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SOME INEQUALITIES ON SCREEN HOMOTHETIC LIGHTLIKE
HYPERSURFACES OF A LORENTZIAN MANIFOLD

Mehmet Gülbahar*, Erol Kılıç and Sadık Keleş

Abstract. In this paper, we establish some inequalities involving k-Ricci curva-
ture, k-scalar curvature, the screen scalar curvature on a screen homothetic light-
like hypersurface of a Lorentzian manifold. We compute Chen-Ricci inequality
and Chen inequality on a screen homothetic lightlike hypersurface of a Lorentzian
manifold. We give an optimal inequality involving the δ(n1, . . . , nk)-invariant and
some characterizations (totally umbilicity, totally geodesicity, minimality, etc.) for
lightlike hypersurfaces.

1. INTRODUCTION

In 1993, B.-Y. Chen [4] introduced a new Riemannian invariant for a Riemannian
manifold M as follows:

δM = τ(p) − inf(K)(p),(1.1)

where τ(p) is scalar curvature of M and

inf(K)(p) = inf{K(Π) : K(Π) is a plane section of TpM}.

In [5], B.-Y. Chen established the following general optimal inequality involving the
new intrinsic invariant δM , the squared mean curvature ‖H‖2 for an n-dimensional
submanifold M in a real space form R(c) of constant sectional curvature c:

δM ≤ n2(n − 2)
2(n − 1)

‖H‖2 +
1
2
(n + 1)(n − 2)c.(1.2)

In [6], B.-Y. Chen proved a basic inequality involving the Ricci curvature and
squared mean curvature of a submanifold in a real space form. In [16], S. Hong, M.
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M. Tripathi studied this inequality and they presented a general theory for submanifolds
of Riemann manifolds by proving a basic inequality as follows:
(a) For X ∈ T 1

p M ,

(1.3) Ric (X) ≤ 1
4

n2‖H‖2 + R̃ic(TpM ) (X) ,

whereM is an n-dimensional submanifold of M̃ , R̃ic(TpM ) (X) is the n-Ricci curvature
of TpM at X ∈ T 1

p M with respect to the ambient manifold M̃ and T 1
p M is the set of

unit vectors in TpM .
(b) The equality case of (1.3) is satisfied by X ∈ T 1

p M if and only if

(1.4)

{
σ (X, Y ) = 0, for all Y ∈ TpM orthogonal to X,

σ (X, X) = n
2H(p).

(c) The equality case of (1.3) holds for all X ∈ T 1
p M if and only if either p is a

totally geodesic point or n = 2 and p is a totally umbilical point.
In [20], the inequality (1.3) is named Chen-Ricci inequality by M. M. Tripathi.
Later, B. Y. Chen and some authors found inequalities for non-degenerate subman-

ifolds of different spaces such as in [9, 15, 17, 18, 20, 21].
In degenerate submanifolds, M. Gülbahar, E. Kılıc. and S. Keles. introduced k-

Ricci curvature, k-scalar curvature, k-degenerate Ricci curvature, k-degenerate scalar
curvature and they established some inequalities that characterize lightlike hypersurface
of a Lorentzian manifold in [14]. However, as it is well known, since the sectional
curvature and the induced Ricci curvature are not symmetric on lightlike manifolds,
establishing Chen-like inequalities on lightlike submanifolds are more difficult than
establishing such inequalities on non-degenerate submanifolds. Thus, due to above
mentioned difficulties, they couldn’t compute some Chen-like inequalities (Chen-Ricci
inequality, Chen-inequality etc.).
In this paper, we introduce screen homothetic lightlike hypersurfaces. Since the

sectional curvature and the screen Ricci curvature of screen homothetic lightlike hyper-
surface are symmetric therefore we are able to establish Chen’s inequalities on screen
homothetic lightlike hypersurface of a Lorentzian manifold and we give some charac-
terizations using these inequalities.
The paper is organized as follows. Section 2 is concerned with preliminaries. In

section 3, we compute Chen-Ricci inequality on screen homothetic lightlike hypersur-
faces. In section 4, we establish some inequalities and we give some characterizations
on screen homothetic lightlike hypersurfaces of a Lorentzian manifold.

