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MULTI-PARAMETER TRIEBEL-LIZORKIN AND BESOV SPACES
ASSOCIATED WITH ZYGMUND DILATION

Fanghui Liao and Zongguang Liu

Abstract. In this paper, the authors use the discrete Littlewood-Paley-Stein theory
to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces asso-
ciated with Zygmund dilation. They also obtain the boundedness of Ricci-Stein
singular integral operators on multi-parameter Triebel-Lizorkin and Besov spaces
associated with Zygmund dilation.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The multi-parameter theory has been developed by many authors over the past
decades. We refer the reader to the work of Carleson [1], Fefferman and Stein [3],
Gundy and Stein [5], etc. The Ricci-Stein singular integral operators were first consid-
ered by Ricci and Stein in [9], they obtained that the operators are bounded on LP(R?)
for all 1 < p < oco. Fefferman and Pipher in [4] further showed that the Ricci-Stein
singular integral operators are bounded in weighted L%, spaces for all 1 < p < oo
when the weight w satisfies an analogous condition of Muckenhoupt associated with
Zygmund dilation.

Recently, Han and Lu in [6, 7] developed multi-parameter Hardy spaces H g(RS)
associated with Zygmund dilation via the discrete Littlewood-Paley-Stein theory and
discrete Calderén’s identity. For 0 < p < 1, they proved the boundedness of Ricci-Stein
singular integral operators from H%(R3) to H,(R?) and from H%(R3) to LP(R3). The
dual space of HY(R3) was also obtained.

The main purpose of this paper is to develop the theory of multi-parameter Triebel-
Lizorkin spaces F;;%(RS) and Besov spaces B;:qZ(RS) associated with the Zygmund

dilation. The boundedness of Ricci-Stein singular integral operators on F; 2 (R3) and
By'%,(R?) are also established.
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Let S(R™) denote Schwartz functions on R™. Let a test function ¢ be defined on
R? by
Y(z,y,2) = D)y, 2),
where () € S(R), () € S(R?), and satisfy
> e =1
JEZ

for all &; € R\{0}, and

> @27k, 27k )2 = 1

kEeZ

for all (&, &3) € R2\{(0,0)}, and the cancellation conditions

/a:%”(x) dx :/ 1 (y, 2) dydz =0
R R2

for all nonnegative integers «, 3 and .
Let f € LP for 1 < p < oo, then Littlewood-Paley-Stein square function of f
associated with Zygmund dilation is defined by

1/2
92(H(@.y,2) = D Wik Fley. )P
J,k
where
M Ui, y, 2) = 220D (292) ) (2by, 27452,

From the Fourier transform, it is easy to see the following continuous Calderén’s
identity holds on L?(R3),

f(xoy,2) = jg ik = (2,9, 2).

j7k
We now introduce the product test function space on R? = R x R2.

Definition 1.1. A Schwartz test function f(z,y, 2) defined on R is said to be a
product test function on R x R?, if f € S(R?) and

/ [Baf(flf, Y, Z) de = / yﬁZVf(x’ Y, Z) dydz = 0,
R R2

for all nonnegative integers «, 3 and .
If f is a product test function on R x R?, we denote f € Sz(R3) and the norm of
f is defined by the norm of Schwartz test function.
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We denote by (Sz(R?))’ the dual space of Sz(R?).
We also denote Sz /(R?) by the collection of Schwartz test function f(z,y, 2)
defined on R3 with

H f HSZ,M

o> 08 o7
= sup  (I4|z[+[yl+|=)Y Z ’@W@f@%yaz) <00,
veRyelt zeR | <M, |B[<M,ly|<M Y

and

/wo‘f(x,y,Z) dw:/ Y f(z,y, 2) dydz = 0
R R2

for all nonnegative integers o, 3,7 < M.

Similarly, we denote (Sz,17(R?))" the dual space of Sz ur(RR?).

Since the functions 1/, 5 constructed above belong to Sz(R3), so the Littlewood-
Paley-Stein square function gz can be defined for all distributions in (Sz(RR3))". Thus
the authors in [7] defined the multi-parameter Hardy space associated with Zygmund
dilation as follows.

Definition 1.2. Let0 < p < co. The multi-parameter Hardy space associated with
the Zygmund dilation is defined as H%(R?) = {f € (Sz(R?)) : gz(f) € LP(R3)}. If
f € Hy(R?), the norm of f is defined by || f[| 2 = [lgz(f)llp.

