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AN EXTENSION OPERATOR ASSOCIATED
WITH CERTAIN G-LOEWNER CHAINS

Teodora Chirilă

Abstract. In this paper we are concerned with an extension operator Φn,α,β that
provides a way of extending a locally univalent function f on the unit disc U to
a locally biholomorphic mapping F ∈ H(Bn). By using the method of Loewner
chains, we prove that if f can be embedded as the first element of a g-Loewner
chain on the unit disc, where g(ζ) = 1−ζ

1+(1−2γ)ζ for |ζ| < 1 and γ ∈ (0, 1), then
F = Φn,α,β(f) can also be embedded as the first element of a g-Loewner chain
on Bn, whenever α ∈ [0, 1], β ∈ [0, 1/2], α+β ≤ 1. In particular, if f is starlike
of order γ ∈ (0, 1) on U , then F = Φn,α,β(f) is also starlike of order γ on Bn.
Also, if f is spirallike of type δ and order γ on U , where δ ∈ (−π/2, π/2) and
γ ∈ (0, 1), then F = Φn,α,β(f) is spirallike of type δ and order γ on Bn. We
also obtain a subordination preserving result under the operator Φn,α,β and we
consider some radius problems associated with this operator.

1. INTRODUCTION AND PRELIMINARIES

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the Euclidean
inner product 〈z, w〉 =

∑n
j=1 zjwj and the Euclidean norm ‖z‖ = 〈z, z〉1/2. For

n ≥ 2, let z̃ = (z2, . . . , zn) ∈ Cn−1 so that z = (z1, z̃) ∈ Cn. The open ball
{z ∈ Cn : ‖z‖ < r} is denoted by Bn

r and the unit ball Bn
1 is denoted by Bn. In the

case of one complex variable, B1 is denoted by U .
Let L(Cn, Cm) denote the space of linear continuous operators from Cn into Cm

with the standard operator norm, ‖A‖ = sup{‖A(z)‖ : ‖z‖ = 1} and let In be
the identity of L(Cn, Cn). If Ω is a domain in Cn, we denote by H(Ω) the set of
holomorphic mappings from Ω into Cn. If f ∈ H(Bn), we say that f is normalized
if f(0) = 0 and Df(0) = In. We say that f ∈ H(Bn) is locally biholomorphic
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on Bn if the complex Jacobian matrix Df(z) is nonsingular at each z ∈ Bn. Let
LSn be the set of normalized locally biholomorphic mappings on Bn. A holomorphic
mapping f : Bn → Cn is said to be biholomorphic if the inverse f−1 exists and is
holomorphic on the open set f(Bn). It is well known that any univalent mapping on
Bn (holomorphic and injective on Bn) is also biholomorphic. Let S(Bn) be the set of
normalized biholomorphic mappings on Bn . We also denote by S∗(Bn) (respectively
K(Bn)) the subset of S(Bn) consisting of starlike mappings with respect to zero
(respectively convex mappings). In the case of one complex variable, we write LS1 =
LS, S(B1) = S, K(B1) = K and S∗(B1) = S∗.
We next consider some subclasses of S(Bn) that will be useful in the next section.
The following notion of starlikeness of order γ was introduced in [8, 29].

Definition 1.1. Let f : Bn → Cn be a normalized locally biholomorphic mapping
and let γ ∈ [0, 1). The mapping f is said to be starlike of order γ if

Re
[ ‖z‖2

〈[Df(z)]−1f(z), z〉
]

> γ, z ∈ Bn \ {0}.

Remark 1.1. (i) In the case of one complex variable, the above relation is equivalent
to Re [zf ′(z)/f(z)] > γ for z ∈ U , which is the usual notion of starlikeness of order
γ on the unit disc U .
(ii) It is obvious that f is starlike of order 0 on Bn if and only if f is starlike.

Also, if γ ∈ (0, 1), then f is starlike of order γ if and only if∣∣∣∣ 1
‖z‖2

〈[Df(z)]−1f(z), z〉 − 1
2γ

∣∣∣∣ <
1
2γ

, z ∈ Bn\{0}.