2. PRELIMINARIES

Let (M, g) be a lightlike hypersurface of an (n+2)-dimensional semi-Riemannian
manifold (M̃, g̃). The radical space or the null space of TpM , at each point p ∈ M ,
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is a one dimensional subspace Rad TpM defined by

Rad TpM = {ξ ∈ TpM : gp(ξ, X) = 0 for all X ∈ TpM}.(2.1)

The complementary non-degenerate vector bundle S(TM) of Rad TM in TM is
called the screen bundle of M . Thus, we have

TM = Rad TM ⊕orth S(TM),(2.2)

where⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of a vector bundle
E over M . For any null section ξ of Rad TM on a coordinate neighborhood U ⊂ M ,
there exits a unique null section N of a unique vector bundle tr(TM) in S(TM)⊥

satisfying

g̃(N, X) = g̃(N, N ) = 0, g̃(N, ξ) = 1, ∀X ∈ Γ(S(TM)).(2.3)

Then the tangent bundle TM̃ of M̃ is decomposed as follows:

TM̃ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM),(2.4)

where tr(TM) is called transversal vector bundle of M .
Let ∇̃ be Levi-Civita connection of M̃ and P be the projection morphism of Γ(TM)

on Γ(S(TM)). The Gauss and Weingarten formulas are given

(2.5)

∇̃XY = ∇XY + B(X, Y )N,

∇̃XN = −ANX + ω(X)N,

∇XPY = ∇∗
XPY + C(X, PY )ξ,

∇Xξ = −A∗
ξ(X)− ω(X)ξ.

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are the induced linear connection on TM

and S(TM), respectively; B and C are the local second fundamental forms on TM
and S(TM), respectively; AN and A∗

ξ are the shape operators on TM and S(TM),
respectively; and ω is a 1-form on TM [11, 12].
From the fact that B(X, Y ) = g̃(∇̃XY, ξ), it is known that B is independent of

the choice of a screen distribution and

B(X, ξ) = 0, ∀X, Y ∈ Γ(TM).(2.6)

The local second fundamental forms B and C of M and S(TM), respectively, are
related to their shape operators A∗

ξ and AN by

B(X, Y ) = g(A∗
ξX, Y ),(2.7)

C(X, PY ) = g(ANX, PY ).(2.8)
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If B = 0, then the lightlike hypersurface M is called totally geodesic in M̃ . A point
p ∈ M is said to be umbilical if

B(X, Y )p = Hgp(X, Y ), X, Y ∈ TpM,

where H ∈ R. The lightlike hypersurface M is called totally umbilical in M̃ if every
points of M is umbilical [11].
The mean curvature μ of M with respect to an orthonormal basis {e1, . . . , en} of

Γ(S(TM)) is defined in [3] as follows:

μ =
1
n

tr(B) =
1
n

n∑
i=1

εiB(ei, ei), g(ei, ei) = εi.(2.9)

A lightlike hypersurface (M, g) of a semi-Riemannian manifold (M̃, g̃) is called screen
locally conformal if the shape operators AN and A∗

ξ of M and S(TM), respectively,
are related by

AN = ϕA∗
ξ ,(2.10)

where ϕ is a non-vanishing smooth function on a neighborhood U on M . In particular,
M is called screen homothetic if ϕ is a non-zero constant [1].
We denote the Riemann curvature tensors of M̃ and M by R̃ and R, respectively.

The Gauss-Codazzi type equations for M are given as follows:

g̃(R̃(X, Y )Z, PU) = g(R(X, Y )Z, PU) + B(X, Z)C(Y, PU)
− B(Y, Z)C(X, PU),(2.11)

g̃(R̃(X, Y )Z, ξ) = (∇XB)(Y, Z)− (∇Y B)(X, Z)
+ B(Y, Z)w(X)− B(X, Z)w(Y ),(2.12)

g̃(R̃(X, Y )Z, N ) = g(R(X, Y )Z, N ),
g̃(R̃(X, Y )PZ, N ) = (∇XC)(Y, PZ) − (∇Y C)(X, PZ)(2.13)