Clearly, it follows that HY(R3) = LP(R3) for 1 < p < cc.

It was proved in [7] that the definition is independent of the choice of functions
Yjr and the following boundedness results of convolution type Ricci-Stein singular
integral operators on R? were established.

Theorem 1.1. [7]. Let Tz f = K * f be the Ricci-Stein singular integral operator
on R3, kernel K is defined by

2(k+] z
K(z,y,2)= > 2 k(55 ka o)
3,kEZ

where the functions @, i, are test functions in Sz(R?). Then Tz is bounded on HY(R3)
and bounded from HY(R3) to LP(R3) for all 0 < p < 1.

Moreover, the similar results for the nonconvolution type Ricci-Stein singular in-
tegral operators were also established in [7]. For a fixed large positive integer N, we
defined Sy (R? x R3) to be a collection of functions ¥ (x, y, z, u, v, w) € OV (R? x R3)
with finite norm ||¢)||s, defined by

sup (1+\(x—u,y—v,z—w)\)N Z ‘8 T,Y,2 uvww(xuyuzauavawMu
(pa 2 SR () €2 ol |81<N
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where 0%, = 831832833 , 8571,@ = 85 ! 84,8 2 8{,8)3. We further assume that the following

a:7y7z
cancellation conditions on :

/ ’(/J(x7 y7 Z? u7v7w>xa1 dx = / ’(/J(x7 y7 Z? u7v7w>ua2 du = 0
R R
and
/ v(x,y, 2z, u,v, w)y’gl,ﬁ1 dydz = / v(x,y, z,u, 0, w)v’82272 dydz =0
R2 R2

for all 0 < ag, 81,71, a2, 2,72 < N. We also use the notation Sy, (R3 x R3) =
Nns1 Sn(R? x R?).
Thus, the authors in [7] obtained the following results.

Theorem 1.2. [7]. Let T¢ be the nonconvolution type Ricci-Stein singular inte-
gral operator, namely

Tuef(.9:2) = [ Klovg 2 0.0) (v, 0) dududo,
R3

where K is defined by

T Yy zZ u v w
k(

— —2(k+7) , . _
K(z,y, 2 u,0,w) = Z 272 g, ok’ 9j’ ok+j 9k’ 9’ 2k+j>’
ik € Soo(R® x R3). Then Ty is bounded on HY(R3) and bounded from H(R?)
to LP(R3) for all 0 < p < 1.

Having obtained the boundedness of Ricci-Stein singular integral operator on multi-
parameter Hardy spaces associated with Zygmund dilation, we will develop a theory
of the multi-parameter Triebel-Lizorkin and Besov spaces associated with Zygmund
dilation. First we give the definitions.

Definition 1.3. Let 0 < p,q < oo, s = (s1,52) € R2. The Triebel-Lizorkin space
E; 2 (R3) associated with the Zygmund dilation is defined by

Fd (%) = {f € (S2(R?) ¢ |l =y < o0},

where
1/q

HfHF;g - Z o-dsiag—ksaa)y, . £l

J,kEZ
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The Besov space B;:qZ(RS) associated with the Zygmund dilation is defined by

By (R%) = {F € (Sz2(R) : ||l < o0},

where
1/q

1£llgzg = | D 27792752y % £

J,kEZ

We will show that the definitions of F; 7 and B;’qz are independent of the choice
function v; ;, by Min-Max comparison principle. The main tool to prove the Min-Max
comparison principle is the following Calderén’s identity in [7].

Theorem 1.3. [7]. Suppose that 1) are the same as in (1). Then

f(xﬂyu'Z) = Z Z ‘I“J“R‘J],k(xayuzaxb yJ;ZR>(’(/}j,k‘ * f)(xfuyJ72R>7

gk I,J,R

where zzj7k(x, Y, z, 21,95, 2r) € Szm(R3?), I C R, J C R, R C R are dyadic intervals
with interval-length 1(I) = 2=7=N, 1(J) = 27" N and I(R) = 2777%=2N for a fixed
large integer N, xj,yj,2Rr are any fixed points in I, J, R, respectively. The above
series converges in the norm of Sz ar(R®) and in the dual space (Szn(R?))'.

The Min-Max comparison principle in Triebel-Lizorkin spaces are given as follows.
We use the notation A ~ B to denote that two quantities A and B are comparable
independent of other substantial quantities involved in the paper.

