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MULTIPLE SOLUTIONS OF A p(z)-LAPLACIAN EQUATION INVOLVING
CRITICAL NONLINEARITIES

Yuan Liang, Xianbin Wu*, Qihu Zhang* and Chunshan Zhao

Abstract. In this paper, we consider the existence of multiple solutions for the
following p(z)-Laplacian equations with critical Sobolev growth conditions

—div(|VulP 2 Vu) + [ufP 7w = f(z,u) in Q,
u = 0 on OS2

We show the existence of infinitely many pairs of solutions by applying the
Fountain Theorem and the Dual Fountain Theorem respectively. We also present
a variant of the concentration-compactness principle, which is of independent
interest.

1. INTRODUCTION

In recent years, there are a lot of interest in the study of various mathematical
problems with variable exponent (see [2-6, 13, 14, 16-25, 30-34, 36-39, 42, 44-51, 54-
58] and references therein). We refer readers to [17, 51] for an overview of this research
area and [2, 13, 49, 58] for the background of these problems. Recently, people are
also interested in the applications of variable exponent analysis to image restoration [29,
30, 34, 38]. The most typical differential equation with variable exponent is the p(x)-
Laplacian equation, which is a generalization of the usual p-Laplacian equation with the
constant exponent p being replaced by a variable exponent p(z). For Sobolev spaces
with variable exponent which have been used to study the p(x)-Laplacian equations,
we refer readers to [16, 19, 37]. On the existence of solutions of elliptic equations
with variable exponent and subcritical growth conditions, we refer readers to [5, 6, 21,
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23, 31, 54]. However, to the best of our knowledge, results on elliptic equations with
variable exponent and critical growth condition are rare (see [24, 25]).

In this paper, we consider the existence of multiple solutions of the following
equations with critical Sobolev growth conditions

®) —div(|VulP® 2 V) + [uP@ 2w = f(z,u) inQ,
u = 0 on 011,

where A, yu = div(|[VuP® =2 Vu) is called the p(z)-Laplacian; Q C RY is an
open bounded dommain, p(x) € C(Q) is Lipschitz continuous and 1 < inE2 p(z) <
re

supp(z) < N; f satisfies the following condition.
€

[fla, )] < A+, V(z, 1) € A xR,

here p*(z) = Np(z)/(N = p(z)), p(z) < N,
where p*(x) = oo,p(@ZN_

Because of its non-homogeneity, the p(z)-Laplacian possesses more complicated
nonlinearity than the p-Laplacian. Many results for p-Laplacian problems do not hold
for p(x)-Laplacian problems anymore. For examples,

(1°) If Q ¢ RY is an open bounded domain, the Rayleigh quotient

| o
A = inf

P ewd O @ o) / _\u\p dz

is zero in general. Only under some special conditions, we have A,y > 0. For
example, \,;) > 0 if and only if p(x) is monotone in one dimensional case (i.e.
N = 1) (see [22]). It is well known that the fact that A\, > 0 is very important in the
study of p-Laplacian problems.

(2°) The norm in LP()(Q) is of Luxemburg type (we will explain later in the second

section). It is easy to see that [, [ulP™) do = \u\p () forsome & € Q. Hence the integral
and the norm can not keep the constant exponent relationship. It implies that we will
have more difficulties in the study of p(z)-Laplacian problems. For example, it is very
difficult to get the best Sobolev imbedding constant when we deal with the critical
Sobolev exponent problems. Even if the best Sobolev imbedding constant could be
obtained, it is also hard to be applied to study the critical exponent problems.

In [8], Brézis and Nirenberg initially studied the equations involving critical Sobolev
exponents. In [40, 41], Lions discovered the concentration-compactness principles
which have been proved to be very effective in variational problems involving critical



Multiple Solutions of a p(z)-Laplacian Equation Involving Critical Nonlinearities 2057

Sobolev growth conditions. These principles are currently named as the first and second
concentration-compactness principles (CCP1, CCP2). The proof of these concentration-
compactness principles can also be found in [52, 53]. In [11], Chabrowski formulated
a variant of these two principles, namely, the concentration-compactness principle at
infinity (CCP,) for both critical and subcritical cases. As to p-Laplacian problems
with critical growth conditions, there are many results (see [1, 7-10, 15-18, 26-28, 35,
43-47] and the references therein). But results on the p(z)-Laplacian problems with
critical growth conditions are rare.

In [24], Fu gave the concentration-compactness principle in Lp(')(Q) space, and
discussed the existence of at least one nontrivial solution. Our aim here is to deal
with the existence of multiple solutions for p(z)-Laplacian problems involving critical
growth conditions. We obtain the existence of infinitely many pairs of solutions by
the Fountain Theorem and the Dual Fountain Theorem. Especially, we give a variant
of concentration-compactness principle. These results are extension of results of p-
Laplacian problems.

This paper is organized as follows. In Section 2, we introduce some basic properties
of the variable exponent Sobolev spaces, and also present a variant of concentration-
compactness principle. In Section 3, several important properties of p(x)-Laplacian are
presented. Finally, we give the main results and the proofs in Section 4.

2. WEIGHTED VARIABLE EXPONENT LLEBESGUE AND SOBOLEV SPACES

In order to discuss the problem (P), we need the functional space W 17() (©2) which
is called variable exponent Sobolev space. To deal with critical nonlinearities, we also
need a variant of the concentration-compactness principle. Let S(2) be the set of all
measurable real valued functions defined on 2. Denote

ht = esssuph(z), h~ = essinfh(x), for any h € S(Q),
€0 €

Ci(Q) ={n|lheC@),h” >1forzeQ},
LPO(Q) = {u lue S(Q), [, ul@)P® ds < oo} .