Let S∗
γ(Bn) be the set of starlike mappings of order γ on Bn. In the case n = 1,

S∗
γ(B1) is denoted by S∗

γ . Note that if f ∈ S∗
γ(Bn), then

Re〈[Df(z)]−1f(z), z〉 > 0, z ∈ Bn \ {0},

and thus f ∈ S∗(Bn) (see [40]).
Another notion that will occur in the next section is that of spirallikeness of type δ

and order γ , where δ ∈ (−π/2, π/2) and γ ∈ [0, 1) ([31]; cf. [26]).

Definition 1.2. Let f ∈ LSn, δ ∈ (−π/2, π/2) and γ ∈ [0, 1). We say that f is
spirallike of type δ and order γ if

(1.1) Re

[
1

(1− i tanδ) 1
‖z‖2 〈[Df(z)]−1f(z), z〉+ i tanδ

]
> γ, z ∈ Bn \ {0}.
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Remark 1.2.

(i) It is easy to see that f is spirallike of type δ and order 0 on Bn if and only if f
is spirallike of type δ on Bn . Also, if γ ∈ (0, 1), then f is spirallike of type δ

and order γ if and only if

(1.2)
∣∣∣∣e−iδ 1

‖z‖2
〈[Df(z)]−1f(z), z〉+ i sinδ − cos δ

2γ

∣∣∣∣ <
cos δ

2γ
, z ∈ Bn \ {0}.

(ii) Note that any spirallike mapping f of type δ and order γ on Bn is also spirallike
of type δ, since the relation (1.1) implies that

Re[e−iδ〈[Df(z)]−1f(z), z〉] > 0, z ∈ Bn \ {0}.

Hence f is biholomorphic on Bn, in view of [26]. The class of spirallike
mappings of type δ on Bn is denoted by Ŝδ(Bn). When n = 1, Ŝδ(B1) is
denoted by Ŝδ.

The following class of holomorphic mappings on Bn was introduced by Pfaltzgraff
[34]:

M = {h ∈ H(Bn) : h(0) = 0, Dh(0) = In, Re 〈h(z), z〉 > 0, z ∈ Bn \ {0}}.

This class is related to various subclasses of biholomorphic mappings on Bn , such as
starlikeness, spirallikeness of type δ, mappings which have parametric representation,
etc (see e.g. [15]).
Next, let γ ∈ [0, 1) and g : U → C be given by g(ζ) = 1−ζ

1+(1−2γ)ζ
, |ζ| < 1. Also,

letMg be the subclass of H(Bn) given by (see [15])

Mg =
{
h : Bn → Cn : h ∈ H(Bn), h(0) = 0, Dh(0) = In,〈

h(z),
z

‖z‖2

〉
∈ g(U), z ∈ Bn

}
.

Here 〈h(z), z
‖z‖2 〉

∣∣
z=0

= 1, since h is normalized. It is clear thatMg ⊆ M. Obviously,
if γ = 0, then Mg ≡ M. Also, if γ ∈ (0, 1), then g maps the unit disc U onto the
open disc of center 1/(2γ) and radius 1/(2γ), and thus

Mg =
{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,

∣∣∣ 1
‖z‖2

〈h(z), z〉 − 1
2γ

∣∣∣ <
1
2γ

, z ∈ Bn\{0}
}
.

We remark that a more general classMg was introduced in [15].
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Next, we recall the definitions of subordination and Loewner chains. For various
results related to Loewner chains in Cn, the reader may consult [1, 2, 9, 15, 17, 20,
23, 24, 34, 41].
Let f, g ∈ H(Bn). We say that f is subordinate to g (and write f ≺ g) if there

is a Schwarz mapping v (i.e. v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that
f(z) = g(v(z)), z ∈ Bn.

Definition 1.3. A mapping f : Bn × [0,∞) → Cn is called a Loewner chain
if f(·, t) is biholomorphic on Bn, f(0, t) = 0, Df(0, t) = etIn for t ≥ 0, and
f(·, s) ≺ f(·, t) whenever 0 ≤ s ≤ t < ∞.
The above subordination condition is equivalent to the fact that there is a unique bi-

holomorphic Schwarz mapping v = v(z, s, t), called the transition mapping associated
to f(z, t), such that f(z, s) = f(v(z, s, t), t) for z ∈ Bn, t ≥ s ≥ 0.