Theorem 1.4. Suppose ¢V, (1) € S(R), 2,2 € S(R?) and ;. is defined
using vV and »? as in (1), ¢j i is defined similarly. Then for f € (SZM(]RS))/,
where M depends on p and q with 0 < p,q < oo, and s = (s1,52) € R?,

1/q
Z 2_]51q2—k52q Z sup "(/1]7k. * f(u’ v, w)‘qXIXJXR
1,kEZ I.JR uel,veJweR
p
1/q
~|[| Do 2R YT nf (g f(u,v,w)| X X XR
; uelveJweR
]7k€Z I7J7R
p

where I C R, J C R, R C R are dyadic intervals with interval-length 1(I) = 277N,
1(J) =27%N and I(R) = 2777%=2N for a fixed large integer N, x1,vy], 2r are any
fixed points in I, J, R, respectively.
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Similarly, we have the Min-Max comparison principle in Besov spaces.

Theorem 1.5. Suppose (1), (1) € S(R), ¢?) ¢ € S(R?), and ) is defined
using vV and v as in (1), ¢j i is defined similarly. Then for f € (SZM(]R‘%))/,
where M depends on p and q with 0 < p,q < 0o, s = (51, 53) € R?,

q\ 1/4q
D 2imaatkeall N sup [y f (w0, w) XX XR
7,kEZ I,J,R uelveJweR ,
q\ 1/q
~ Z 9—Js199—ks2q Z inf ‘¢j,k * f(uvva))‘XIXJXR
; uel,veJweR
JkeZL I,J,R ,

where I C R, J C R, R C R are dyadic intervals with interval-length 1(I) = 2777V,
1(J) =27%N and I(R) = 2777%=2N for a fixed large integer N, x1,vy], 2p are any
fixed points in I, J, R, respectively.

Using discrete Calder6n’s identity and Min-Max comparison principle, we can
prove the following theorems:

Theorem 1.6. Let Tzf = K x [ be the Ricci-Stein singular integral operator on
R3, kernel K is defined by
_ —2(k+j r Yy =
K(z,y,2)=>» 2% ])(Pj,k(ga oF 3k7)
J,kEZ

where ;. are test functions in S 7(R3). Then Tz is bounded on F; 2. Namely, for
all 0 < p,q < oo and s = (s1,82) € R?, there exists a constant C,, such that

1Tz (N g2g < Cpll Fll ey -

Theorem 1.7. Let Tzf = K x [ be the Ricci-Stein singular integral operator on
R3with the kernel K (x,y, z) satisfying the same conditions as in Theorem 1.6. Then
Tz is bounded on B;:qz. Namely, for all 0 < p,q < oo and s = (s1, s2) € R?, there
exists a constant C), such that

P, D,

Theorem 1.8. Let Thr¢ be the nonconvolution type Ricci-Stein singular integral
operator, namely

TeS(92) = [ Koy 0.0, 0) dudud,
R3
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where K is defined by

T Yy z u v w

_ ~2(k+5) . (XY v v
K(w,y,2,u,0,w) = | 27 ])(‘Dj’k(Qk’Qj’Qk—Fj’Qk’Qj’2k+j>’
J,kEZ

with @k € Soo(R3 x R3). Then Ty is bounded on F;’%. Namely, for all 0 < p,q <
00 and s = (s1, 82) € R?, there exists a constant C,, such that

ITxe(H g, < Coll fll g
D, ps

Theorem 1.9. Let Thr¢ be the nonconvolution type Ricci-Stein singular integral
operator with the kernel K (x,y, z,u, v, w) satisfying the same conditions as in The-
orem 1.8. Then Tnc is bounded on B;’qz. Namely, for all 0 < p,q < oo and

s = (s1,82) € R?, there exists a constant C,, such that
. < s .
HTNC(JC>HB;:‘JZ = CprHB;:qZ
2. THE MIN-MAX COMPARISON PRINCIPLE IN TRIEBEL-LIZORKIN AND BESOV SPACES

In this section, we establish the Min-Max comparison principle in Triebel-Lizorkin
and Besov Spaces associated with Zygmund dilation. We first give the almost orthog-
onal estimates.