+ w(Y )C(X, PZ)− w(X)C(Y, PZ),(2.14)

where

(∇XB)(Y, Z) = XB(Y, Z)− B(∇XY, Z)− B(Y,∇XZ),(2.15)

and

(∇XC)(Y, PZ) = XC(Y, PZ)− C(∇XY, PZ)− C(Y,∇∗
XPZ),(2.16)

for all X, Y, Z, U ∈ Γ(TM) [11].
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Furthermore, from (2.12) if M̃(c) is a Lorentzian space form, then it is known that

(∇XB)(Y, Z)− (∇Y B)(X, Z) = B(X, Z)w(Y )− B(Y, Z)w(X).(2.17)

Let Π = sp{ei, ej} be 2-dimensional non-degenerate plane of the tangent space TpM
at p ∈ M . Then the number

Kij =
g(R(ej, ei)ei, ej)

g(ei, ei)g(ej, ej)− g(ei, ej)2

is called the sectional curvature of the section Π at p ∈ M . Since the screen second
fundamental form C is symmetric on a screen homothetic lightlike hypersurface, the
sectional curvature Kij is symmetric, that is, Kij = Kji. But, in general, the sectional
curvature need not be symmetric for a lightlike hypersurface of a semi-Riemannian
manifold [12].
Let ξ be a null vector of TpM . A plane Π of TpM is called a null plane if it

contains ξ and ei such that g̃(ξ, ei) = 0 and g̃(ei, ei) 	= 0. The null sectional curvature
of Π be given in [2] as follows:

Knull
i =

g(Rp(ei, ξ)ξ, ei)
gp(ei, ei)

.

Let M be a lightlike hypersurface of a Lorentzian manifold M̃ and {e1, . . . , en}
be an orthonormal basis of Γ(S(TM)). The Ricci tensor R̃ic of M̃ and the induced
Ricci type tensor R(0,2) of M are defined by

R(0,2)(X, Y ) =
n∑

j=1

g(R(ej, X)Y, ej) + g̃(R(ξ, X)Y,N ),(2.18)

and scalar curvature τ be given by

τ =
n∑

i,j=1

Kij +
n∑

i=1

Knull
i + KiN ,(2.19)

where KiN = g̃(R(ξ, ei)ei, N ) for i ∈ {1, . . . , n} [13].

3. CHEN-RICCI INEQUALITY

LetM be an (n+1)-dimensional lightlike hypersurface of a Lorentzian manifold M̃
and {e1, . . . , en, ξ} be a basis of Γ(TM) where {e1, . . . , en} be an orthonormal basis
of Γ(S(TM)). For k ≤ n, we set πk,ξ = sp{e1, ..., ek, ξ} is a (k + 1)-dimensional
degenerate plane section and πk = sp{e1, . . . , ek} is k-dimensional non-degenerate
plane section. Define k-degenerate Ricci curvature and k-Ricci curvature at a unit
vector X ∈ Γ(TM) as follows:
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Ricπk,ξ
(X) = R(0,2)(X, X) =

k∑
j=1

g(R(ej, X)X, ej) + g̃(R(ξ, X)X, N),(3.1)

Ricπk
(X) = R(0,2)(X, X) =

k∑
j=1

g(R(ej, X)X, ej),(3.2)

respectively. Furthermore, k-degenerate scalar curvature and k-scalar curvature at p ∈
M are given as follows:

τπk,ξ
(p) =

k∑
i,j=1

Kij +
k∑

i=1

Knull
i + KiN ,(3.3)

τπk
(p) =

k∑
i,j=1

Kij,(3.4)

respectively. For k = n, πn = sp{e1, . . . , en} = Γ(S(TM)), then

RicS(TM)(e1) = Ricπn(e1) =
n∑

j=1

K1j = K12 + . . . + K1n,(3.5)

and

τS(TM)(p) =
n∑

i,j=1

Kij.(3.6)

RicS(TM)(e1) and τS(TM)(p) are called screen Ricci curvature and screen scalar cur-
vature, respectively [14]. From (2.11) we can write

τS(TM)(p) = τ̃S(TM)(p) +
n∑

i,j=1

BiiCjj − BijCji,(3.7)

where Bij = B(ei, ej), Cij = C(ei, ej) for i, j ∈ {1, . . . , n}, τ̃TpM (p) is scalar
curvature of n-plane section (screen distribution) of M̃ given by [15]

τ̃S(TM)(p) =
n∑

i,j=1

g̃(R̃(ei, ej)ej, ei).

