoy property is not left-right symmetric.

Let R be an algebra (with or without identity) over a commutative ring S. Fol-
lowing Dorroh [4], the Dorroh extension of R by S is the Abelian group R ⊕ S with
multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ R and
si ∈ S.

Proposition 1.1. (1) Let A be an algebra generated by a, b over a commutative
domain K, satisfying the relations

a2 = a, b2 = 0, and ba = 0.

Let R be the subalgebra of A which contains all elements with zero constant term.
Then the Dorroh extension of R by K is right ideal-McCoy but not left ideal-McCoy.

(2) If the algebra A satisfies the relations a2 = a, b2 = 0, and ab = 0 then the
Dorroh extension of R by K is left ideal-McCoy but not right ideal-McCoy.

Proof. (1) Let D be the Dorroh extension of R by K . Every element in A is
expressed by

k0 + k1a + k2b + k3ab

where ki ∈ K for i = 0, 1, 2, 3, and R = {k1a + k2b + k3ab | ki ∈ K for all i}. Note
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that

(k0 + k1a + k2b + k3ab)a = (k0 + k1)a, (k0 + k1a + k2b + k3ab)ab

= (k0 + k1)ab, (k0 + k1a + k2b + k3ab)b = k0b + k1ab,

and

a(k0 + k1a + k2b + k3ab) = (k0 + k1)a + (k2 + k3)ab, b(k0 + k1a + k2b + k3ab)

= k0b, ab(k0 + k1a + k2b + k3ab) = k0ab.

Now suppose that 0 �= f(x) =
∑m

i=0(ai, bi)xi and 0 �= g(x) =
∑n

j=0(cj, dj)xj

in D[x] with f(x)g(x) = 0. We can rewrite f(x) = (f1(x), f2(x)) and g(x) =
(g1(x), g2(x)), where f1(x) =

∑m
i=0 aix

i, f2(x) =
∑m

i=0 bix
i, g1(x) =

∑n
j=0 cjx

j

and g2(x) =
∑n

j=0 djx
j . We can also express f1(x), g1(x) by

f1(x) = h1(x)a + h2(x)b + h3(x)ab and g1(x) = k1(x)a + k2(x)b + k3(x)ab

where hi(x), ki(x) ∈ K[x] for i = 1, 2, 3. Let h0(x) = f2(x) and k0(x) = g2(x).
We will show that D is right ideal-McCoy. From the equality 0 = f(x)g(x) =

(f1(x)g1(x) + f1(x)g2(x) + f2(x)g1(x), f2(x)g2(x)), we have that h0(x) = 0 or
k0(x) = 0. Let L be the ideal of D generated by the coefficients of g(x).

Case 1. h0(x) = 0 and k0(x) = 0
We have 0 = f1(x)g1(x) = h1(x)k1(x)a + (h1(x)k2(x) + h1(x)k3(x))ab in this

case. So h1(x)k1(x) = 0 and h1(x)(k2(x) + k3(x)) = 0.

Subcase 1-1. h1(x) = 0
We have f1(x) = h2(x)b + h3(x)ab, and so f(x)L = 0 since L ⊆ (Ka + Kb +

Kab, 0).

Subcase 1-2. h1(x) �= 0
From h1(x) �= 0, we have k1(x) = 0 and k2(x) = −k3(x) �= 0. So g1(x) =

k2(x)b−k2(x)ab = k2(x)(b−ab) and so L contains (α(b−ab), 0) for some 0 �= α ∈ K .
Now we get

f(x)(α(b − ab), 0) = (α(h1(x)a + h2(x)b + h3(x)ab)(b− ab), 0) = 0.

Case 2. h0(x) = 0 and k0(x) �= 0
In this case we have

0 = f(x)g(x) = (h1(x)(k0(x) + k1(x))a

+(h1(x)(k2(x) + k3(x)) + h3(x)k0(x))ab + h2(x)k0(x)b, 0).
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This yields

h1(x)(k0(x) + k1(x)) = h1(x)(k2(x) + k3(x)) + h3(x)k0(x) = h2(x)k0(x) = 0.

Then h2(x) = 0 from k0(x) �= 0. Here assume h1(x) = 0, i.e., f1(x) = h3(x)ab.
Then h3(x)k0(x)ab = 0 and this yields h3(x) = 0, entailing f(x) = 0. This induces a
contradiction, and so h1(x) �= 0. This yields k1(x) = −k0(x) and g1(x) = −k0(x)a+
k2(x)b + k3(x)ab. Whence L contains (α(b − ab), 0) for some 0 �= α ∈ K since
g(x)(b, 0) = (g1(x)b+ k0(x)b, 0) = (−k0(x)ab + k0(x)b, 0) = (k0(x)(b− ab), 0) and
k0(x) �= 0. Now we get

f(x)(α(b − ab), 0) = (α(h1(x)a + h2(x)b + h3(x)ab)(b− ab), 0) = 0.

Case 3. h0(x) �= 0 and k0(x) = 0
In this case we have

0 = f(x)g(x) = ((h0(x)k1(x) + h1(x)k1(x))a + (h0(x)k3(x)

+h1(x)k2(x) + h1(x)k3(x))ab + h0(x)k2(x)b, 0).

This yields

h0(x)k1(x)+h1(x)k1(x) = h0(x)k3(x)+h1(x)k2(x)+h1(x)k3(x) = h0(x)k2(x) = 0.

Then k2(x) = 0 from h0(x) �= 0, entailing g1(x) = k1(x)a + k3(x)ab �= 0. Further,
we get

(h0(x) + h1(x))k1(x) = 0 and (h0(x) + h1(x))k3(x) = 0.

Here assume h0(x) + h1(x) �= 0. Then k1(x) = 0 and k3(x) = 0; hence g(x) = 0,
a contradiction. So h0(x) + h1(x) = 0 and f1(x) = −h0(x)a + h2(x)b + h3(x)ab.
Since k1(x) �= 0 or k3(x) �= 0, L contains (βab, 0) for some 0 �= β ∈ K from
g(x)(b, 0) = (g1(x)b, 0) = (k1(x)ab, 0). Then

f(x)(βab, 0) = (f1(x), h0(x))(βab, 0)

= ((−h0(x)a + h2(x)b + h3(x)ab)βab + h0(x)βab, 0)

= (−βh0(x)ab + βh0(x)ab, 0) = 0.