Lemma 2.1. [7]. If we allow N1, Ny, M1, My to be any positive integers, 1\, ¢ €

Sz(R3) with cancellation conditions of any order, and s(x,y, 2, u,v,w) = t 2572
r Yy z u v w

P(E L 2 uL ) and ¢y is defined similarly. Then for any positive integers

t?s7ts? t? s’ ts

L, My, My, there exists C = C(L, My, Ms) such that

/3 wts(xu Yy,z,U,v, w>¢t/s/ (’U/, v, w, o, Yo, ZO) dudvdw
R

s/ S t\/t/ 1 s\/s/ 2
S i

$7 (Vo —2o) M e (s v 4y — o + Egal)2ea

where t* =t if s> and t* =t if s <s.

Lemma 2.2. [7]. If f,g € Sz(R®) and fis(z,y,2) =t 2s72f(£,%, ) and g,

t? s’ ts

is defined similarly. Then for any positive integers L , My and M, there exists a
constant C = C(L, My, My) such that

t t.,,s s (t vt )M (sV s )M
‘fts * gy (xayazﬂ SC(?/\t_/>L(_/\_/>L tV T 1+M; ’ 2|
s 80 (@VEH[z)H (s v gy 4 22

where t* =tif s> andt* =t if s < s .
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Next, we give the following lemma which is crucial in dealing with the Triebel-
Lizorkin and Besov Spaces theory.

Lemma 2.3. Given a large positive integer N and integers j, k, j/, k. Let I,J,R, I/,
J', R be dyadic intervals in R such that their side-lengths are 1(I) = 2-3=N 1(J) =
2-k=N [(R) = 279-F=2N |(I') = 279 =N (J') = 27K -N |(R') = 29 ~F 2N
Let x/] € I/, y:] = J/, and Z/R cR. Then for any u,u* € I, v,v* € J, w,w* € R, we
have

2_(j/\j/)M12_(k/\k/)M2‘I/"J/HR/‘

v (2 G 4 Ju— ) 1FM1273" (2= (AR 4 [ — g | +M/_|)2+M2
X W}]‘/JJ * f(xp,yy,2p)
1/r
l— * * *
SCQZLN(’" D7 Mz Z Wj@;{ *f(xf/ayj/azR/MTXI/XJ/XR/ (u , U, w )7
I/,J/,R/
where j* = jifk < k' and j* = j/ ifk > k', and My is the Zygmund maximal function
on R? and max{lf—Ml, HLM} < r <1, and the summation is taken for all T',J R
with thefxed Szde—length and T is defined asfollows T = (— — )(] +k — j—k) if
j<jandk<k;r= (——1)(3 ])zf] <jandk>k;r= (——2)(+k —k)+ji—j
lf]Z] and k < k'; T—Ozf]Z] and k >k .
The proof of Lemma 2.3 is similar to that of Lemma 3.7 in [8] with only minor

modification. We omit the details here.
Now we prove Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.4. For (u',v',w') € I' x J x R, by discrete Calderén’s
identity, f € Sz can be represented by

flay,2) =Y IIRIG k(. y, 2,8, 400 28) (Dsk * f) (@1, Y0, 2R),

gk I,J,R

by Lemma 2.2 and Lemma 2.3, for any z;,u* € I, y5,v* € J, zr, w* € R, we have

(%gk/ * f) (u/v ’U/, w/>

’(/Jj/7k‘/ * Z Z ‘IHJHR‘&ZJ,k(u 5L YT, ZR) (’U//, ’U/, w/>(¢]7k‘ * f)(f]f], Y, ZR)

gk I,J,R

=" IR g * dj) (W 0w 20,0, 28) (S % £) (@1, 9, 2R)

gk LJ,R
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—(lj—4' |+Ik=K )L 9—(ing )M
=22 S R
gk I,J,R (2 + U — zg|) M

o—(kAK ) My

X 5 7 5 ik ¥ 1, YyJ, =z
2_]*(2_(k/\k.)+‘v/_y1‘+2]*‘w/_ZR‘>M2+2(¢]7 f)( 1 yJ R)

SCZ 2—(|j—j/|+|k—k/|)L24N(%_1)2T
3k
ry 1/r
X ¢ Mz Z [(Pjk* f)(@r,y5, 2R) I XIXIXR (a* 0" )
1,J,R

where Mz is the Zygmung maximal function, max{lf—Ml, 2+2]\/[2} < r < min{p, q}.