The Luxemburg norm on LP() () is defined by

u(z) p(z)
dr <1 5.
IASSICE

Under the norm as above (L) (Q), || »(-)) becomes a Banach space, which is called
variable exponent Lebesgue space.
The space WP()(Q) is defined by

WO (Q) = {u e 170 (Q) ’\vu\ e *V) (Q) } :



2058 Yuan Liang, Xianbin Wu, Qihu Zhang and Chunshan Zhao

in which the norm is defined by

[ullpy =l + [Vl , Yo € WHPO ().

(T O
Let 7°(-) be the conjugate function of 7(-), namely 7°(x) = { 7"(1’)11 T EC(@)
,T = 00

Proposition 2.1 . (see [19]).
(i) If g € L¥(Q), 1 < ¢ < q© < oo, then the space (Lq(')(Q),\~\q(,)) is a

separable, uniformly convex Banach space, and it’s conjugate space is La’0) (Q)

where ﬁ + qo#(x) = 1. For any u € L1)(Q) and v € L1’ 0)(Q), we have

/ uvdr
Q

(it) If Q C RY is open bounded, 1 < p1, pa € C(Q), p1(z) < pa(x) for any x € Q,
then LP20)(Q) ¢ LP*)(Q), and the imbedding is continuous.

11
< (=4 72 gy olgogy -
qa (4"

Proposition 2.2. (see [19]). If we denote
plu) = / [ulP@ da, Yu € LPO(Q),
Q

then

(1) Jul,y <U=1>1) <= p(u) <1(=1;>1);

N - + - +
(if) ‘u‘p(~) > 1:>‘u‘§(.) <pu) < ‘u‘i(.)§ ‘u‘p(~) < 1:>‘u‘§(.) > p(u) > ‘u‘i(.ﬁ
(iii) |ulp) = 0 <= p(u) = 0; [ul,) = 00 <= p(u) — oco.

Proposition 2.3. (see [19]). If u, u, € LPV)(Q), n =1,2,---, then the following

statements are equivalent to each other:
(1) klinolo |uk — u‘p(.) =0;
(2) Jim p(u —u) =0
(3) up — w in measure in Q2 and klim p (ur) = p(u).
Proposition 2.4. (see [19]).

(i) WtP()(Q) is a separable reflexive Banach space;
(i) If 1 < q € C(Q) and q(z) < p*(x) for any x € €, then the imbedding from
Wrt)(Q) to LIO) (Q) is compact;
(iii) If p is Lipschitz continuous, q is measurable and satisfies 1 < q(z) < p*(x) for
any x € Q, then the imbedding from W'P0)(Q) to LI (Q) is continuous.
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Proposition 2.5. (see [19]). If Q is an open subset of RN, f: QxR — R is a
Carathéodory function and satisfies

|f(z,8)] < a(z) + b|s|Pr@/P2@) for any 2 € Q5 €R,

where 1 < py, po € C(Q) , a(-) € LP>O)(Q), a(x) > 0, b > 0 is a constant, then the
Nemytsky operator from LP*()(Q) to LP21)(Q) defined by (Npu)(x) = f(z,u(x)) is
a continuous and bounded operator.

Denote HuH;(.) =inf{A>0] [, ]%]p(m) dx + [, ]%’p(@ dr < 1}, then it is easy
to see that H-H;(,) is an equivalence norm of |||, on WhPL) (Q). In the following,
we will use |-}, instead of [|-{,, on whr) (Q).

Let M(£2) denote the class of nonnegative Borel measures of finite total mass, and
pie = p in M(Q) is defined by [gndu. — [gndpu for every test function n € C(Q).

Proposition 2.6. (see [24]). Assume ) is an open bounded domain in RY, p is
Lipschitz continuous on Q and satisfy 1 < p(z) < N. Let {w:} be a sequence in

Wol’p(') (Q2) of norm ||Vwel|py < 1 such that
we = w in WP (Q), |VweP@ 5 pin M(Q), |we”"® = v in M(Q).
Denote

C* = sup{/ \wg\p*(m) dz |we € Wol’p(') (Q), \ng\p(,) <1}
Q

and then 0 < C* < 4o00. The limit measures are of the form
= VPO 38 4 i p(@) < 1o = |l 43 06, 0(@) < O
jed =
where z; € Q, J is a countable set, i € M(f2) is a nonatomic positive measure. The

atoms and the regular part satisfy the generalized Sobolev inequality

*—

w4 * p*+ p

0(@) < O max{p(@) 7, p(@) 7}, vy < O max{p .u/" ).

We have the following version of the concentration-compactness principle:

Theorem 2.7. Assume Q) is an open bounded domain in RYN, p is Lipschitz con-
tinuous on Q satisfying 1 < p(z) < N, 1 < q(z) < p*(x), e, — 0T as n — +o0. Let
{wn} be a sequence in Wol’p(') (Q2) of norm ||NVwy||,y < 1 such that

wn = w in WP (Q), [V [P® 5 1 in M(Q), |w, |75 2 o# in M(Q).
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Denote
" + 1,p(-
C;p = sup{|wl? +1 ’w e Wy (Q), Vel < 17,

and then 0 < C’; < +00. The limit measures are of the form

po= IVol" > e, + i p@) < 1,
JjeJ
vt = [wl™ + 3 s, o (@) < 0 + 1,
jeJ
vi({z}) < o({a}),veeq,

where z; € Q, J is a countable set, and i € M(Q) is a non-atomic positive measure.
The atoms and the regular part satisfy the generalized Sobolev inequality

+ ad -

— = e £ T
o#(@) < € max{u(@  p@77 ), off < ) max{u " )

=)
|

In order to prove the Theorem 2.7, we need the following Lemma.