Now by the computations of Cases 1, 2, 3, we can conclude that D is right ideal-McCoy.

Next consider two nonzero polynomials

f(x) = (a, 0) + (ab, 0)x and g(x) = (−a, 1)− (ab, 0)x
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in D[x]. Then f(x)g(x) = 0. Consider the ideal J of D generated by the coefficients
of f(x). Then J = (Ka + Kab, 0) = (Ka, 0) + (Kab, 0) by the computation above,
so we have

((αa, 0) + (βab, 0))g(x)

= ((αa, 0) + (βab, 0))((−a, 1)− (ab, 0)x) = (βab, 0)− (αab, 0)x �= 0

for every nonzero αa + βab ∈ J with α, β ∈ K since α �= 0 or β �= 0. This implies
that D is not left ideal-McCoy.

The proof of (2) is similar.

Example 1.2. (1) Let K be a commutative domain. Let a = e11 + e12, b = e23

in Mat3(K). Then a2 = a, b2 = 0, and ba = 0. Let R be the subring of Mat3(K)
generated by Ka, Kb. Then R = Ka+Kb+Kab, and so E = K+R is isomorphic to
the Dorroh extension of R by K. Thus E is right ideal-McCoy but not left ideal-McCoy
by Proposition 1.1(1).

(2) Let K be a commutative domain. Let a = e33 + e23, b = e12 in Mat3(K).
Then a2 = a, b2 = 0, and ab = 0. Let R be the subring of Mat3(K) generated
by Ka, Kb. Then R = Ka + Kb + Kba, and so E = K + R is isomorphic to the
Dorroh extension of R by K. Thus E is left ideal-McCoy but not right ideal-McCoy
by Proposition 1.1(2).

In Proposition 1.1(1), consider the right annihilators taken in the ideal generated
by the coefficients of g(x). They are also contained in the right ideal generated by
the coefficients of g(x), and so the Dorroh extension is also strongly right McCoy.
So this example also provides a ring that asserts that the strongly McCoy property is
not left-right symmetric. A ring will be called ideal-McCoy if it is both left and right
ideal-McCoy.

Strongly right McCoy rings are clearly right ideal-McCoy, but the converse need
not hold by the following.

Example 1.3. We use the ring in [2, Proposition 3.2]. Let K be a field and
A = K〈ai, bi, ci, di|i ∈ N〉 be the free algebra with non-commuting indeterminates
ai, bi, ci, di over K, where N denotes the set of nonnegative integers. Set I0 be the
ideal generated by the relations

n∑
i=0

aicn−i = 0,
n∑

i=0

(aidn−i + bicn−i) = 0,
n∑

i=0

bidn−i = 0

for each n ∈ N. Let R0 = A/I0, and equate the indeterminates with their images
in R0. Let F0 be the set of all finite subsets of indeterminates in R0. For every set
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S0 ∈ F0, adjoin two new variables xS0 and yS0 to R0 and let I1 be the ideal generated
by the relations

xS0ai =xS0bi =ciyS0 =diyS0 = 0, for all i∈N and xS0s=syS0 = 0, for all s∈S0.

Then we obtain an overring

R1 = K〈ai, bi, ci, di, xS0, yS0|i ∈ N, S0 ∈ F0〉/ ∪1
i=0 Ii.

Through this construction, we can obtain two ascending chains R0 ⊂ · · · ⊂ Rn ⊂
Rn+1 ⊂ · · · and I0 ⊂ · · · ⊂ In ⊂ In+1 ⊂ · · · , where Ii is the ideal of Ri. Note

Rn+1 = K〈ai, bi, ci, di, xSj , ySj |i ∈ N, j = 0, . . . , n and Sj ∈ Fj〉/ ∪n+1
i=0 Ii.

Put R = ∪∞
1 Ri. Then R is not strongly right McCoy by [9, Example 1.9].

We will show that R is right ideal-McCoy. Consider nonzero polynomials f(x), g(x)
in R[x] with f(x)g(x) = 0. Then there exists k ≥ 1 such that f(x), g(x) ∈ Rk[x]. Let
T be the set of all indeterminates in Rk which occur lastly in sum-factors of coefficients
of f(x). Then f(x)yT = 0. But yT g(x) �= 0 and so yT β �= 0 for some coefficient
β of g(x). Now we get f(x)yTβ = 0, entailing that R is right ideal-McCoy. In fact
every Ri (i ≥ 1) is right ideal-McCoy by the same method as just above, and so R is
also shown to be right ideal-McCoy by Proposition 2.9(1).

The preceding construction is excellent but somewhat complicated to handle. So we
will find a simpler constructing method which provides a right ideal-McCoy ring but
not strongly right McCoy over given any strongly right McCoy ring. In the following
we see a typical kind of ring extension of right ideal-McCoy rings. For any ring A and
n ≥ 2, let

Dn(A) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
... . . . ...

0 0 0 · · · a

⎞
⎟⎟⎟⎟⎟⎠

| a, aij ∈ A

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and
Vn(A) = {m = (mij) ∈ Dn(A) | mst

= m(s+1)(t+1) for s = 1, . . . , n − 2 and t = 2, . . . , n − 1}.
Theorem 1.4. For a ring R and n ≥ 2, the following conditions are equivalent:

(1) R is right ideal-McCoy;

(2) Dn(R) is right ideal-McCoy for any n;

(3) Vn(R) is right ideal-McCoy for any n.
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Proof. (1)⇒ (2): Let R be right ideal-McCoy. We will use the ring isomorphism
(Dn(R))[x] ∼= Dn(R[x]) freely. Let

f(x) =

⎛
⎜⎜⎜⎝

f11(x) f12(x) · · · f1n(x)
0 f11(x) · · · f2n(x)
...

... · · · ...
0 0 · · · f11(x)

⎞
⎟⎟⎟⎠ = A0 + A1x + · · ·+ Amxm

and

g(x) =

⎛
⎜⎜⎜⎝

g11(x) g12(x) · · · g1n(x)
0 g11(x) · · · g2n(x)
...