We now recall the following lemma:

Lemma 3.1. [12]. Let M be a screen homothetic lightlike hypersurface of a
Lorentzian space form M̃(c) with constant curvature c. Then

2ϕw(ξ)B(X, PZ) = −cg(X, PZ).(3.8)
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Let M be a screen homothetic lightlike hypersurface of an (n + 2)-dimensional
Lorentzian space form M̃(c). From the Gauss-Codazzi type equations, equation (2.15)
and applying Lemma 3.1 we have the following equations:

τS(TM)(p) = n(n − 1)c + ϕn2μ2 − ϕ

n∑
i,j

(Bij)2,(3.9)

(3.10)

n∑
i=1

Knull
i =

n∑
i=1

g(R(ei, ξ)ξ, ei)

=
n∑

i=1

g̃(R̃(ξ, ei)ei, ξ)

=
n∑

i=1

{(∇ξB)(ei, ei)− (∇eiB)(ξ, ei) + B(ei, ei)ω(ξ)}

=
n∑

i=1

{−B(ei, ei)ω(ξ) + B(ei, ei)ω(ξ)} = 0,

and

(3.11)

∑n
i=1 KN

i =
n∑

i=1

g(R(ξ, ei)ei, N )

=
n∑

i=1

g̃(R̃(ξ, ei)ei, N )

=
n∑

i=1

ϕ{(∇ξB)(ei, ei) − (∇eiB)(ξ, ei) − B(ei, ei)ω(ξ)}

= −2ϕnμω(ξ)

= nc.

From (2.19), (3.9), (3.10) and (3.11) the induced scalar curvature τ(p) of M

becomes

τ(p) = n2c + ϕn2μ2 − ϕ

n∑
i,j

(Bij)2.(3.12)

Using (3.12) we obtain the following theorem immediately:

Theorem 3.2. Let M be a screen homothetic lightlike hypersurface with ϕ > 0 of
a Lorentzian space form M̃(c). Then we have

1
ϕ

(τ(p)− n2c) ≤ n2μ2.(3.13)

The equality of (3.13) holds for p ∈ M if and only if p is a totally geodesic point.
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Now, we shall need the following lemma:

Lemma 3.3. [19]. If a1, . . . , an are n(n > 1) real numbers then

1
n

(
n∑

i=1

ai)2 ≤
n∑

i=1

a2
i ,(3.14)

with equality if and only if a1 = · · · = an.

From (3.12) and Lemma 3.3 we have the following theorem immediately:

Theorem 3.4. Let M be a screen homothetic lightlike hypersurface with ϕ > 0 of
a Lorentzian space form M̃(c) . Then we

τ(p) ≤ n2c + ϕ{n(n − 1)μ2}.(3.15)

The equality of (3.15) holds for p ∈ M if and only if p is a totally umbilical point.

Proof. By Lemma 3.3 we can write

ϕ

n∑
i=1

(Bij)2 ≥ ϕμ2.(3.16)

If we put (3.16) in (3.12) then we get (3.15).
The equality of (3.15) holds for p ∈ M if and only if

B11 = · · · = Bnn.

Thus p is a totally umbilical point.
We now recall the following lemma:

Lemma 3.5. [10]. Let a1, . . . , an be n-real numbers and define A =
∑
i<j

(ai−aj)2.

Then
(1) A ≥ n

2 (a1 − a2)2 and equality holds if and only if

1
2
(a1 + a2) = a3 = . . . = an.

(2) Let k, 
 be integers such that 1 ≤ k < 
 ≤ n and (k, 
) 	= (1, 2). If A =
n
2 (a1 − a2)2 = n

2 (ak − a1)2 then a1 = a2 = . . . = an.