Lemma 2.8. Assume ) is an open bounded domain in RN, {f,} is bounded in
LPO(Q) and f, — f € LPO(Q) ae. on Q. If 1 < p(x) < N, and e, — 0% as
n — +oo, then

1P [ 1= [ e
Q Q 0

n—oo

Proof. Without loss of generality, we may assume that ¢,, < %, n=12---.Itis
easy to see that

lim \f\p(m)_g" dr = / \f\p(m) dx.
Q Q

n—oo

Now it suffices to show that
W Jim [ RO de = [ (g PO e [P0 )~
n—0o0 " Jq Q Q

Denote

ngn(a}> = H‘fn‘p(x)_gn - ‘fn - f‘p(m)—gn — ‘f‘p(l’)—é‘n

—elfa— PO
+

where [a]+ = max{a,0}. Obviously, W¢ ,(z) — 0 a.e. on 2, as n — oo.
Similarly to the proof of Lemma 2.1 of [24], we have

P50 — | fo = PO = | P < |y = FPO50 4 Oe) P
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where ¢ and C(¢) are independent of n.

Therefore, W, ,(z) < C(e) | fIP™) " < C(e)(|fP*™+1) € L'(Q). By Lebesgue’s
Dominated Convergence Theorem, we have [, W ,()dz — 0, as n — oo. Similarly
to the proof of Lemma 2.1 of [24], we can see that (1) holds. ]

Proof of Theorem 2.7. There exists a subsequence of {u, }( for simplicity we still
denote it as {uy,}) such that u,(z) — u(z) a.e. on Q. By Lemma 2.8, we have

liminf [ [u,|9® " da — / [u|?® dz = lim inf/ |ty — w|1® "5
(94 (94 n—0o0 (94

n—oo

n—oo

liminf/ |t [ 1)~ s — / [u|?® pdz = liminf/ |ty — 7@ pda,
Q Q n—oo Jo
for every sub-domain €' C Q and n € C(Q). Thus
ot = o7 — \u\q(m) = ZU]#(L;]. + o7,
jed

with non-atomics o% € M(Q). Similarly to the proof of Theorem 3.1 of [24], we can
see that 0% = 0. Thus v# = |w|!®) + Zvj#dmj.
jed
For any zp € Q and Ve > 0, let ¢. € C(RY) with ¢.(z) > 0,¢-(x9) = 1,
¢=(x) = 0 when |z — 29| > . We have

v ({zo})

IN

/¢5($)U#da:: lim /¢8(g;> ‘un‘(I(aﬁ)—a‘n d
Q n—oo fq

lim | ¢e(@){|un| ™ + 1}dz < / p(z)vdr + CeN.

IN

Letting ¢ — 0, we have v ({z0}) < v({zo}). |
3. PROPERTIES OF OPERATORS AND VARIATIONAL PRINCIPLE

In the following, we will discuss the properties of the p(x)-Laplacian operator and
Nemytsky operator. Also, we will present several variational principles.

From now on, the letters ¢, ¢;, C,C;, i = 1,2, ..., denote positive constants which
may vary from line to line but are independent of the terms which take part in any
limit process. Denote X := I/VO1 P (')(Q). We Consider the following functional

1 1
J(u) = / —— [ VulP™ dz + / —— |u’™ dz, u € X.
o p() o p(x)

Obviously (see [12]), J € C*(X,R) and it is weak lower semi-continuous. Denote
L=J:X — X*, then we have
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= / VP2 VuVodz +/ lu|P 2 woda, Yu,v € X.
Q )

Proposition 3.1. (see [21]).
(i) L: X — X* is continuous, bounded and strictly monotone;
(if) L is a mapping of type (Sy) , i.e. if u, — win X and lim (L(uy)—L(u), t, —
u) <0, then u, — uin X; e
(iif) L: X — X* is a homeomorphism.

Denote F(z,u) = [ f(x,t)dt, ¥(u) = [, F(x,u)dz, ( = [o f(z, u)vdz.
The corresponding funct1ona1 of (P) is

Then we have the following theorem.
Theorem 3.2.
(i) ¥ e CY(X,R);

(i) If fz,u)/ [ulP @7 = 0 as |u| — oo, then U and V' are weak-strong contin-
uous, i.e., Uy — u implies V(u,) — V(u) and V' (u,) — V' (u).

Proof.

(i) From the continuity of the Nemytsky operator, we can see that both ¥ and W’
are continuous.

(ii) Since u, — wu, we have |u, — u\p(.) — 0 and u, — u ae. on . Thus,
F(z,un(z)) — F(z,u(z)) a.e. on Q. Clearly,

/ P, un)| da < / & [unl”" @) + C(e)]der, VU C 2,
U U

then {|F(z,u,)|} is uniformly integrable, and then{|F(x,u,) — F(z,u)|} is
uniformly integrable. Noticing the boundedness of the domain 2, we have

lim [ |F(z,u,) — F(z,u)|dz = / lim |F(z,u,) — F(x,u)|dz = 0.

— —

Similarly, we can get the weak-strong continuity of ¥’. ]

Since X is a reflexive and separable Banach space, there are sequences {e;} C X
and {e;} C X™ such that

X =3spanfej, j=1,2,---}, X* :spanw*{e;,j: 1,2,---},
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L=y,
0,7 # j.
For convenience, we write

and < e}, e; >= {

k 00
) X; = span{e;}, Y, = jEEIXj, Zy = ji}ka.

Definition 3.3. (i) We say ¢ satisfies (PS) condition in X, if any sequence
{un} C X such that {¢(u,)} is bounded and |¢'(uy)|| x+ — 0 as n — oo, has a
convergent subsequence; (ii) We say ¢ satisfies (PS)} condition in X, if any sequence
{un,}C X such that n; — oo, up, € Y, , ¢(un;) — cand (¢ly, )'(un,) — 0,
contains a subsequence converging to a critical point of ¢.

Let f(x,t) = g(x,t) + h(x,t). Denote

G(a:,t):/o g(x,s)ds,H(x,t):/O h(z, s)ds.

We assume B
(B1). There exist a positive constant M and a function 6(-) € C'*(Q) satisfying

p(r) < 0(z) < p*(z),Vz € Q,

such that A satisfies
s

0< H(z,s) < @h(a:,s),Va: €Q,ls| > M.