... · · · ...
0 0 · · · g11(x)

⎞
⎟⎟⎟⎠ = B0 + B1x + · · ·+ Blx

l

be nonzero polynomials in Dn(R)[x] such that f(x)g(x) = 0, where Ah = (a(h)st), Bk

= (b(k)uv) ∈ Dn(R) for h = 0, . . . , m, k = 0, . . . , l and fst(x) =
∑m

h=0 a(h)stx
h,

guv(x) =
∑l

k=0 b(k)uvx
k ∈ R[x]. Note f11(x)g11(x) = 0. Since g(x) �= 0, we can

take a nonzero gij(x) such that f11(x)gij(x) = 0 as follows. If g11(x) �= 0 then
f11(x)g11(x) = 0. Assume g11(x) = 0. Then we can find i, j such that i, j are both
largest with respect to the property of gij(x) �= 0. Note that i < j and the (i, j)-entry
of f(x)g(x) is f11(x)gij(x) = fii(x)gij(x) = 0. Recall gij(x) =

∑l
k=0 b(k)ijx

k .
Since R is right ideal-McCoy, there exists nonzero α in

∑l
k=0 Rb(k)ijR, say α =∑d

c=1 rcβcsc with rc, sc ∈ R and βc ∈ {b(0)ij, . . . , b(l)ij} for all c, such that f11(x)α =
0. Let Ω =

∑d
c=1(rcIn)Bc(scIn) ∈ Dn(R), where Bc ∈ {B0, . . . , Bl} and In

is the n by n identity matrix. Then the (i, j)-entry of Ω is α. Now consider
Ω′ = e1iΩejn = αe1n. Then Ω′ is contained in the ideal of Dn(R) generated by
Bk’s and f(x)Ω′ = 0. This implies that Dn(R) is right ideal-McCoy.

(2) ⇒ (1): Let Dn(R) be right ideal-McCoy for any n, and let 0 �= f(x) =∑m
i=0 aix

i, 0 �= g(x) =
∑n

j=0 bjx
j ∈ R[x] with f(x)g(x) = 0. Letting

a(x) =
m∑

i=0

(
ai 0
0 ai

)
xi and b(x) =

n∑
j=0

(
bj 0
0 bj

)
xj ,

we have a(x) =
(

f(x) 0
0 f(x)

)
and b(x) =

(
g(x) 0

0 g(x)

)
with a(x)b(x) = 0. Since

D2(R) is right ideal-McCoy, there exists nonzero C ∈ ∑n
j=0 D2(R)

(
bj 0
0 bj

)
D2(R)

such that a(x)C = 0. Here say

C =
u∑

t=0

(
c1t c2t

0 c1t

)(
bst 0
0 bst

)(
d1t d2t

0 d1t

)
=

u∑
t=0

(
c1tbstd1t c1tbstd2t + c2tbstd1t

0 c1tbstd1t

)
,
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where bst ∈ {b0, . . . , bn}. Since C is nonzero, we have that
∑u

t=0 c1tbstd1t �= 0 or∑u
t=0(c1tbstd2t + c2tbstd1t) �= 0. Now a(x)C = 0 yields that f(x)(

∑u
t=0 c1tbstd1t) =

0 or f(x)(
∑u

t=0(c1tbstd2t + c2tbstd1t)) = 0, entailing that R is right ideal-McCoy.

The proof for (1) ⇔ (3) is similar to the preceding case.

Corollary 1.5. A ring R is right ideal-McCoy if and only if so is R[x]/(xn), where
n ≥ 2 and (xn) is the ideal of R[x] generated by xn.

Proof. We get the proof from Theorem 1.4 and the isomorphism Vn(R) ∼=
R[x]/(xn).

Strongly right McCoy rings are clearly right ideal-McCoy, but the converse need not
hold also by Theorem 1.4 since Dn(A) (when n ≥ 3) cannot be strongly right McCoy,
over any strongly right McCoy ring A, by Remark after [9, Theorem 2.2]. Thus we
can say that given any strongly right McCoy ring we can construct right ideal-McCoy
rings but not strongly right McCoy.

Right ideal-McCoy rings are clearly right McCoy, but the converse need not hold
by the following.

Example 1.6. Let K be a field and A = K〈a, b, c, d, e〉 be the free algebra gener-
ated by the noncommuting indeterminates a, b, c, d, e over K. Let I be the ideal of A

generated by
ab, ad + cb, cd, es, se

where s ∈ {a, b, c, d, e}. Set R = A/I and identify a, b, c, d, e with their images in R
for simplicity. Then (a + cx)(b + dx) = 0. Let J be the ideal of R generated by b, d.
Since ab = eb = cd = ed = 0, every element of J is of the form

r = aα1 + bα2 + cα3 + dα4

where αi is a polynomial in A generated by a, b, c, d for i = 1, 2, 3, 4. So

0 = (a + cx)r = (a + cx)(aα1 + bα2 + cα3 + dα4)

= (a2α1 + acα3 + adα4) + (caα1 + cbα2 + c2α3)x

yields
a2α1 + acα3 + adα4 = 0 and caα1 + cbα2 + c2α3 = 0.

Consider caα1 + cbα2 + c2α3 = 0. Then c(aα1 + bα2 + cα3) = 0 and so aα1 + bα2 +
cα3 = 0. This yields aα1 + cα3 = −bα2, and so we must get bα2 = 0, entailing
aα1 + cα3 = 0. Recall ad + cb = 0, and so we must have that either aα1 = cα3 = 0
or α1 = dβ, α3 = bβ for some β ∈ A. Consequently we now have r = dα4 and
0 = (a+cx)dα4 = adα4. This also implies dα4 = 0, entailing r = 0. These conclude
that R is not right ideal-McCoy.
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Next we will show that R is McCoy. Let f(x), g(x) be nonzero polynomials in
R[x] such that f(x)g(x) = 0. We can write

f(x) = s(x) + h1(x)a + h2(x)b + h3(x)c + h4(x)d + h5(x)e and

g(x) = t(x) + k1(x)a + k2(x)b + k3(x)c + k4(x)d + k5(x)e

where s(x), t(x) ∈ K[x] and hi(x), ki(x) ∈ R[x] for i = 1, 2, 3, 4, 5. Assume s(x) �=
0. Then t(x) = 0 clearly and so g(x) = k1(x)a + k2(x)b + k3(x)c + k4(x)d + k5(x)e.
Next we can obtain g(x) = 0 through a similar computation to the preceding one, a
contradiction. Thus we must have f(x) = h1(x)a+h2(x)b+h3(x)c+h4(x)d+h5(x)e,
and so f(x)e = 0. This implies that R is right McCoy. The left McCoy property of R

can be proved symmetrically.