Since the sectional curvature of screen homothetic lightlike hypersurface is sym-
metric, we can denote the screen scalar curvature by rS(TM) as follows:
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rS(TM)(p) =
∑

1≤i<j≤n

Kij =
1
2

n∑
i,j=1

Kij =
1
2
τS(TM)(p).(3.17)

By (3.17), (3.9) equality become

2rS(TM)(p) = 2r̃S(TM)(p) + ϕn2μ2 − ϕ
n∑
i,j

(Bij)2.(3.18)

Using (3.18) and Lemma 3.5 we get the following theorem:

Theorem 3.6. Let M be a screen homothetic lightlike hypersurface with ϕ > 0 of
a Lorentzian manifold M̃ . Then we have

2rS(TM)(p) ≤ 2r̃S(TM)(p) +
n + 2
n + 1

ϕn2μ2 +
ϕn

2(n + 1)
(B11 − B22)2.(3.19)

The equality of (3.19) holds at p ∈ M if and only if the mean curvature ofM is equal
to n

2 (B11 + B22), that is, μ = n
2 (B11 + B22).

Proof. From the Binomial theorem we can write

(B11 − B22)2 + . . . + (B11 − Bnn)2 + (B22 − B33)2 + . . . + (B22 − Bnn)2

+ . . . + (Bn−1n−1 − Bnn)2 = n

n∑
i=1

(Bii)2 − 2
∑

1≤i�=j≤n

BiiBjj .

By Lemma 3.5 we have

n∑
i=1

(Bii)2 ≥ 1
n

∑
i�=j

BiiBjj +
1
2
(B11 − B22)2.(3.20)

On the other hand, we can write

1
n

∑
i�=j

BiiBjj = nμ2 − 1
n

n∑
i=1

(Bii)2.(3.21)

Using (3.20) and (3.21) we get

n∑
i=1

(Bii)2 ≥ n2

n + 1
μ2 +

1
2(n + 1)

(B11 − B22)2.(3.22)

Finally, by (3.18) and (3.22), we obtain (3.19).
The equality case of (3.19) holds then taking consideration of the case (1) of Lemma

3.5 we get μ = 1
2(B11 + B22). The converse part of the theorem is straightforward.
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From the Binomial theorem there is such as the following equation between the
components of the second fundamental form:

(3.23)

n∑
i,j=1

(Bij)2 =
1
2
n2μ2 +

1
2
(B11 − B22 − . . .− Bnn)2

+ 2
n∑

j=2

(B1j)2 − 2
∑

2≤i<j≤n

BiiBjj − (Bij)2.

Now, we shall introduce Chen-Ricci inequality on screen homothetic lightlike hy-
persurfaces.

Theorem 3.7. Let M be a screen homothetic lightlike hypersurface with ϕ > 0 of
a Lorentzian manifold M̃ . Then, the following statements are true.

(a) For X ∈ S1(TM) = {X ∈ S(TM) : 〈X, X〉 = 1}
1
4
n2μ2 ≤ 1

ϕ
(RicS(TM)(X)− R̃icS(TM)(X)).(3.24)

(b) The equality case of (3.24) is satisfied by X ∈ T 1
p M if and only if

(3.25)

{
B (X, Y ) = 0, for all Y ∈ TpM orthogonal to X,

B (X, X) = n
2μ.

(c) The equality case of (3.24) holds for all X ∈ T 1
p M if and only if either p is a

totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. From (3.18) and (3.23) we get

(3.26)

1
4
ϕn2μ2 = r(p)− r̃S(TM)(p) +

ϕ

4
(B11 − . . .− Bnn)2

+ ϕ

n∑
j=2

(B1j)2 − ϕ
∑

2≤i<j≤n

BiiBjj − (Bij)2.