(B2). For the function 6(-) in (By), there exists a small positive constant 4 such
that ¢ satisfies
0(a) _
lg(z, 8)| < |s| %570 Vo € Qs > M.
Lemma 3.4. If (B1) and (Bs) are satisfied, then every (PS) sequence of ¢ in X
is bounded.

Proof.. The conditions (B1) and (Bs) together imply that

H(z,s) > |s|’®, va € Q, when |s| is large enough,

|G (z, s)| + |sg(z, s)] < (1+6(x)) \s\% +C,V(x,s) € A x R.

Denote
; in 1 1+9 )
1 = min(—— — ,
where the positive constant ¢ is small enough such that I; > 0.
Let {u,} be a (PS) sequence. Since § € C*(Q), we have
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> plita) = (¢ ta), )
_ Q}%(\Vun\p(m)+\un\p(a”))da:—/QF(a:,un)da:

- [ T + o

—l—/glez;:funf(a:,un)dx—i- 92—2_(§un\v WP 2V, VO(z)da
> [ (s = G Tl + o + [ SosH (@)

. (1 ) ‘ve( )‘ Un| |V, p(z)-1 dx — C1 |luy, 1+6 dr — Oy
2
Q 0%(z) Q

> h/(\Vu P 4, [P da:—i—/ —H(a: Un)dz
(149) |VO(2)| -1 o(z)
_/QW‘unHVun‘p( dx — QCl‘un‘l"'é dx — Cy.
Since 6 € C(9) it follows that

02(x)
1 1 -1 2)—1, 2@
< Cmial - funl)) + O PO (e [T 0 5
1 z plx) =1 &2 .
- ﬁgp(a: ‘un‘p( ) C. (p(>a:) €f( - ‘VUn‘p( )

It is not hard to see that

C 1 0(z)
/C’l ‘u ‘1+6 dr < /{1+5 811 i —i—m(@l‘un‘wé)l"'(s}da}

When the positive constants €; is small enough, we have

e+ il > 9(1tm) — (' (), %um

2
2L (v \W’ ([P )z — C.
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Thus {[jun|[,.,} is bounded. |

Lemma 3.5. [f (By) and (B2) are satisfied, {u,} is a bounded (PS) sequence of
, then there exists a small enough positive constant Cy such that, if f satisfies

[f(2,8)] < C+Cols|” ™", va e,
then {uy,} has a convergent subsequence in X.
Proof. Let {uy,} be a (PS) sequence of ¢, i.c.
o(up) — ¢, ¢ (up) — 0 as n — oo.

Since {u,} is bounded, there exists a u € X, such that u,, — w in X. By

Proposition 2.6, we may assume that there exist p, v € M(2) and sequence {z;} ;e
in ) such that

Up — U n WOLp(.) (Q> >
(Va5 = (Va7 s, + i, in M),

JjeJ

[, (@) X, o ‘u‘p*(a:) + Zuj(smj, in M(Q),

JjeJ
p"'_* p__’_*
vj < Cpmax{p ,p 1},
where
* *+ 1,
Cp = sup{|w i*(,) +1 ’w e W, p(@) (€), [V, <1}

and 0 < Cp. < +00.
Next we will complete the proof of this Theorem in three steps.

Step 1. We claim that p({z;}) = v({z;}) =0forall j =1,2,---.
Obviously, there exists r,, > 0 such that

p(zn) = inf  p(y) <pFlan) = sup  p(y)
YyEBr (zn)NQ2 YEBy(zn)NQ
<p T(wn)i=  inf p*(y) <pT(xn) = sup  p*(y),Vr € (0,7
YE By (zn)N YEBr(zn )N

For every € > 0, we set ¢ (z) = ¢(£=22L), z € Q, where ¢ € C°(RY), 0 < ¢ < 1,
¢ =11in B1{0} and ¢ = 0 in RV\B>{0} and |V¢| < 2. Noting that ¢'(u,) — 0 in
X*as n — oo and {u,} is bounded, we have
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/Q Vet P2V, - V(o) e + /Q [ 2 iy ey da
- /Qf(a:, Up) Peundx + o(1)
< /Q<C [tn] + Co [un ")) pedaz + 0(1).
Therefore,

/ b= |Vun|P® da + / |un [P@) poda + / U [Vun [P "2 Vu, Ved
(3) Q Q Q
< [ (Clunl + Co " )z + o).
Q

Due to the bounded-ness of {u,} in X, we may assume
[Vun 72 Vg, — T € (LPO@)Y, f(,um) = g(x) € LV (@),

Noting ¢’ (u,) — 0 in X* as n — oo, we also have

/\Vun\p(m)_2Vun~V(q§5u)dx+/Q\un\p(m)_Qunqﬁgudx:/Qf(a:,un)qﬁgudx—i-o(l).
Q

Thus,
4) / T -V(peu)dx +/ \u\p(m) pedx = / f(z,u)up.de.
Q Q Q
We claim
(5) / U |V P2 Vu,Vo.de — / uTV ¢odx as n — oo.
Q Q
In fact,

/ {tn |V PP 2 Vu, V. — uTVe.}da
Q
B / (un = ) [Vt P72 Vu, Ve da
Q
—|—/ uV o {|Vun PP 2 Vu, — T}z — 0 as n — co.
Q

From (3), (4) and (5) it follows that
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[ et [ 1P o
Q Q

< /C’\u\ ¢5d$+/CO¢SdU—/UTV¢5dIB
Q Q Q

:ACM@M+A%@@
_{/Q [z, u)up.dr — /Q \u\p(m) pedr — /Q¢5T~ Vudz}.

Letting ¢ — 0, we get u({z1}) < Cov({z1}) or p1 < Couy.
Similarly, p({z;}) < Cov({z;}) or p; < Covj,j =2,3,---.