2. PROPERTIES AND EXAMPLES OF RIGHT IDEAL-MCCOY RINGS

In this section we observe various kinds of properties of right ideal-McCoy rings,
examining ordinary ring extensions of right ideal-McCoy rings. We also investigate the
basic forms of finite right ideal-McCoy rings.

A ring R is called (von Neumann) regular if for each a ∈ R there exists x ∈ R

such that a = axa. Due to Feller [6], a ring is called right (resp. left) duo if every
right (resp. left) ideal is two-sided. Right or left duo rings are clearly Abelian via a
simple computation. Right duo rings are strongly right McCoy by [9, Theorem 1.11].

Proposition 2.1. Given a regular ring R the following conditions are equivalent:
(1) R is reduced; (2) R is reversible; (3) R is right duo; (4) R is Abelian; (5) R

is strongly right McCoy; (6) R is right ideal-McCoy; (7) R is right McCoy.

Proof. It suffices to prove (7)⇒(1) by [7, Theorem 3.2]. Let R be right McCoy
and assume on the contrary that there exists nonzero a ∈ R with a2 = 0. Since R

is regular, there exists b ∈ R with aba = a. Note baba = ba. Consider two nonzero
polynomials

f(x) = (1− ba) + ax and g(x) = ba− ax

in R[x]. Then f(x)g(x) = 0. But since R is right McCoy, there exists nonzero
c in R such that f(x)c = 0. This yields (1 − ba)c = 0 and ac = 0, entailing
c = c − bac = (1− ba)c = 0. This induces a contradiction.

A ring R is called π-regular if for each a ∈ R there exist a positive integer
n, depending on a, and b ∈ R such that an = anban. Regular rings are clearly π-
regular. So one may conjecture that right (ideal-)McCoy π-regular ring may be reduced.
However the following argument answers negatively. Note that Dn(A) (n ≥ 2) is π-
regular over a division ring A. Further, it is right (ideal-)McCoy by Theorem 1.4, but
not reduced.
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Remark 2.2. (1) Matn(A) cannot be one-sided McCoy for any ring A and n ≥ 2.
(2) Un(A) cannot be one-sided McCoy for any ring A and n ≥ 2.
(3) The class of right (ideal-)McCoy rings is not closed under subrings.
(4) The class of right ideal-McCoy rings is not closed under homomorphic images.

Proof. (1) and (2) are shown by [11, Proposition 1.6] and [11, Example 1.3]
respectively.

(3) We use the ring in [2, Theorem 7.1] and arguments in [9, Examples 1.10 and
1.12]. Let K be a field and K{e, x, y, z} be the free algebra with noncommuting
indeterminates e, x, y, z over K. Due to [2, Theorem 7.1], set R be the factor ring
of K{e, x, y, z} with the relations e2 = e, ex = x, xe = 0, ey = ye = 0, ez = ze =
z, x2 = y2 = z2 = xy = xz = yx = yz = zx = zy = 0. Then R is strongly right
McCoy (hence right ideal-McCoy) by the computation in [9, Examples 1.10]. Next
consider the subring of R generated by {α, e, x | α ∈ K}, according to [9, Examples
1.12]. Then this subring is not right McCoy by the argument in [9, Examples 1.12],
recalling that the overring R is right ideal-McCoy.

(4) Let R be the ring of quaternions with integer coefficients. Then R is a domain,
so ideal-McCoy. However for any odd prime integer q, the ring R/qR is isomorphic
to Mat2(Zq) by the argument in [8, Exercise 2A]. Thus R/qR is not one-sided ideal-
McCoy by (1).

One may conjecture that a ring R may be right ideal-McCoy when R/I and I are
both right ideal-McCoy rings for any nonzero proper ideal I of R, where I is considered
as a ring without identity. However the answer is negative by the following.

Example 2.3. Let F be a field and consider R = U2(F ). Then R is not right
McCoy (hence not right ideal-McCoy) by Remark 2.2(2). Note that all nonzero proper
ideals of R are (

F F

0 0

)
,

(
0 F

0 F

)
and

(
0 F

0 0

)
.

We will show that R/I and I are both right ideal-McCoy for any nonzero ideal I of R.

First, let I =
(

F F
0 0

)
. Then R/I ∼= F is right ideal-McCoy. Let f(x)g(x) = 0

for 0 �= f(x) = A0 + A1x + · · ·+ Amxm and 0 �= g(x) = B0 + B1x + · · ·+ Bnxn

in I [x], where Ai =
(

ai bi

0 0

)
and Bj =

(
cj dj

0 0

)
for 1 ≤ i ≤ m, 1 ≤ j ≤

n. We can write f(x) =
(

f1(x) f2(x)
0 0

)
and g(x) =

(
g1(x) g2(x)

0 0

)
where

f1(x) =
∑m

i=0 aix
i, f2(x) =

∑m
i=0 bix

i and g1(x) =
∑n

j=0 cjx
j, g2(x) =

∑n
j=0 djx

j .
From f(x)g(x) = 0 we have f1(x)g1(x) = 0 and f1(x)g2(x) = 0. If f1(x) �= 0, then
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g1(x) = 0 = g2(x) and so g(x) = 0, a contradiction. Thus f1(x) = 0 and f2(x) �= 0,

i.e., f(x) =
(

0 f2(x)
0 0

)
. This yields that f(x)C = 0 for every nonzero C in the ideal

of I generated by Bj ’s. Next let I =
(

0 F
0 F

)
. Then R/I ∼= F is right ideal-McCoy.