Applying Holder’s inequality and summing over j/, k', I',J R, we obtain

1/q
D, > 2k sup (@ w50 w )X X X e
SETTR (u' ' w' el xJ xR’
r q/r) 14
<C Zz_jslqz—k'SZQ Mz Z [(djk* ) (@197, 2r)|XIXIXR
Jik I,J,R
Since (x7,y, zR) is an arbitrary point in I x J X R, we have
1/q
D, > 2tk sup |y ) 0w )| X X X
SETTR (u' ' w' el xJ xR’
rN q/rY) /4
<C QY2 oM | Y inf [(@,6%) f(u, v, 0)[XTXIXR

i IIR (u,v,w)eEIXJIXR

Hence, by the Fefferman-Stein vector-valued maximal function inequality with r <
min{p, ¢}, we get

1/q
SN o ey ee gy s 0w )
SRR (u' ' w')el’ xJ' xR’
1/q !
<Cl§30 Yo zmaahen it @k (v w) e ||
7,k I,J,R e
P

thus, we obtain desired result in Theorem 1.4.



2028 Fanghui Liao and Zongguang Liu

Proof of Theorem 1.5. As in the proof of Theorem 1.4, f € Sz can be represented
by
fa,y,2) =Y > NIJIRIG k(2 y, 221,40, 28) (B * £) (@1, 405 2R),
jk I,J,R
Arguing as in the proof Theorem 1.4, we have
(40 * 0w <O Y0 2 (T R DEpN G gr
j7k
r 1/7
<AMz( Y " [(di0 = H@rys, zr)xixaxr | p @ v w’).
I,J,R
Therefore
swp (e £ 0w )X () () ()
(u/,v/,w/)EI/XJ/XR/
SCZ2_(|j_j/|+|k—k/|)L24N(%_1)2T
j7k
ry 1/r
x Mz | > (i £)@r, ys, 2r) IX1XIXR (u*, v*, w).
I,J,R

When 1 < p < oo, by the Fefferman-Stein vector-valued maximal function inequality
with 7 < min(p, q), we get

sup [y g F)(u v w ) [xgp (u)x g (0F)x g (w”)
g g @ wel xJ' xR
I I p
<CY o itk DEgING=1g7 > 1 @sk * ) @r, v, zr) XX XR
7k I,J,R »

If ¢ > 1, applying Holder’s inequality and if 0 < ¢ < 1 by using usual inequality,
summing over j/, K, we get

q\ 1/

! ! !
Coosup (e f)(u v w )X X X R
II,JI7R, (u U W )EI XJ'XR
q) 1/q
P

—j,slq —k,szq
2 2

j’,k‘,

p

> @k ) @r. v, zr)IX1XIXR)

Jik I,J,R

<C (Z 9—is1q9—ksaq
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Since (z1,ys, zR) is an arbitrary point in [ x J x R, thus, we can get the desired
result, namely

q\ /4
D27 magtkeaall N sup |y g ) 0w ) X X X
ik r'J R (u',v',w')eI'XJ'XR'
I »
q\ 1/a
<C 9—is1ag—ks2q inf ek D) (u, v, w
> ]z}; IZ]:R(u,v,w;IelIxeRl((b]’k f)( » Uy )lXIXJXR)

When 0 < p < 1, by the Fefferman-Stein vector-valued maximal function inequality
with r < p, we get

p
/ sup |y g * Hw v, w)xpxyxg | du"dv*dw”
RS\ (u' ' w')el' xJ' xR’
Scz2—(|j—j’|+|k—k'|>Lp24Np<%—1>2pr
gk
T p/T
X / Mz | > ik * D@ ys, zr)xixoxr | (w0, w) du”dv*dw”
R3 IJR
Scz2—(|j—j’|+|k—k'|>Lp24Np<%—1>2pr
gk
p
<33 1 Dl sl oo xe(u’) - duddu
"

I,J,R

so if ¢/p > 1, applying Holder’s inequality and if 0 < ¢/p < 1 by using usual
inequality, we get

q\ /4
Z 2_.7 s1q2—k 829 Z Sup |(wjl,k‘l *f)(u ,U ,U) )lXI'XJ'XR,
ik II7JI,R, (u',v',w')eI'XJ'XR' »
q\ 1/q
<C Zz—jsqu—kszq Z (@i k= )@, ys, 2R)IXIXIXR
gk 1,J,R »

Since (z1, Yy, zR) is an arbitrary point in [ x J x R, thus, we can get the desired
result, namely
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1
q\ /4

! !
—9 s —k s ’ ’ ’
E 9= s1a9—k s2q E sup |(wj',k' *f)(u,v,w )|XI'XJ'XR'
j/ I IJ R (UI,UI,U)I)EIIXJIXR,
) sd P
a\ 1/4

<C g~ dsragks2q inf ;
< JZ; IEJ:R B | @ D v w)xrxs

p

As a consequence of Theorem 1.4 and Theorem 1.5, it is easy to see that Triebel-
Lizorkin Spaces F;’% and Besov Spaces B;’ -, are independent of the choice of functions
;. We also obtain the following results.