The following characterization of Loewner chains was obtained by Pfaltzgraff [34]
(see also [15, 20, 23]).

Lemma 1.1. Let h = h(z, t) : Bn × [0,∞) → Cn satisfy the following conditions:

(i) h(·, t) ∈ M for t ≥ 0.
(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.

Let f = f(z, t) : Bn × [0,∞) → Cn be a mapping such that f(·, t) ∈ H(Bn),
f(0, t) = 0, Df(0, t) = etIn for t ≥ 0, and f(z, ·) is locally absolutely continuous on
[0,∞) locally uniformly with respect to z ∈ Bn . Assume that

∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn.

Further, assume that there exists an increasing sequence {tm}m∈N such that tm > 0,
tm → ∞ and lim

m→∞ e−tmf(z, tm) = F (z) locally uniformly on Bn. Then f(z, t) is a
Loewner chain.

Remark 1.3. In the case of one complex variable, if f(ζ, t) is a Loewner chain,
then it is well known that {e−tf(·, t)}t≥0 is a normal family on U , and there exists a
function p = p(ζ, t) such that (see [15]) p(·, t) ∈ P for t ≥ 0, p(ζ, ·) is measurable on
[0,∞) for ζ ∈ U , and (see [35])

(1.3)
∂f

∂t
(ζ, t) = ζf ′(ζ, t)p(ζ, t), a.e. t ≥ 0, ∀ ζ ∈ U.

Remark 1.4. (i) In higher dimensions, Graham, Kohr and Kohr [23] (see also
[20]) proved that if f(z, t) is a Loewner chain on Bn, then f(z, ·) is locally Lipschitz
on [0,∞) locally uniformly with respect to z ∈ Bn. Also, there exists a mapping
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h = h(z, t), which satisfies the conditions (i) and (ii) in Lemma 1.1, such that (see
[15])

(1.4)
∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn.

(ii) The mapping h = h(z, t) which occurs in the Loewner differential equation
(1.4) is unique up to a measurable set of measure zero which is independent of z ∈ Bn,
i.e. if there is another mapping q = q(z, t) such that q(·, t) ∈ M for a.e. t ≥ 0, q(z, ·)
is measurable on [0,∞) for z ∈ Bn, and such that the Loewner differential equation
(1.4) holds for q(z, t), then h(·, t) = q(·, t), a.e. t ≥ 0 (see e.g. [3]).

Now, we are able to recall the notions of a g-Loewner chain and g-parametric
representation (cf. [15]; compare with [23] and [36] for g(ζ) ≡ 1−ζ

1+ζ ). For our purpose,
we consider these notions only for g(ζ) = 1−ζ

1+(1−2γ)ζ , |ζ| < 1, where γ ∈ [0, 1).

Definition 1.4. A mapping f = f(z, t) : Bn × [0,∞) → Cn is called a g-Loewner
chain if f(z, t) is a Loewner chain such that {e−tf(·, t)}t≥0 is a normal family on Bn

and the mapping h = h(z, t) which occurs in the Loewner differential equation (1.4)
satisfies the condition h(·, t) ∈ Mg for a.e. t ≥ 0.

Definition 1.5. Let f : Bn → Cn be a normalized holomorphic mapping. We say
that f has g-parametric representation if there exists a g-Loewner chain f(z, t) such
that f = f(·, 0).

Let S0
g(Bn) be the set of mappings which have g-parametric representation, where

g(ζ) = 1− ζ
1 + (1− 2γ)ζ , |ζ| < 1, and γ ∈ [0, 1). If g(ζ) ≡ 1− ζ

1+ ζ , then S0
g(Bn) reduces

to the usual set S0(Bn) of mappings which have parametric representation (see [15];
cf. [36]). The notion of parametric representation was considered in [15, 20, 23, 25,
36].

Remark 1.5. In view of Remark 1.3, we conclude that in the case n = 1, a g-
Loewner chain f(ζ, t) is a Loewner chain such that the function p(ζ, t) defined by
(1.3) satisfies the condition p(·, t) ∈ g(U) for a.e. t ≥ 0. In the case g(ζ) = 1− ζ

1 + ζ ,
|ζ| < 1, any Loewner chain on the unit disc is also a g-Loewner chain.