Let f(x)g(x) = 0 for 0 �= f(x) = A0 + A1x + · · · + Amxm =
(

0 f1(x)
0 f2(x)

)
and

0 �= g(x) = B0 +B1x+ · · ·+Bnxn =
(

0 g1(x)
0 g2(x)

)
∈ I [x], where Ai =

(
0 ai

0 bi

)

and Bj =
(

0 cj

0 dj

)
for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Since f1(x) �= 0 or f2(x) �= 0,

we get g2(x) = 0 from f(x)g(x) = 0, entailing g(x) =
(

0 g1(x)
0 0

)
. This yields

that f(x)D = 0 for every nonzero D in the ideal of I generated by Bj’s. Finally

let I =
(

0 F

0 0

)
. Then R/I = F ⊕ F is right ideal-McCoy. I is clearly right

ideal-McCoy since I2 = 0.

In ring theoretical process, it is also natural to observe the McCoy and ideal-McCoy
properties to be hereditary to ideals. According to Ramamurthi [22], a ring R (possibly
without identity) is right (resp. left) weakly regular if I2 = I for every right (resp.
left) ideal I of R. It is shown, by [22, Proposition 1], that a ring R is right (resp. left)
weakly regular if and only if a ∈ (aR)2 (resp. a ∈ (Ra)2) for every a ∈ R.

Remark 2.4. Let R be a ring and I be a proper ideal of R.
(1) If R is right ideal-McCoy then I is right McCoy as a ring without identity.
(2) The class of right McCoy rings is not closed under ideals.
(3) Suppose that if Iv �= 0 for v ∈ I then vI �= 0. If R is strongly right McCoy

then I is strongly right McCoy as a ring without identity.
(4) Suppose that R is right weakly regular. If R is strongly right McCoy then I is

strongly right McCoy as a ring without identity.
(5) Suppose that R is right weakly regular. If R is right ideal-McCoy then I is

right ideal-McCoy as a ring without identity.

Proof. (1) Consider nonzero polynomials f(x), g(x) in I [x] with f(x)g(x) = 0.
Say g(x) =

∑n
j=0 bjx

j . Since R is right ideal-McCoy, there exists nonzero c ∈∑n
j=0 RbjR such that f(x)c = 0. But c ∈ I and so I is right McCoy.

(2) Consider the ring R in Example 1.6 and let K be the ideal of R generated by
{a, b, c, d}. Consider two polynomials f(x) = a + cx, g(x) = b + dx in K[x]. Every
element in K is of the form aα1 + bα2 + cα3 + dα4 where αi is a polynomial in A
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generated by a, b, c, d for i = 1, 2, 3, 4. So the right annihilator of f(x) in K is only
zero, entailing that K is not right McCoy.

(3) Consider nonzero polynomials f(x), g(x) in I [x] with f(x)g(x) = 0. Say
f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j . If f(x)bk = 0 for some k ∈ {0, . . . , n} then

we are done. So assume that f(x)bj �= 0 for every nonzero bj , i.e., {a0bj, . . . , ambj} �=
0 for every nonzero bj . This yields Ibj �= 0 for every nonzero bj . Then, by hypothesis,
we get bjI �= 0 for every nonzero bj , and so g(x)I �= 0. Say

∑n
j=0 bjcx

j = g(x)c �= 0
for some c ∈ I . Then f(x)g(x)c = 0 clearly. Since R is strongly right ideal-McCoy,
there exists nonzero d in the right ideal of R generated by bjc’s such that f(x)d = 0.
Say d =

∑n
j=0 bjcrj with rj’s in R. Then d =

∑n
j=0 bj(crj) ∈ ∑n

j=0 bjI . This
implies that I is strongly right McCoy.

(4) Let Iv �= 0 for v ∈ I . Then IvR �= 0. Since R is right weakly regular,
IvIvR = IvRIvR = IvR �= 0 and so vI must be nonzero. Thus I is strongly right
McCoy by (3) when R is strongly right McCoy.

(5) Let R be right ideal-McCoy. Consider nonzero polynomials f(x), g(x) in I [x]
with f(x)g(x) = 0. Say f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j . Since R is right

ideal-McCoy, there exists a nonzero α in the ideal J of R generated by bj’s such
that f(x)α = 0. Since R is right weakly regular, we have J = J2 = J3 = · · · .
Note that J = RBR with B = {b0, . . . , bn}. This yields α ∈ J = (RBR)3 =
(RBR)B(RBR) ⊆ IBI , and so I is right ideal-McCoy.

Questions. (1) Is the class of right ideal-McCoy rings closed under ideals?
(2) Is the class of strongly right McCoy rings closed under ideals?
Finite dimensional algebras need not be right (ideal-)McCoy as we see in Un(A)

(n ≥ 2) over any finite ring A. We next investigate the basic forms of finite right
ideal-McCoy rings.

Given a ring R the Jacobson radical is written by J(R). Recall that R is called local
if R/J(R) is a division ring. Local rings are Abelian through a simple computation.
R is called semilocal if R/J(R) is semisimple Artinian, and R is called semiperfect
if R is semilocal and idempotents can be lifted modulo J(R). Local rings are clearly
semilocal.

Lemma 2.5. (1) (Eldridge) [5, Theorem]. Let R be a finite ring of order m with
an identity. If m has a cube free factorization, then R is a commutative ring.

(2) (Eldridge) [5, Proposition]. If a noncommutative ring with identity is of order
p3, p a prime, then it is isomorphic to U2(Zp).

(3) A ring R is Abelian, semiperfect, and right ideal-McCoy if and only if R is a
finite direct product of local right ideal-McCoy rings.

(4) A ring R is Abelian, semiperfect, and right McCoy if and only if R is a finite
direct product of local right McCoy rings.
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Proof. (3) Let R be a semiperfect right ideal-McCoy ring. The proof of [10,
Lemma 2.2(3)] is applied. Since R is semiperfect, R has a finite orthogonal set
{e1, . . . , en} of local idempotents whose sum is 1 by [16, Corollary 3.7.2]. This
implies that R =

∏n
i=1 eiR such that each eiRei is a local ring. Since R is Abelian,

every eiR = eiRei is an ideal of R. Moreover each eiR is a right ideal-McCoy ring
by Proposition 2.9(2) to follow. Conversely suppose that R is a finite direct product
of local right ideal-McCoy rings. Then R is Abelian and semiperfect since local rings
are both Abelian and semiperfect. Next Proposition 2.9(2) implies that R is right
ideal-McCoy.