Suppose that p({z;}) > 0 for some j. Since {u,} is bounded in Wol’p(')(Q), there
is a constant M, such that [, lun P dz < M, < 0 for all n. If u({z;}) > 1, then
P~ (z;)

. (. .
é}i P*T@5) 1t can be rewrited as
p*

> 1
U] Z Co
—1

(=)
p*F(z)

p (z;)

Co(Cy) 7T

’UjZ

pt (=)
P75 and

Similarly, if pu({x;}) < 1 then v; > &

Yy
C’;*

-1
oty
P (z5)

pt(z))

Co(Cye )™ 7

’UjZ

Due to the definition of M,, we also have
d.oouit Y u<M.
n({z;})=1 n({z;})<1
Noting that M, is a constant which is only dependent on {w,, }. When Cj (depend-

ing on M,) is small enough, we reach a contradiction. Step 1 is completed.

Step 2. We claim that u,, — u strongly in LP"(*)(Q) as n — oo.
Since [u,|P ™ 2 v = [u[P" @), we have

lim [ |upl? ™ do = / ulP” ) dz,
Q Q

n—oo

which together with |u, [P @) — |uP"® in measure implies that {|u,|?” @)} is uni-
formly integrable.
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Obviously,
|ty — u‘p*(l’) < 2p*($)(‘un‘p*($) + ‘u‘p*(ﬂf)>_

Thus {|u, — u|”" @} is uniformly integrable. Therefore

lim | |up — P @ de = / lim |u, —ul”" @ da = 0.
Q Q n—oo

n—oo

Step 3. We claim that u,, — u strongly in X as n — oc.

Since ¢'(u,) = J'(un) — ¥'(u,) — 0 and u,, — u strong in LP"(*)(Q) as n —
oo, we have ¥ (u,) — ¥'(u) and J'(u,) — ¥'(u) asn — oo. As L = J' is a
homeomorphism, we have u,, — L~(¥'(u)) in X as n — oo. |

Lemma 3.6. Assume © : X — R is weakly-strongly continuous and ©(0) = 0,
v > 0 is a fixed number. Let

(6) Bk = Br(y) = sup{O(u) | [Jull <v,u e Zi},

then B — 0 as k — oc.

Lemma 3.7. (see [23]). If |u(-)]"") € L*0)/40)(Q), where s(-),q(-) € LL(R),
q(z) < s(x), then w € L*V(Q) and there is a number § € [q~,q"] such that

OFO] gy = )"

Proposition 3.8. (Fountain theorem, see [52, 53]). Assume X is a Banach space,
¢ € CY1(X,R) is an even functional and satisfies (PS) condition, the subspace Xy, Y},
and Zy, are defined by (2). If for each k = 1,2, - - -, there exist py, > i > 0 such that

(Ay) ag := nf{p(u) [ u € Zg, [[u]| = v} — o0 (k — o0);
(As) By = max {p(u)| u € Yy, |Ju|| = pr} < 0.

then  has a sequence of critical values tending to +oo.

Proposition 3.9. (Dual Fountain theorem, see [53]) Assume X is a Banach space,
¢ € C1(X,R) is an even functional, the subspace Xy, Y; and Zj, are defined by (2),
and there is a kg > 0 such that, for each k > kg, there exists pr > i > 0 such that

(D) inf {p(u) | u € Z, [lull = pr} = 0,

(D2) G := max {p(u)| u € Y, Jull = w} <0,

(D3) mi; := inf {p(u) | u € Z, |Ju]l < pe} — 0 (k — o),
(D4) ¢ satisfies (PS)} condition for every ¢ € [n,,0),

then ¢ has a sequence of critical values ¢* tending to 0. Moreover, ¢* € [k, Ck]-
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4. MAIN RESULTS AND PROOFS

In this section, we study the existence of infinitely many pairs of solutions via
Fountain Theorem and the dual Fountain Theorem stated before, respectively.

Definition 4.1 . We say u € X is a weak solution of (P) provided
/ |VulP@ =2 vy . Vodz + / JuP =2y - vdz = / f(z,u)vdz, Vv € X.
Q Q Q

It is easy to see that the critical points of ¢ correspond to the weak solutions of
P).

Remark 1. Regarding the p-Laplacian equations with the critical Sobolev growth
conditions, there are many results showing that ¢ is a critical value of ¢, when the
value c is less than some real number c,, which dependents on the best imbedding
constant

_ ) , Vul, \”
s, ::mf{/ \Vu\pda:\/ WP dr =1} = [ inf .
Q Q ueWLr(Q)\{0} |u

p*

Due to the non-homogeneity in problems involving p(x)-Laplacian, we could only get

|Vu|p(')

v p(z)
the best imbedding constant C' = inf —2--. We can see that { _inf || l”'"“
ueX\{0} "p*() ueX\{0} "p*()

is a function dependent on the variable x. It is difficult to get the similar results.
As an application of Theorem 2.7, we show the existence of infinitely many pairs
of solutions by a perturbation argument.

Theorem 4.2. If f(x,t) = pu|t|* ™72t + X |t]7@ 2, V(x, 1) € Q x R, satisfying
1 < q(z) <p*(z), o™ <p~ and

(7) g >ph,

and the positive parameters A and | satisfy one of the following conditions
(1°) X is fixed, and p is small enough;

(29) q+q_+p_ > q—q__a+v W is fixed and X\ is small enough;
_ ¢~ 4t q—
(39) q+q_+p_ < q—q_a+v A — 0% and p — +oo such that (%) ¢~ —at at—p~ g —aT
is small enough;
¢~ gt gt
(4% X — 0" and p — 0% such that (3)a —F a7~ pat—a= is small enough;

at g gt
(5% A — +oo and p — 0% such that (3)7—o~ a—»F pat=a= is small enough;
then (P) has a sequence of pairs of solutions {+u, } such that o(+u,) < 0 and
o(xuy,) — 0.
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Proof. Let’s consider a sequence of perturbation problems as follows.
) —div(|[VulP 2 Vu) + [ufD 20 = f,(z,u) in Q,
" u =0 on 01,

where B
Fol@,t) = plt| @720 £ X 972750 ¢ (2, 1) € A x R,

where ¢, is decreasing, e1 < ¢~ —pT and &,, — 0. The corresponding functional of
(Pr) 1s

u) = ulP®) da 1 ulP® da — x,u)dx
eol) = [ SV dat [ pup e~ [ P upa,

where F), ( = Jo fa(z, t)dt.