Proposition 2.1. Let 0 < p,q < oo and s = (s1,52) € R% Then we have

q\ 1/a
1fllgsg, ~ > omamagheat || N (g ok f) (@, g, 2r) X ()X (8) xR (2)
' Jk€Z IJR ,
p
and
1/q
Ifllges 2 |1 D2 D0 277519272 (0 % (@, ya, )| xa (2)x0 (9) xR (2) :
' §,k€ZI,J,R
p

where j, k,x1,Y7, 2R, XI5 XJ, XR: Vj | are the same as in Theorem 1.4.

3. BOUNDEDNESS OF RICCI-STEIN SINGULAR INTEGRAL OPERATORS

The main purpose of this section is to obtain the boundedness of Ricci-Stein singular
integral operators on multi-parameter Triebel-Lizorkin and Besov Spaces associated
with Zygmund dilation. We first give some propositions.

Proposition 3.1. Let 0 < p,q < oo and s = (s1, 82) € R?, then Sz(R3) is dense
in Fy3(R%) and B,3(R?) .
Proof. Suppose [ € F;’%(RS), we get

Flay,2)=> 3 IR k@, y, 2 21,95, 20) i+ ) (@191, 2R),

3k LR
where the series converges in (Sz(RR3))". It suffices to show that

F= FMl,MQ,S(xa Y, 2, 21,47, ZR)

= Z Z ‘IHJHR‘JLk(%yaZ;xb yJ72R>(’(/}j7k‘*f>(xfuyJ72R)

|7|< My, | k| <My IxJx RCB(0,s)
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converges to f in F;’%(RS), as My, My and s tend to infinity, where B(0,s) =
{(z,y,2) € R3 : 22 + 42 + 22 < s2}. To do this, let W the set {(j,k,I,J,R) :
I xJxRCB(0,s),|j| < M, |k| < My}, where the I, J, R are dyadic intervals in
R with side-length 2=9—N 2-k=N 9=i=k=2N " respectively, and let W¢ be the com-
plement of W. Let also V' = {(j, k) : |j| < M, |k| < My} and V¢ denotes its
complement.

Then for (z,,y,,2p) € I x J x R, we have

Vi ¥ > TR kG s wnyas 2r) (@ Yy 25 )Wk % [) (@1, Y05 2R)
(4,k,1,J,R)eWe

9—(Ai )M

<C 9li=3"1Lo=Ik=K'IL\ 11| J|| R|———
> Z | || || |(2_(JA])+|$I'—$I|)1+M1

4.k, I,J,R)eW®

9—(kAk")M;

|k * f)(1, 90, 2R)]

X 7 -
275 (2 g = sl + 2|z — 2

<c ¥ 9—li=i |ILg=Ik—k |LyN(+-1)or
(4,k)eVe

ry 1/7
X {Mz( > |(¢j,k*f)(xf,yJ,ZR)lxj'XJXR) } ,

I,J,R:(j,k,I,J,R)eW¢°

where j* = jifk < K and j* = j/ if k> k', 7 as in lemma 2.3, max{ﬁlf—]\b} <

r <min (p, q). Repeating the proof of Min-Max comparison principle of F; ’%(R‘g), we
get

N ’ l/q
H{ SN e e Ry F) iy XR/}

j/,k‘/ I/,J/,R/ P

1/q

< Z 2795199 ks2a| (4 % F)|IxIXIXR :

(j7k7I7J7R)€WC
P

where the last term tends to zero as My, Ms and r tend to infinity whenever f €
B

When f € B;:qZ(RS), we can similarly get desired result.

Since Sz(R?) C L%(R3), as a consequence of proposition 3.1, it is immediate that

Proposition 3.2. L2(R%) is dense in F,%(R®) and B)%(R®) for 0 < p,q < o0
and s = (s1,52) € R%
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We now prove the F;’%(RS) and B;:%(RS) boundedness of convolution type Ricci-
Stein singular integral operators.