(4) The proof is obtained by [2, Lemma 4.1] and a similar method to (3).

Due to Lambek [18], a ring R is called symmetric if rst = 0 implies rts = 0 for all
r, s, t ∈ R. Lambek proved that a ring R is symmetric if and only if r1r2 · · ·rn = 0,
with n any positive integer, implies rσ(1)rσ(2) · · ·rσ(n) = 0 for any permutation σ

of the set {1, 2, . . . , n} and ri ∈ R, in [18, Proposition 1]. Symmetric rings are
strongly left and right McCoy by [9, Proposition 1.7]. Commutative rings are clearly
symmetric. A simple computation gives that symmetric rings are Abelian. Reduced
rings are symmetric by [1, Theorem I.3], but there are many non-reduced commutative
(so symmetric) rings. GF (pn) denotes the Galois field of order pn. Xue [23] proved
that finite rings are right duo if and only if they are left duo. We will characterize
minimal noncommutative right ideal-McCoy rings, analyzing the following examples.

Let R1 =
{(

a b
0 a2

)
∈ U2(GF (22)) | a, b ∈ GF (22)

}
, according to Xue [24,

Example 2]. Then J(R1) =
{(

0 b
0 0

)
| b ∈ GF (22)

}
, R1/J(R1) ∼= GF (22);

hence R1 is local. Note that R1 is symmetric (hence strongly left and right Mc-
Coy) by the argument in [10, Example 2.5]. Further, R1 is both left and right duo
through a simple computation.

Let R2 = D3(Z2). Then J(R2) = {m ∈ D3(Z2) | the diagonal entries of m are
zero} and R2/J(R2) ∼= Z2; hence R2 is local. Note that R2 is ideal-McCoy by

Theorem 1.4, moreover R2 is strongly left and right McCoy by [14, Proposition 2].
But R2 is neither left nor right duo, considering the left ideal R2e12 and right ideal
e23R2.

According to Xue [24, Example 2], let R3 = Z4{x, y}/I , where Z4{x, y} is the
free algebra with non-commuting indeterminates x, y over Z4 and I is the ideal of
Z4{x, y} generated by x3, y3, yx, x2 − xy, x2 − 2, y2 − 2, 2x, 2y. Then R3 is duo by
the argument in [24, Example 2], and thus R3 is strongly left and right McCoy by [9,
Theorem 1.11]. Note that J(R3) = 〈2, x, y〉 (hence R3/J(R3) ∼= Z2) and J(R3)3 = 0.

| | denotes the cardinality.

Lemma 2.6. If R is a noncommutative right (or left) McCoy ring of order 16, then
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|J(R)| is 4 or 8.

Proof. Let R be a noncommutative right McCoy ring of order 16. We have four
cases of |J(R)| = 0, |J(R)| = 2, |J(R)| = 4, or |J(R)| = 8. Assume |J(R)| = 0.
Since R is noncommutative and |R | = 16, R ∼= Mat2(Z2) by Wedderburn-Artin
theorem. But Mat2(Z2) is not right McCoy by Remark 2.2(1), entailing that this case
is impossible. Assume |J(R)| = 2. If R is local (i.e., R/J(R) is a field), then J(R)
is a vector space over R/J(R). This entails |J(R)| ≥ 8 since R/J(R) ∼= GF (23),
a contradiction. Thus we must have that R/J(R) ∼= Z2 ⊕ Z2 ⊕ Z2, and |J(R)| = 2.
Note J(R)2 = 0. We can obtain orthogonal nonzero idempotents e1, e2, e3, such that
e1 + e2 + e3 = 1, by [16, Corollary 3.7.2], and we have

R = {x + y | x ∈ I, y ∈ J(R)}

where I = {0, 1, e1, e2, e3, 1 − e1, 1 − e2, 1 − e3}. Note that I is a commutative
ring since e1, e2, e3 are orthogonal each other. Say J(R) = {0, a}. Assume that
eia = 0 (resp. aei = 0) for all i. Then a = 1a = (e1 + e2 + e3)a = 0 (resp.
a = a1 = a(e1 + e2 + e3) = 0), a contradiction. So eka �= 0 (resp. aek �= 0) for some
k. Here assume that eja �= 0 for j �= k. Then eka = eja = a since eka, eja ∈ J(R),
and so this entails 0 = ekeja = eka = a, a contradiction. Thus eja = 0 for all j �= k
if eka �= 0. Similarly, aej = 0 for all j �= i if aei �= 0. Here assume that eia �= 0
and aei �= 0 for some i. Then eia = a = aei and eja = 0 = aej for all j �= i. This
implies that R is commutative, a contradiction. So if eia �= 0 for some i then aei = 0,
entailing aej �= 0 for some j �= i. Say e1a �= 0, ae2 �= 0, i.e., e1a = ae2 = a. Then
e2a = e3a = 0 and ae1 = ae3 = 0. Now consider two polynomials

f(x) = (e1 + e3) + ax and g(x) = e2 − ax ∈ R[x].

Then f(x)g(x) = 0 but there cannot exist 0 �= r ∈ R such that f(x)r = 0, entailing
that R is not right McCoy. The computations for remaining cases are similar. So this
case of |J(R)| = 2 is also impossible. Therefore |J(R)| is either 4 or 8. The proof
for the left case is similar.

As an application of Lemma 2.6, Mat2(Z2) cannot be right (ideal-)McCoy since
the Jacobson radical is zero.

In the following we can see all possible basic forms of finite right ideal-McCoy
rings of minimal order. We use the term “minimal” in the names of such kinds of rings.
The characteristic of a ring R is written by char(R).

Theorem 2.7. If R is a minimal noncommutative Abelian right McCoy ring, then
R is of order 16 and is isomorphic to Ri for some i ∈ {1, 2, 3}, where Ri’s are the
rings above.
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Proof. Suppose that R is a minimal noncommutative right McCoy ring. Then
|R| has a cube factor by Lemma 2.5(1) since R is noncommutative. U2(A) is not right
McCoy by Remark 2.2(2) for any ring A. So Lemma 2.5(2) implies that |R| is not of
the form p3 for some prime p since R is right McCoy. These yield that |R| is equal
to or larger than 24 since R is minimal such a ring. But the rings Ri’s above are right
McCoy rings of order 16, and so R must be of order 16. Note that R is semiperfect.