We close this section with some extension operators that preserve the notions of
starlikeness, spirallikeness of type δ and parametric representation.
Let Φn,α,β be the operator given by (see [18])

Φn,α,β(f)(z) =
(

f(z1), z̃
(

f(z1)
z1

)α

(f ′(z1))β

)
, z = (z1, z̃) ∈ Bn,
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where α ≥ 0, β ≥ 0 and f is a locally univalent function on U , normalized by
f(0) = f ′(0) − 1 = 0, and such that f(z1) �= 0 for z1 ∈ U\{0}. We choose the
branches of the power functions such that

(
f(z1)

z1

)α ∣∣∣∣
z1=0

= 1 and (f ′(z1))β|z1=0 = 1.

The operator Φn,0,1/2 reduces to the well known Roper-Suffridge extension operator
Φn (see [37])

Φn(f)(z) =
(
f(z1), z̃(f ′(z1))1/2

)
, z = (z1, z̃) ∈ Bn.

We remark that Φn(K) ⊂ K(Bn) (see [37]), Φn(S∗) ⊂ S∗(Bn) (see [19]), and
Φn(S) ⊂ S0(Bn) (see [22]). On the other hand, the operator Φn,α,β preserves the
notions of starlikeness and parametric representation from dimension one into the n-
dimensional case, whenever α ∈ [0, 1], β ∈ [0, 1/2], and α + β ≤ 1 (see [18]).
However, Φn,α,β(K) ⊂ K(Bn) if and only if (α, β) = (0, 1/2) [18].
In this paper we consider g-Loewner chains associated with the extension operator

Φn,α,β, where g(ζ) = 1−ζ
1+(1−2γ)ζ

, |ζ| < 1, and γ ∈ (0, 1). We shall prove that if f ∈ S

can be embedded as the first element of a g-Loewner chain, then F = Φn,α,β(f) can
also be embedded as the first element of a g-Loewner chain on Bn, for α ∈ [0, 1],
β ∈ [0, 1/2], and α + β ≤ 1. As a consequence, the operator Φn,α,β preserves the
notion of starlikeness of order γ , for γ ∈ (0, 1). Also, the operator Φn,α,β preserves the
notion of spirallikeness of type δ and order γ , where δ ∈ (−π/2, π/2) and γ ∈ (0, 1).
Finally, we prove a subordination preserving result under the operator Φn,α,β and we
consider some radius problems associated with the operator Φn,α,β.
Other extension operators that preserve some subclasses of biholomorphic mappings

may be found in [5, 6, 10-13, 16, 18, 21, 28, 31-33, 42].

2. THE OPERATOR Φn,α,β AND g-LOEWNER CHAINS

The main result of this section yields that the operator Φn,α,β preserves the notion
of g-Loewner chain for g(ζ) = 1−ζ

1+(1−2γ)ζ
, |ζ| < 1, where γ ∈ (0, 1). This result was

obtained in [18], in the case γ = 0. In the case α = 0 and γ ∈ (0, 1), Theorem 2.1
was recently obtained in [6].

Theorem 2.1. Assume f ∈ S can be embedded as the first element of a g-Loewner
chain, where g(ζ) = 1−ζ

1+(1−2γ)ζ , |ζ| < 1, and γ ∈ (0, 1). Then F = Φn,α,β(f) can be
embedded as the first element of a g-Loewner chain on Bn for α ∈ [0, 1], β ∈ [0, 1/2],
α + β ≤ 1.
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Proof. We may assume that n = 2, since the general case is then easily handled.
Let f(z1, t) be a g-Loewner chain such that f(z1) = f(z1, 0) for z1 ∈ U . Let

Fα,β(z, t) be the map defined by

(2.1) Fα,β(z, t) =
(

f(z1, t), e(1−α−β)tz2

(
f(z1, t)

z1

)α

(f ′(z1, t))β

)

for z = (z1, z2) ∈ B2 and t ≥ 0. We know that Fα,β(z, t) is a Loewner chain, since
α ∈ [0, 1], β ∈ [0, 1/2], and α + β ≤ 1 (see [18]).
Since f(z1, t) is a Loewner chain on U , there exists a function p(z1, t) that is

holomorphic on U and measurable in t ≥ 0, with p(0, t) = 1, Re p(z1, t) > 0 for
z1 ∈ U , 0 ≤ t < ∞, and such that (see [35])

∂f

∂t
(z1, t) = z1f

′(z1, t)p(z1, t), a.e. t ≥ 0, ∀ z1 ∈ U.