Proof of Theorem 1.6. Applying discrete Calderon’s identity, for f € L*(R3) N
F;’g(RS), we have for any (u”, v”, w//> AT R”,

(/lpjll7k,, * Tzf)(ull,/l},,,wll)
= Z Z Z |I||J||R|(wj",k" * ¢j'7k' * Jj7k)(ull,1},,,wll,$[,yj, ZR)(wj,k * f)(-’L’I,yJ, ZR).

j' K 3k LR

We note that Jj7k(~, - x1,Y7, Zg) is a function in Sz(R3) and thus for any given
positive integers L, M7 and M5, we have

1| || R|2- 07
(276N + oy — a0

9—(kAk")M;

|(¢j,7k}' * Jj,k)(xay,Z,xl,yJ,ZRﬂ SCQ_U_] |L2_|k_k I

X ’ .
25 (2 gy — sl + 2|z — 2

and
/ (¢j/7k/ * 121/]7k>(513, Y,z2, 21,47, ZR>xa dx
R
= / (B g0 * 3@, 2,00,y 2R)y 2 dydz=0
R
for all nonnegative integers c, 3, and ~y. This implies (¢ ;/ IZ]k>(; T YJ, 2R) €
Sz(R3), and
H(¢j/7k/ * {/;ﬁk)('? S TLYT, ZR)HSZ(R3) < 02_|j_j |L2_|k_k |L'
Therefore
Z(¢j/7k/ * &],k)(? ST YT, ZR) € SZ(R3>
j/7k'/
and

H Z(¢j/7k/ * 1;],1&‘)(7 XL YT, ZR)HSZ(R3) S C.
j/ i

Set wj,k - Zj/7k/(¢j/7k;/ * wﬁkf)(.?'u'uxfu yJVZR): then 1/1],k € SZ(R3> Applylng
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lemma 2.3 again, we have for any (v, v",w") e I" x J" x R",

"

(wj"7k" *Tzf)(u U, w )

SZ Z 2~ li—i |Lg—lk—k |L|]||J||R|

Jk I,J,R

9—(Gng" )M

(2=GA") 4 0" — g]) 1M

9—(kAk")M;
X 7 . 7
25+~ FNF) o — gy + 2T — 2l PR

<> C2li=3" 1Lg=lk=k"|LgaN(1/r=1)g
Jk

(Vg * f)(xr1,97, 2R)

ry 1/7

xS Mz D (Wi Nl (xa()xe() (u®, 0%, w"),

I,J,R

where in the above we use the same notation j* = j if k < k" and jr = j” itk <k,
max{lf—Ml, 2+2—M2} < r < min{p, ¢}. Applying Holder’s inequality and summing over

j/’ k/’j//’ k//’ I//’ J// and R//’ We get

1/q
SN 2 e e T )@y 2 X (X (X ()
jll7k'll I,I7JI,7RI,
r q/r) 14
<C Q> 2isaghet s (N [y x £)(@nyas 2r) [ (Oxa (Oxa()
J.k 1,J,R

Hence, by the Fefferman-Stein vector-valued maximal function inequality with r<min(p, q),
we have

1/q
N "
Z 2_‘7 Slqz—k 52q|(wj// k‘” ES Tzf) ({L‘III s yJ// s ZR// )quIII XJII XR//
j”,k‘” I”,J”,R” ’
p
1/q
< O8> amamaaThea|(yy s f) (@1, y0, 21)| XIXIXR :
gk I,J,R
p
namely,

1Tzl gg, < Wl -

Since L*(R?) is dense in ;"2 (R?), then T’z can be extended to be a boundedness operator
on F77'%(IR?®). This finishes the proof of Theorem 1.6.
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Proof of Theorem 1.7. As in the proof of Theorem 1.6, we have
(W g * Tz f) 0" w") <37 €233 1Ly b=k 1LgaN(/r—1)gr
Jk
T 1/7‘
XC Mz | 37 W A OxsOxe() | 5 @' v"w)

I,J,R

When 1 < p < oo, by the Fefferman-Stein vector-valued maximal function inequality with
r < p, we have

” ” ”
Z |(/lpjll7kll *TZf)|(U/ ,U ,U} )XIIIXJIIXRII
7 7J// 7}%//

SCZ 2—|j—j”IL2—|k—k”|L24N(1/T._1)2T
Jsk

p

ry 1/7

< Mz [ Y 1@ * Hlxaxsxe

I,J,R

<O o7l gk R ILgANQ/T DT || N (4 4k f)|xixaxR

3.k I,J,R »
If ¢ > 1, applying Holder’s inequality and if 0 < ¢ < 1 by using usual inequality, and
summing over j .k ,j .k , we get