For the functlonals n, we will check the conditions of Proposition 3.9 item by
item.

Assume pr = 1 and k is large enough. For any u € Z; with [jull,.) = px, it
follows from ¢~ > p™, Theorem 3.2 and Lemma 3.6 that

on (u) > C > 0.

Hence (D) is satisfied.
Assume vy, < py is small enough. For any u € Y}, with [Jul[,.y = &, we have

o(x)

1 1 |l A
n(u) < —Vup(a:)dx—i-/—up(m)da:—/idx:b < 0.
#n >—/Qp<a:>‘ | o p() " o @) ¢

So (Dy) is satisfied.
When || u ||,y is small enough, by direct computations, we have

1 1
nu) = | — Vup(x)da:—l—/ — ulP®) gy
on (1) /gp()‘ | Qp(a?)H
o)
/Lu\ da:—/ _r \u\q(m)_{f" dz
o o) aq(z) —en
1 1
> / —— |V da + / —— [ufP™) dz
o p(z) o p(z)
o)
/M\U\ g — |1
o ox) q(z) — e |a@)

Z/L\Vu\p(x)dx—l—/i\u\p(a”)da:
o p(z) o p(z)

o)
- [ - e
o o) #()

‘ ‘Q(C —&n
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1 1
> / —— [Vul’™ dz + / —— [u[P®) dg
o p(x) o p(x)

o(x)
/ M‘u‘ da}—C/\HUHq(C
o o)
Noting that g~ > p*, when k is large enough and p, = 1, Vu € Zj, Hqu(,) < pk»
we have
o(x)

on (u) >— / %de—QCuHqu(.)Bk(l) >—2Cuf(1) 2 dr, — 0 as k — oo,
Q

where 35 (1) is defined in (6) with ©(u) = [, |u|?(§) dx. Hence (D3) is satisfied.

Similarly to the proof of Lemma 3.4, we see that every (PS)? sequence is bounded.
Similarly to the proof of the Theorem 4.6 of [55], we see that (D,) is satisfied.

For any n = 1,2,---, from Proposition 3.9, we see that ¢,, has a sequence of
critical values c* € [dy, by], and for every ¢, ¢, has a related critical point u~.

If uf — u* € X as n — +oo, then it is easy to see that u* is a critical point of

¢, and the critical value of @(u*) = cF = nlerolo ¢k € [dy, bg]. Thus u* is a nontrivial
solution to (P). Since d — 0~ as kK — 400, we can see that ¢ has infinitely many
solutions u* such that p(u*) — 0~ as k — +oo.

It only remains to prove that u* — u”* as n — oo when k is large enough.

We only need to prove that u*0 — w in X and the rest is completely similar.

Since quO is a critical point of ¢,,, we have

1 a(z)

(z)—en 1
8 chO:JquO —/7/\ ufbo ! da:—/ — ufbo dz,
® )~ Joa@ — = o a@"
and
) / ’vufp " g [ ko™ da = / A’ufp 1 G+ / [k da,
Q Q Q
It follows from (8) and (9) that
1 1 q(x)—en 1 1 a(z)
ko _ ko ko
eyl = - /\/ Uy de + (—— — —F= /un dz,
Gy " d@ == ey ~ @ Uy
and then
1 1 q(§a)—en 1 1 q(z)—en
— A uﬁo = — /\/ ufbo x
R A K Iy <§2>—5n> 0
1 / a(z)
— k'O k‘o
=+ Uy dx
) (53) (§1>>M 0
k‘ 06(55)

)Mcl

1
(53) p(&1)

Q( ) 5n
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where & € Q,i=1,---,5,¢c1 = 2sup|1| 40-cn < +oo. Thus
n q(-)—en—a(-)
1 1 q(§4)—en 1 1 a(és)
- A ’ukf)’ < (== — —==)uci ’uko
GE) " a@ e - = G& T @) M e
when n is large enough.
Therefore
1 1
(10) uko “(a(és) ~ p(&) ) TR R
1 1 )
9()—en /\(p(§1) q(&2)— 5n>
which implies that
1 1 q(x)—en 1 1 q(§4)—¢n
— /\/ uko dr = — A ’ukf)’
ey " a@ e ol Gy~ 1@ e M o,
L___1 . q(€4)—<n e
( P 1 ) (Gt ~ wen) 1y it a<55>(1)q(g4)f€(55_)a(55>Mq(gﬁ(fil_g(g).
p&) q(ée)—en L A — L — A
" (1) q(§2)€n
Thus,
1 1 a(z)
k‘o kO
O+ (— — —— u/ U dz
" <04(§3) p(§1)> ol "
1 1 q(l’)—gn
= — /\/ uko T
<p(§1) q(&2) —€n> ol "

)—¢en 5 4)—

En

11 __alé)—en a( a(8
: 11 (—a(lgs) p(%)) W@)-en a<€s>(1>q<s4> en—alls) g a(es)=er
P& a(&)—en b ey gmren g

Then we have

1 a(z)

q(z)—en v
Jn(ufo) = cko /7/\'“0 d/—ko d
1 1 (; _ L) a(é4)—en
< o{2( ) a(é‘s) p(%) a(€1)—en—a(Es)
&) 0@ i - e
1 a(€s) a(€g)—
(X> q(€4)—en—a(és) MQ(EAL)—ER—Q(SS) —+ ‘dko‘}
It implies that {uf0} is bounded.
From Theorem 2.7, we have
kO . 17p(.) kO p(l’) * . — kO q(df)—&n *
u? — w in Wy (Q), - — pin M(92), |uy # in M(

v —a(és) .