Now since R is a noncommutative right McCoy ring of order 16, we have two
cases of |J(R)| = 4 and |J(R)| = 8, by Lemma 2.6.

Case 1. |J(R)| = 4.

R is local by Lemma 2.5(4) since R is a minimal noncommutative Abelian right
McCoy ring. Then R is a noncommutative duo ring of order 16 by the proof of [10,
Theorem 2.6], and thus R is isomorphic to the ring R1 above by [24, Theorem 3].

Case 2. |J(R)| = 8.

Since R is local with |R/J(R)| = 2, we have R = {x + y | x ∈ I, y ∈ J(R)}
where I = {0, 1}. Thus R is commutative if and only if J(R) is commutative. Then,
by applying the argument for the case of |J(R)| = 8 in the proof of [13, Theorem 2.3],
we have that R is isomorphic to R2 (when char(R) = 2) or R3 (when char(R) = 4)
above.

Question. What are the shapes of non-Abelian right ideal-McCoy rings R such
that |R| = 16 and |J(R)| = 4?

Every ring Ri above is actually strongly left and right McCoy, and thus we get the
following with the help of Theorem 2.7. A strongly McCoy ring means a strongly left
and right McCoy ring.

Corollary 2.8. R is a minimal noncommutative Abelian right McCoy ring if and
only if R is a minimal noncommutative Abelian right ideal-McCoy ring if and only if
R is a minimal noncommutative Abelian strongly right McCoy ring if and only if R is
a minimal noncommutative Abelian strongly McCoy ring.

Considering Corollary 2.8, one may conjecture that the ideal-McCoy property is
left-right symmetric for the case of finite rings. However the answer is negative by
Example 1.2, letting K be a finite field.

Finally, we deal with some kinds of ring extensions over right ideal-McCoy rings.
Camillo and Nielsen showed, in [2, Lemma 4.1], that a direct product of rings Ri

(i ∈ I) is right McCoy if and only if so is every Ri. They also showed, in [2,
Proposition 4.3], that If I is an infinite set then the direct sum of rings Ri (i ∈ I) is
right McCoy. Also Hong, et al. [9, Proposition 2.6] proved that the class of (strongly)
right McCoy rings is closed under direct limits. Π and Σ denote direct product and
direct sum, respectively.
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Remark 2.9. (1) The class of right ideal-McCoy rings is closed under direct limits.
(2) Let R =

∏
i∈I Ri be the direct product of rings Ri. Then R is right ideal-

McCoy if and only if Ri is right ideal-McCoy for every i ∈ I .
(3) Let R =

∏
i∈I Ri be the direct product of rings Ri. Then R is strongly right

McCoy if and only if Ri is strongy right McCoy for every i ∈ I .
(4) Let R =

∑
i∈I Ri be a direct sum of rings Ri. Then R (possibly without

identity) is right ideal-McCoy if and only if Ri is right ideal-McCoy for every i ∈ I .
(5) Let R =

∑
i∈I Ri be a direct sum of rings Ri. Then R (possibly without

identity) is strongly right McCoy if and only if Ri is strongly right McCoy for every
i ∈ I .

Lei, et al. [17, Theorem 1] proved that a ring R is right McCoy if and only if so
is R[x]. Also Hong, et al. [9, Proposition 2.4] proved that if R[x] is strongly right
McCoy then so is R. By a similar method as in the proof of [9, Proposition 2.4], we
can get that if R[x] is right ideal-McCoy then so is R.

However we do not know whether R[x] is strongly right ideal-McCoy if R is a
strongly right McCoy ring.

Question. If R is a right ideal McCoy ring then is R[x] right ideal-McCoy?

A ring R is called right (resp. left) Ore if given a, b ∈ R with b (resp. a) regular
there exist a1, b1 ∈ R with b1 (resp. a1) regular such that ab1 = ba1 (resp. a1b = b1a).
Note that R is a right (resp. left) Ore ring if and only if the classical right (resp. left)
quotient ring of R exists. There exist many reduced rings which are neither right nor
left Ore as can be seen by the free algebra in two indeterminates over a field (this ring
is a domain but cannot have its classical right (left) quotient ring).

Hong, et al. [9, Theorem 2.1] proved that letting R be a right Ore ring with the
classical right quotient ring Q then R is strongly right McCoy if and only if so is Q,
and R is right McCoy if and only if so is Q.

Proposition 2.10. Let R be a right Ore ring with the classical right quotient ring
Q. If R is right ideal-McCoy then so is Q.

Proof. The set of all regular elements in R is denoted by C(R), and [19,
Proposition 2.1.16] is referred to freely. Let F (x)G(x) = 0 for F (x), 0 �= G(x) ∈
Q[x]. We can write F (x) = a0u

−1 + a1u
−1x + · · ·+ amu−1xm and G(x) = b0v

−1 +
b1v

−1x + · · · + bnv−1xn for ai, bj ∈ R and u, v ∈ C(R), where i = 0, . . . , m and
j = 0, . . . , n. Since R is right Ore, there exists u1 ∈ C(R) for all j’s such that
u−1bj = b′ju

−1
1 for some b′j ∈ R. Next set f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ,

g1(x) =
∑n

j=0 b′jx
j , and u2 = vu1. Then F (x) = f(x)u−1, G(x) = g(x)v−1,

u−1g(x) = g1(x)u−1
1 , and

F (x)G(x) = f(x)g1(x)u−1
1 v−1 = f(x)g1(x)u−1

2 ,
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noting that g(x) �= 0 and g1(x) �= 0. Let B (resp. B′) be the ideal of Q (resp.
R) generated by the coefficients of G(x) (resp. g1(x)). Since u−1bju1 = b′j and
bj = bjv

−1v, we have B′ ⊆ B and g(x), g1(x) ∈ B[x]. Now from F (x)G(x) = 0,
we also get f(x)g1(x) = 0. Since R is right ideal-McCoy and g1(x) �= 0, there exists
0 �= r ∈ B′ such that f(x)r = 0. Further, we have

0 = f(x)r = f(x)u−1ur = F (x)ur

for 0 �= ur ∈ B. Thus Q is right ideal-McCoy.