¢\ /e
N ”
9—Ji s1q9—k saq Z |(qu,, v * Tz )@,y 2pm )X X g X pe
j”7k” I,I7J,I7RI, p

ay 1/4a
—198 _k: 3

< OO 2Tk [N (4 ok f) (@0, Y0 2R) XX XR :

Jk I,J,R P

When 0 < p < 1, the Fefferman-Stein vector-valued maximal function inequality with
r < p,we get

L

p
6700 < T2 DI s e ) "

III7J,I7RI,
SCZ2_|j_j”|LP2—|]€—1€”|Lp24Np(1/r—1)27—p
gk
rN p/T
X/ Mz Z |56 % FIX1XIXR du dv dw
R3

I1,J,R
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<Y o—li—i"|Lpg—Ik—k" |LpgdNp(1/r—1)gmp
gk
p

X /3 1@k Hlxrxoxr | du’dv’dw”.
.

I,J,R

So if ¢/p > 1, applying Holder’s inequality and if 0 < ¢/p < 1 by using usual inequality, we
get

q) /4
N "
Z 2_] s1q2—k S2q Z |(w‘]u k}” ES TZf) (,’L‘IH s yJ” s ZRII>|XIII XJII XR//
j”,k)” I”,J”,R” »
ay 1/q
< C QY arTmagTRea [N (g ok f) (@0, Y 2R) XX XR :
Jk I,J,R P

Since L?(R3) is dense in B;ZQZ(R?’), then T can be extended to be a boundedness operator on
B;'%,(R?). This ends the proof of Theorem 1.7.

We now prove the F;g (R3) and B;qZ (R?) boundedness of nonconvolution type Ricci-Stein
singular integral operator, namely, Theorem 1.8 and Theorem 1.9.

Proof of Theorem 1.8 and Theorem 1.9. We recall that
Tyef(x,y,z) = / K(z,y, z,u,v,w) f(u,v,w) dudvdw,
R3

where K is defined

_ “2i)yy (LY 2 WU W
K(2,y,2,u,0,0) = 3 2 Vin(GE 97 9iFs 90 57 9 )

with 1) € Soo(R3 x R3).
Thus, by Calderon’s identity, we have for any (u v ,w") eI xJ xR,

(wj”,k‘” *TNCf)(U/ , U , W )

S ADIDIDIRUIEI / G0 1 (s, 0,w) (0 1) (w, 0,0, 21,y 7, 21) dudvd
ik 3k I,JR

(W0 w ) (W * f) (@1, y7, 2R)
= Z Z Z |I||J||R|wj”,k" * /]Rd (bj',k'(" K "u’v,w)(&ﬁk)(u,v,w,xby% zr) dudvdw
7,k

K I,J,R

"

k
x (u” 0", w") Wik * (1,90, 2R)-
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We note that ij(-, 21,97, 2R) is a function in Sz(R?) and for any given positive integers
L, My and M>, we have

FLkJ',k' (-T?,y,z,-’I?I,yJ,ZR) :‘ /‘3 (bj',k' (x,y,z,u,v,w)wj7k(u,v,w,x1,yJ,zR) dudvdw
R

, , —(iAi M
<09-li—i' Ly~ Ik—F|L 270n
= (2-GND f | — oy |) T
9—(kAk")Ma

X 7 -
279 (27 (RAKD) -y — | + 29|z — zp) 2+ Mo

and

/RFLkJI,k' (.T, Y, 2,C1,YJ, ZR)'T(X dx = /]R2 Fj7k7jI7kI (.T, Yy 2 X1, YJ s ZR)yBZ’Y dydz =0

for all nonnegative integers «, 3, and . This implies Fj7k7j/7k/(-, 2y, 2r) € Sz(R3),
and ’ ’
—li—j |Lo—|k—k|L
IF; i Cos s mr g, 2R) || sz ey < €277 [bmIb=kIL,
Therefore

Z Fj7k7j'7k'('? BT YT, zR) € SZ(RS)
i’k

and
H Z FLkJ',k'(" XL YT, ZR)HSZ(R:S) <C.
j'7k’

Set ¥k =>4 Fjpjow (o1 ys, 2R), then ¥ . € Sz(R?). Repeating the same proof

of Theorem 1.6 and Theorem 1.7, we obtain Theorem 1.8 and Theorem 1.9, respectively.
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