Q).
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Set

we € Wy (), Vel ) <1}

* +
Cr = sup{lwa |7, + 1

and 0 < C’; < +o00. The limit measures are of the form

po= [Vl £ s, + i @) < 1,
JjeJ
vt = W@ Y ks, 0 H (@) < 0 19,
JjeJ

where z; € Q, J is a countable set, i € M (ﬁ) is a nonatomic measure.
Similarly to the proof of Lemma 3.5, we have
&
pi < Wi <Ay < ACpmax{p?,p!' ),

and then B

U when p({z;}) > 1,

ot > ’/\(C’;)g_;

—1

pt

vt > ’/\(C’;)q_‘

1—

alit

7> , when 0 < pu({z;}) <1,

which implies that there exist only finite U]# = 0. Without loss of generality, we may

#

assume that v >0 for exact j = 1,-- -, k, and then

Siof= X o Y oz ¥ apTre S apF

jeJ n({z;})=1 0<p({z;})<1 n({z; =1 0<p({z;})<1
Therefore
b( _+q_+——
() St > MR AL
jeJ b))+, A>1

where b is a constant which is independent on (n, A, ).
On the other hand,

1 1 _
_ —&n —~— %~ )C __aGa)—en (€4)—en
/ uf‘;o q(l’) En e uf‘;o q(§4) & S|: (a(fs) (é‘li> 1 q(€q4)—en—a(€s) Mﬁl(ff)—iin—a(fs)’
9 I S =,

which implies that

ko

q(x)—en 1 a(84) a(§4)
" d

k
(12) ZU]# < nli—>rgo < C#(X)q@m—a(ss) (L 7E) @) |

J=1

U
Q
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where c4 is a constant independent on (A, 11, n).
From (11) and (12), we have

qt
cp(R)T T pT e A< Lp< 1,
+ - —
1 o
b(3)eF A< <3 vt < cr(R)T T T AL p2 1,
J -9 = _ 9
b +T A > 1 j=1 cu(3) e piaT A= 1L, u< 1,
_at 4T
[ cp(R)7T o pr 2T A2 1L u>1,

Under one of the conditions of (19)-(5%), we get a contradiction.
Thus U]# =pj =0 for j =1,2,---. Therefore

ko q(af)_gn dx _ / ‘w‘q(l,) dx
Q

Jdim
Q

U

Obviously, uflo’q(”")_g" — w?™® ae. on Q. Thus {|u,|?™ "} is uniformly
integrable. It is easy to see that

q(x) en
—1
2 <1+ ’ufﬁ

uko Q(m)_ q(l’)—gn

n

—_a@) o o : : —en—2
Then {’ufﬁ’q(m) «@-1°"1 js uniformly integrable. Obviously, ufﬂqm ko —

lw|?®) =2 ace. on §, then

Q(l’)_5n_2

ko u

n

ko

ki ‘q(ﬂf)—2

lim
n—oo Q

u |w

It means that ¥/, (uf0) — ¥/(w) in X*, where U, (uko) = [, F,(z, uf°)dz. Thus
uko — L= (¥ (w)). |

Remark 2. In [10], Cao and Yan dealt with the existence of infinitely many
solutions of the following Laplacian equation Dirichlet problems involving critical
nonlinearities and Hardy potential

0 —Au—#u: lul* "% u + au in Q,
u =0, on 0f2,

by considering the following perturbed problem which is of subcritical growth,

||

) —Au— L= |u* TP w4 au in Q,
" u = 0, on Of).
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By applying a local Pohozaev identity, Cao and Yan proved that the solution {u,,} of
(I,) converges to a solution u of (I). Because of the nonhomogeneity of p(z)-Laplacian,
the Pohozaev identity cann’t be obtained by the usual methods. So the method in [10]
is very hard to be directly used in dealing with the p(x)-Laplacian problems.

Assume that

(13) flzt) =gz, t) + h(@) |t @2, V(z,t) € QA x R.

Denote

1 1
<I>u:/—Vup(m)da:—i-/—up(m)daf—/Gﬂf;UdW
(> Qp(x)‘ ‘ Qp(x)‘ ‘ Q ( )

where G(z,t) = [ g(

Theorem 4.3. Assume that (13) is satisfied, and (P) satisfies the following condi-
tions (F1)-(F5):

(F1) Q is a radially symmetric domain with respect to the origin, 1 < p < N and
the function p is radial, i.e.

p(z) = p(|z|) for any x € Q,
(Fy) g and h are radial with respect to the space variable z, i.e.
g(z,t) = g(|z|,t) and h(x) = h(|z|) for any (z,t) € Q x R,

(Fy) flw, —=t) = —f(w,?) for any (z,t) € Q xR,

(Fy) lg(z,t)| < C(1 + [t)PD7Y) for any (z,t) € Q x R, where the function
0(-) € CH(Q) satisfies p(x) < O(x) < p*(x),

— —6()
(F5) h(0) =0, h € C(Q) and [h(-)]7O—20 € L}(Q).
Then (P) has a sequence of radial solutions {+u,,} such that p(£u,,) — +oc.

Proof. First, we will prove that ¢ satisfies the (PS) condition.
Let {u,} be a (PS) sequence. We claim that {u, } is bounded. Similarly to the
proof of Lemma 3.4, we have

> p(un) —
1 p(z) p(z)
= (\VU 7+ Jup, \ )da
Q [B

f(z, uy, da:—i—/ Pl un\Vun‘p(a: Vu,Vo(x)dzx
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1 1 1 1 *
> —— ) (|Vun ! + | [P da:—i—/ — —— h(2) Jun [P da
S g T et | G )
|VO(z)| p(z)—1 / o(x)
— -9 —
o 2(0) [tn| |V dx — 2Cy Q\un\ dx — Cy
1 1 *
— (@) |un P da

> 1y [ (W, P@ 4 np<x>d+/__
Ry A e e I PR

|Vo()| (z)—1 / 0(z)
— U, Vunpm dr — 2C U, 3tda:—C’,
92(33) ‘ H ‘ 1 ‘ ‘ 2

1
where [; = aljrelg( @ W>'

_=0() _ _
Since [h(:)]7 0?0 € LY(Q) and § € C* (), similarly to the proof of Lemma 3.4,

we have

0 (x)
1 1 * _ —f*(x’)P(ﬁ) —p(x) *(p *
(PO PAE) FEE5E )] e o + ﬁ(&? “h(@) fun

pr(z) !