From (3.18) we also have

ϕ
∑

2≤i<j≤n

BiiBjj − (Bij)2 =
∑

2≤i<j≤n

(Kij − K̃ij).(3.27)

Since

(3.28)

∑
2≤i<j≤n

Kij = rS(TM)(p) − RicS(TM)(e1),∑
2≤i<j≤n

K̃ij = r̃S(TM)(p) − R̃icS(TM)(e1),
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and using (3.26) we get

1
4
ϕn2μ2 ≤ RicS(TM)(X)− R̃icS(TM)(X).(3.29)

If we put e1 = X as any vector of T 1
p M in (3.29) we obtain (3.24).

The equality case of (3.24) holds for X ∈ T 1
p M if and only if

B12 = · · · = B1n = 0 and B11 = B22 + · · ·+ Bnn.

So we have

nμ = B11 + · · ·+ Bnn = 2B11,

which is equivalent to (3.25).
We now suppose that the equality case of (3.24) holds for all X ∈ T 1

p M then we
have

Bij = 0, i 	= j.(3.30)

2Bii = B11 + · · ·+ Bnn, i ∈ {1, . . . , n}.(3.31)

From (3.31) we have

2B11 = 2B22 = · · · = 2Bnn =
n∑

i=1

Bii,

which implies that

(n − 2)
n∑

i=1

Bii = 0.

Thus, either
n∑

i=1
Bii = 0 or n = 2. If

n∑
i=1

Bii = 0, then in view of (3.31), we get

Bii = 0 for all i ∈ {1, . . . , r}. This together with (3.30) gives Bij = 0 for all
i, j ∈ {1, . . . , n}, that is, p is a totally geodesic point. If n = 2, then form (3.31) we
have

2B11 = 2B22 = B11 + B22,

which shows that p is a totally umbilical point. The proof of the converse part is
straightforward.
From Theorem 3.7 we get the following corollary immediately:

Corollary 3.8. LetM be a screen homothetic lightlike hypersurface of a Lorentzian
space form M̃(c). Then, the following statements are true.
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(a) For X ∈ S1(TM) = {X ∈ S(TM) : 〈X, X〉 = 1}
1
4
n2μ2 ≤ 1

ϕ
(RicS(TM)(X)− (n − 1)c).(3.32)

(b) The equality case of (3.32) is satisfied by X ∈ T 1
p M if and only if

(3.33)

{
B (X, Y ) = 0, for all Y ∈ TpM orthogonal to X,

B (X, X) = n
2μ.

(c) The equality case of (3.32) holds for all X ∈ T 1
p M if and only if either p is a

totally geodesic point or n = 2 and p is a totally umbilical point.

4. CHEN-LIKE INEQUALITIES ON SCREEN CONFORMAL LIGHTLIKE HYPERSURFACES

We begin this section with the following lemma:

Lemma 4.1. [5]. If n ≥ 2 and a1, . . . , an, a are real numbers such that

(
n∑

i=1

ai)2 = (n − 1)(
n∑

i=1

a2
i + a),(4.1)

then
2a1a2 ≥ a,

with equality holding if and only if

a1 + a2 = a3 = · · · = an.

Theorem 4.2. LetM be a screen homothetic lightlike hypersurface of a Lorentzian
manifold M̃ , ϕ > 0, Π = Span{e1, e2} be a 2-dimensional non-degenerate plane
section of TpM , p ∈ M . Then

τS(TM)(p) − τ(Π) ≤ τ̃S(TM)(p)− τ̃(Π)

− ϕ
n2(n − 2)

n − 1
μ2 + ϕ

n∑
i=3

(Bii)2.(4.2)

Equality of (4.2) holds at p ∈ M then M is minimal and the shape operator of M
take the form:

A∗
ξ =

⎛⎜⎜⎜⎝
B11 B12 . . . 0
B21 −B11 . . . 0
...
0 0 . . . 0

⎞⎟⎟⎟⎠ .(4.3)
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Proof. If we put

δ = τS(TM)(p) − ϕ
n2(n − 2)

n − 1
μ2 − τ̃S(TM)(p),

in (3.9) we have

δ = ϕ
n2

n − 1
μ2 − ϕ

n∑
i,j=1

(Bij)2.

Therefore, we can write

(
n∑

i=1

Bii)2 = (n − 1)

⎛⎝ δ

ϕ
+

n∑
i=1

(Bii)2 +
n∑

i�=j=1

(Bij)2

⎞⎠ .