In the preceding situation, we do not know of any example of a right ideal McCoy
ring Q such that R is not right ideal McCoy.

Question. Let R and Q as before. If Q is right ideal-McCoy then is R right
ideal-McCoy?

The following can be compared with Proposition 1.1.

Proposition 2.11. Let R be an algebra with identity over a commutative ring S.
(1) R is right ideal-McCoy if and only if so is the Dorroh extension of R by S.
(2) R is strongly right McCoy if and only if so is the Dorroh extension of R by S.
(3) R is right McCoy if and only if so is the Dorroh extension of R by S.
(4) The left versions of (1), (2), and (3) also hold.

Proof. (1) Let D be the Dorroh extension of R by S, and suppose that
f(x) =

∑m
i=0(ai, bi)xi = (f1(x), f2(x)) and g(x) =

∑n
j=0(cj, dj)xj = (g1(x), g2(x))

in D[x] such that f(x)g(x) = 0, where f1(x) =
∑m

i=0 aix
i, f2(x) =

∑m
i=0 bix

i,
g1(x) =

∑n
j=0 cjx

j and g2(x) =
∑n

j=0 djx
j . Then (f1(x)g1(x) + f1(x)g2(x) +

f2(x)g1(x), f2(x)g2(x)) = 0 and so f1(x)g1(x) + f1(x)g2(x) + f2(x)g1(x) = 0 and
f2(x)g2(x) = 0. Note that s ∈ S is identified with s1 ∈ R, and so S is considered as
a subring of R. We refer to [9, Theorem 1.6] freely.

Case 1. (f2(x) �= 0 and g2(x) �= 0)
Since f2(x)g2(x) = 0 and S is commutative, there exists nonzero α ∈ ∑n

j=0 SdjS,
say α =

∑
s usdsvs, such that f2(x)α = 0. Then (f1(x), f2(x))(−α, α) = 0 with

(−α, α)=(−
∑

s

usdsvs,
∑

s

usdsvs)=
∑

s

(−us, us)(cs, ds)(−vs, vs)∈
n∑

j=0

D(cj, dj)D.

Case 2. (f2(x) �= 0 and g2(x) = 0)
Since (f1(x), f2(x))(g1(x), 0) = (f1(x)g1(x) + f2(x)g1(x), 0) = 0, (f1(x) +

f2(x))g1(x) = 0. If f1(x) + f2(x) = 0, then (f1(x), f2(x))(β, 0) = 0 for any
0 �= (β, 0) ∈ ∑n

j=0 D(cj, 0)D. If f1(x) + f2(x) �= 0, then there exists nonzero
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β ∈ ∑n
j=0 RcjR, say β =

∑
t utctvt, such that (f1(x) + f2(x))β = 0. Thus

(f1(x), f2(x))(β, 0) = 0 with

(β, 0) = (
∑

t

utctvt, 0) =
∑

t

(ut, 0)(ct, 0)(vt, 0) ∈
n∑

j=0

D(cj, 0)D.

Case 3. (f2(x) = 0 and g2(x) �= 0)
Since (f1(x), 0)(g1(x), g2(x)) = (f1(x)g1(x)+f1(x)g2(x), 0) = 0, f1(x)(g1(x)+

g2(x)) = 0. If g1(x)+g2(x) = 0 (i.e., dj = −cj for all j), then (f1(x), 0)(γ,−γ) = 0
for any 0 �= (γ,−γ) ∈ ∑n

j=0 D(cj,−cj)D. If g1(x) + g2(x) �= 0, then there exists
nonzero γ ∈ ∑n

j=0 R(cj + dj)R, say γ =
∑

w uw(cw + dw)vw, such that f1(x)γ = 0.
Thus (f1(x), 0)(γ, 0) = 0 with

(γ, 0) = (
∑
w

uw(cw + dw)vw, 0) =
∑
w

(uw, 0)(cw, dw)(vw, 0) ∈
n∑

j=0

D(cj, dj)D.

Case 4. (f2(x) = 0 and g2(x) = 0)
Since (f1(x), 0)(g1(x), 0) = (f1(x)g1(x), 0) = 0, f1(x)g1(x) = 0. Since R is

right ideal-McCoy, there exists nonzero δ ∈ ∑n
j=0 RcjR, say δ =

∑
l ulclvl, such that

f1(x)δ = 0. Thus (f1(x), 0)(δ, 0) = 0 with

(δ, 0) = (
∑

l

ulclvl, 0) =
∑

l

(ul, 0)(cl, 0)(vl, 0) ∈
n∑

j=0

D(cj, 0)D.

By Cases 1, 2, 3, and 4, D is right ideal-McCoy.
Conversely let D be right ideal-McCoy, and suppose that a(x) =

∑m
i=0 aix

i and
b(x) =

∑n
j=0 bjx

j in R[x] such that a(x)b(x) = 0. Then we also have f(x)g(x) = 0 in
D[x], letting f(x) =

∑m
i=0(ai, 0)xi and g(x) =

∑n
j=0(bj, 0)xj. Since D is right ideal-

McCoy, there exists nonzero c ∈ ∑n
j=0 D(bj, 0)D, say c =

∑
k(uk, sk)(bk, 0)(vk, tk)

with (uk, sk), (vk, tk) ∈ D, such that f(x)c = 0. Note that every s ∈ S is identified
with s1 ∈ R and so R = {r + s | (r, s) ∈ D}. Hence

c =
∑

k

(uk, sk)(bk, 0)(vk, tk)

=
∑

k

((uk + sk)bk, 0)(vk, tk) =
∑

k

((uk + sk)bk(vk + tk), 0).

Setting dk = (uk + sk)bk(vk + tk) gives

0 = f(x)c = (
m∑

i=0

(ai, 0)xi)(
∑
k

(dk, 0))

= (
m∑

i=0

(ai, 0)xi)(
∑
k

dk, 0) = (a(x)(
∑
k

dk), 0).
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But 0 �= ∑
k dk ∈ ∑n

j=0 RbjR, and this shows that R is right ideal-McCoy.
The proofs of (2), (3), and (4) are quite similar to one of (1).

The preceding proposition need not hold for the case that the ring R does not have
the identity, as we see in Proposition 1.1.
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