)}

<cC
= p(e) 26

-1 p(x)
+03p(a:) T [y P
p(x)

and

o) - PT(x)—0(x) 1 A C)) L o)y B
Up, < A ()] @ L @ 0w e1[h(2)] 7@ |u, )
Jun S @) @] )T

— IM l)p*&ff&x) [h(m)]p*(;?(—xe)(x‘) +1%(51)p9(—%)h(a:) ‘un‘p*(m) .

pH(z) e
Noting that p*(g)(f)e(x) > (f)(f;) (7> When positive constants ¢ is small enough,

we have

e+ lallyy = ) = (') gsin) = 5 [ (9 + )z = Co

Thus {u,} is bounded. Consequently,

U = win We P (Q), [V [P®) 25 1 in M(Q), Jun”™® 2 v in M(Q).

Set
+1|we € WP Q) Ve, <1}

Cp- = e



Multiple Solutions of a p(z)-Laplacian Equation Involving Critical Nonlinearities 2077

and 0 < C}. < 4o00. According to Proposition 2.6, the limit measures are of the form

po= Va4 s, + (@) <1,
jeJ

v o=l Y i, 0@ < O
jeJ

where z; € €, and J is a countable set, and i € M(f) is a nonatomic positive
measure.

Similarly to the proof of Lemma 3.5, we may assume that p1; > 0 for j = 1,--- £,
and the rest are zero.

If 2;, # 0, since (P) is radial, it is easy to see that for any = € Q such that |z| = |z
and x ¢ {x1,---, 2k}, we have pu(z) = p(zg). It is a contradiction. Thus p(z) = 0
for any x # 0.

For every £ > 0, we set ¢e(z) = ¢(£),z € Q, where ¢ € C°(RY), 0 < ¢ <1,
¢=1in B1{0} and ¢ = 0 in RN\ By{0} and |V¢| < 2. Since ¢'(u,) — 0 in X* as
n — oo and {u,} is bounded, we have (¢'(uy,), peu,) — 0, and then

((p/(un),¢5un) = /Q‘vun‘p(a:)—2 Vu, - V(¢5un)da:
+/ ‘un‘p(a:)—2 un¢5und$—/ f(a},un)¢5undg;
Q Q
= / [Vun [P@) ¢oda + / |t [P@) podc
Q Q

+/ Up \Vun\p(m)_2 Vuy, - Vo.dr — / f(z, up)peundx — 0.
Q Q

Without loss of generality, we may assume that u,, — u in I/VO1 P (')(Q). From (5),
we have

p() ) — — =
(14) /Qqﬁgdu—i-/ﬂ\u\ qﬁgdx—i—/QuT V.dx /Qg(a:,u)qﬁguda: /Qh(a:)qﬁgdv 0.

It is easy to see that

’/ ul - Vedx
Q

< ‘T‘p%L ‘uv¢6‘p(.)7

(p*(x))o 92 4N
POy = / Vo™ dz < (2)NmeasB(0,2¢) = —wn,
B(0,2¢) € N

/ "V¢8‘p(l’)
Q

where wy is the Hausdorff measure of the unit ball of R, and

/ |uV ¢ [P@) d = / [uV e [P@) d < 2 ’\wﬁg\p(@
Q B(0,2¢)

[
(500
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Then, we have

(15) /uT~V¢5da: —0ase—0.
Q
It follows from (14) and (15) that
(16) 1#(0) = h(0)v(0) = 0.

Combining (Fy), (F5) and (16), we have 1(0) = 0. Thus u(z) = 0 for any x € Q.
Proposition 2.6 guaranties that v(z) = 0 for any # € Q. Thus v; = p; = 0 for
j=1,2,---. Thus

lim \u P*(@) da:—/ lulP" ™ da.
n—oo Q

Noting that we also have u, — u a.e. in €, we conclude that {|u,[P" ")} is
uniformly integrable. Thus {|u, —u[P” "} is uniformly integrable. According to the
Vitally Theorem, we have

lim \u —u
n—oo

)da:—/ lim |up — ufP” @ do = 0.
Qn—>oo

It means that \I/’(un) — W'(u) in X*. Then u,, — u} := L=1(¥/(u)). Therefore,
up, — u in W, Lp( )(Q) So ¢ satisfies the (P.S) condition.

Next, we W111 prove that W(-) is weak-strong continuous.

If w,, — u, we only need to prove

(17) lim | A(z) fun P dz = / W) ul”" @ da.
Q

n—oo 0O

Obviously, {u,} is bounded in X. From the above proof, we see that v{z} =0
when z # 0. Therefore, for any § > 0, we have

O\B(0,)

For any £ > 0, it follows from the boundedness of {u,} that

| [ ™ = )

[ [t a7 =)
O\B(0,0)

< max |h(z \/ unl”® P @z <,
z€B(0,0)

dr — 0 as n — oo.

dzx

dz+ / ]h@:) [P @) —h(z) Jul?” @ | do
B(0,0)

when ¢ is small enough and n is large enough. Thus (17) is valid.
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Similarly to the proof of Theorem 4.3 in [55], we see that the conditions (Aj)

and

(A2) of Proposition 3.8 (Fountain Theorem) are satisfied. So (¢ has a sequence of

critical points {£u,,} in W&f(')(ﬁ) such that ¢(+u,,) — +oo, where

and

10.

11.

12.

13.

Wol,f(.)(Q) = {u € Wol’p(')(Q) lu is radial} ,
it is easy to see that {+u,,} are radial solutions of (P). -
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