From Lemma 4.1 we get

2B11B22 ≥ δ

ϕ
+

n∑
i�=j=1

(Bij)2.

Now, let us choose a non-degenerate plane section Π that is spanned by e1 and e2.
Then we obtain

(4.4)

τ(Π) = τ̃(Π) + ϕ

2∑
i,j

BiiBjj − (Bij)2

≥ τ̃(Π) + δ + ϕ
n∑

i�=j=1

(Bij)2 − ϕ
2∑

i�=j=1

(Bij)2

≥ τ̃(Π) + δ + ϕ

n∑
i,j=1

(Bij)2 − ϕ

n∑
i=1

(Bii)2 − ϕ

2∑
i�=j=1

(Bij)2

≥ τ̃(Π) + δ − ϕ

n∑
i=3

(Bii)2.

From (4.4) we finally have (4.2) and (4.3). Therefore, M is minimal.
From Theorem 4.2 we have the following corollary:

Corollary 4.3. LetM be a screen homothetic lightlike hypersurface of a Lorentzian
space form M̃(c), ϕ > 0, Π = Span{e1, e2} be a 2-dimensional non-degenerate plane
section of TpM , p ∈ M . Then

(4.5) τS(TM)(p)−τ(Π) ≤ (n+1)(n−2)c−ϕ
n2(n − 2)

n − 1
μ2+ϕ

n∑
i=3

(Bii)2.
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If the equality of (4.5) holds at p ∈ M then M is minimal and the shape operator of
M take the form:

A∗
ξ =

⎛⎜⎜⎜⎝
B11 B12 · · · 0
B21 −B11 · · · 0
...

... . . . ...
0 0 · · · 0

⎞⎟⎟⎟⎠ .(4.6)

Taking into consideration Lemma 3.3 we have the following theorem:

Theorem 4.4. Let M be a screen homothetic lightlike hypersurface and ϕ > 0.
Then we have

τS(TM)(p) ≤ τ̃S(TM)(p) + ϕn(n − 1)μ2.(4.7)

Equality of (4.7) holds at p ∈ M if and only if p is a totally umbilical point.

Proof. If we write

ϕ

n∑
i,j=1

(Bij)2 = ϕ

n∑
i=1

(Bii)2 + ϕ
∑
i�=j

(Bij)2,

in (3.9) we have

τS(TM)(p) = τ̃S(TM)(p) + ϕn2μ2 − ϕ

n∑
i=1

(Bii)2 − ϕ
∑
i�=j

(Bij)2.(4.8)

From Lemma 3.3 we get

nμ2 ≤
n∑

i=1

(Bii)2.(4.9)

Using by (4.8) and (4.9) we obtain (4.7). Equality case of (4.7) holds if and only if

B11 = · · · = Bnn,

the shape operator An take the form:

A∗
ξ =

⎛⎜⎜⎜⎜⎜⎝
B11 0 . . . 0 0
0 B11 . . . 0 0
...

. . .
0 0 . . . B11 0
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ ,(4.10)

which shows that M is totally umbilical. This completes the proof of the theorem.
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Definition 4.5. Let M be a lightlike hypersurface of a Lorentzian manifold. For
any given set of mutually orthogonal plane sections πj with dimensions k-tuples
(n1, . . . , nk) such that n1 + · · · + nk ≤ n + 1, the δ-curvatures in lightlike case is
defined by [14]

δ(n1, . . . , nk) = τ(p)− inf{τπn1
+ · · ·+ τπnk

}.(4.11)

We now recall the following Chen’s generalized Lemma from [8] for later use.

Lemma 4.6. Suppose that a1, . . . , an are n real numbers, k is an integer satisfying
2 ≤ k ≤ n − 1. Then for any partition (n1, . . . , nk) of n

(4.12)

∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i2<j2≤n1+n2

ai2aj2 + · · ·

+
∑

n1+···+nk−1+1≤ik<jk≤n

aikajk

≥ 1
2k

{(a1 + · · ·+ an)2 − k(a2
1 + · · ·+ a2

n)},

with the equality holding if and only if

(4.13) a1 + · · ·+ an1 = an1+1 + · · ·+ an1+n2 = · · · = an1+···+nk−1+1 + · · ·+ an.

Let C(n1, . . . , nk) and D(n1, . . . , nk) be the positive numbers given by

C(n1, . . . , nk) = ϕ

n2(n + k − 1 −
k∑

j=1

nj)

n + k −
k∑

j=1

nj

,(4.14)

D(n1, . . . , nk) = n(n − 1)−
k∑

j=1

nj(nj − 1),(4.15)

for each (n1, . . . , nk) ∈ S(n) the set of all unordered k-tuples with k ≥ 0.
We now establish an optimal inequality involving the δ-invariant on screen confor-

mal lightlike hypersurface as follows:

Theorem 4.7. Let M be a screen homothetic hypersurface of a semi-Riemannian
space form M̃ . Then for each point p ∈ M and for each k-tuple (n1, . . . , nk) ∈ S(n),
we have the following inequality:

δ(n1, . . . , nk) ≤ C(n1, . . . , nk)μ2 + D(n1, . . . , nk)c + (2ϕ− 1)nμ.(4.16)

The equality of (4.16) holds at a point p ∈ M if and only if the shape operators of
M take the form:
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(4.17) A∗
ξ =

⎛⎜⎜⎜⎝
A∗

1 · · · 0
... . . . ... 0
0 · · · A∗

k

0 μrI

⎞⎟⎟⎟⎠ ,

where I is an identity matrix and each A∗
j is a symmetric nj ×nj submatrix such that

trace(A∗
1) = · · · = trace(A∗

k) = μr .(4.18)

Proof. If we put

η = τ(p)− n2c − ϕn2μ2
(n + k − 1 − ∑k

j=1 nj)

n + k − ∑k
j=1 nj

,(4.19)

in (3.12) we get

ϕn2μ2 = γ[η + ϕ

n∑
i,j=1

(Bij)2].(4.20)

where γ = n + k − ∑
nj . We can write the following equality instead of (4.20)

(
n∑

i=1

Bii)2 = γ[
η

ϕ
+

∑
i�=j

(Bij)2 +
n∑

i=1

(Bii)2].(4.21)

Equation (4.21) is equivalent to

(4.22)
(
γ+1∑
i=1

āi)2 = γ[
η

ϕ
+

γ+1∑
i=1

(āi)2 +
∑
i�=j

(Bij)2

−
∑

1≤α1 �=β1≤n1

aα1aβ1 − · · · −
∑

αk �=βk

aαk
aβk

],

where

ā1 = a1, ā2 = a2 + · · ·+ an1,

ā3 = an1+1 + · · ·+ an1n2 ,

...
āk+1 = an1+···+nk−1+1 + · · ·+ an1+···+nk

,

...
āγ+1 = an.

and αi, βi ∈ i, i = {1, . . . , k}, 1 = {1, . . . , n1},. . . ,k = {n1 + . . . + nk−1 +
1, . . . , n1 + . . . + nk}. Since ϕ > 0, by applying Lemma 3.3 to (4.22) we have
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∑
α1 �=β1

aα1aβ1 + . . . +
∑

αk �=βk

aαk
aβk

≥ η

2ϕ
+

∑
A<B

(BAB)2.(4.23)

In addition to this, from (3.12) we have

τ(πj) = τ̃S(TM)(πj) + 2ϕ
∑

αj<βj

BαjαjBβjβj − (Bαjβα)2,(4.24)

where dimπj = nj . Using (4.23) and (4.24) we get

(4.25)

τ(π1) + · · ·+ τ(πk) ≥ η +
k∑

j=1

τ̃S(TM)(πj) + 2ϕ
∑
A<B

(BAB)2

≥ η +
k∑

j=1

n2
jc.

Therefore, by (4.19) and (4.25), we obtain (4.16).
Taking into consideration Lemma 4.6, the equality case of (4.16) holds at p ∈ M

if and only if the shape operators of M take the form as (4.17).
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