The fact that f(z1, t) is a g-Loewner chain is equivalent to the condition

|2γp(z1, t)− 1| < 1, a.e. t ≥ 0, ∀z1 ∈ U.

The mapping h = h(z, t) which occurs in the Loewner differential equation

∂Fα,β

∂t
(z, t) = DFα,β(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ B2

is given by [18]

h(z, t) = (z1p(z1, t), z2(1 − α − β + (α + β)p(z1, t) + βz1p
′(z1, t))),

for z = (z1, z2) ∈ B2 and t ≥ 0.
We have to prove that h(·, t) ∈ Mg for a.e. t ≥ 0, which is equivalent to∣∣∣∣ 1

‖z‖2
〈h(z, t), z〉 − 1

2γ

∣∣∣∣ < 1
2γ

, a.e. t ≥ 0, ∀ z ∈ B2\{0}.

If z = (z1, 0) then∣∣∣∣ 1
‖z‖2

〈h(z, t), z〉 − 1
2γ

∣∣∣∣ =
∣∣∣∣p(z1, t) − 1

2γ

∣∣∣∣ <
1
2γ

, a.e. t ≥ 0,

in view of the fact that f(z1, t) is a g-Loewner chain. Hence it suffices to assume that
z = (z1, z2) ∈ B2 \ {0} with z2 �= 0.
Taking into account the maximum principle for holomorphic functions, it is enough

to prove that

|2γ〈h(z, t), z〉− 1| ≤ 1, a.e. t ≥ 0, ∀ z = (z1, z2) ∈ C2, |z1|2 + |z2|2 = 1, z2 �= 0.
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By elementary computations, we obtain that

|2γ〈h(z, t), z〉− 1|
= |2γp(z1, t)[|z1|2(1− α − β) + (α + β)]

+2γ(1− |z1|2)βz1p
′(z1, t) + 2γ(1− |z1|2)(1− α − β) − 1|.

Therefore, we need to prove that

|(2γp(z1, t) − 1)[|z1|2(1 − α − β) + (α + β)]

+2γ(1− |z1|2)βz1p
′(z1, t) + (1 − α − β)(1− |z1|2)(2γ − 1)| ≤ 1.

Since p(·, t) is a holomorphic function on the unit disc U and

|2γp(z1, t) − 1| < 1, |z1| < 1,

we deduce in view of the Schwarz-Pick lemma that

2γ|p′(z1, t)| ≤ 1 − |2γp(z1, t) − 1|2
1 − |z1|2 , |z1| < 1.

Hence we obtain that

|(2γp(z1, t) − 1)[|z1|2(1− α − β) + (α + β)]

+2γ(1− |z1|2)βz1p
′(z1, t) + (1 − α − β)(1− |z1|2)(2γ − 1)|

≤ |2γp(z1, t) − 1|[(1− α − β)|z1|2 + (α + β)]

+(1 − α − β)(1− |z1|2)|2γ − 1| + β|z1|(1− |2γp(z1, t)− 1|2).

Denote by q(z1) = 2γp(z1, t) − 1. Then |q(z1)| ∈ [0, 1). Using the fact that
|2γ − 1| < 1, for γ ∈ (0, 1), we obtain that

|2γ〈h(z, t), z〉− 1|
≤ |q(z1)|[(1− α − β)|z1|2 + (α + β)] + (1 − α − β)(1− |z1|2)

+β|z1|(1− |q(z1)|2) − 1 + 1

= β|z1|(1 − |q(z1)|2) + 1 + (α + β)(1− |z1|2)(|q(z1)| − 1) + |z1|2(|q(z1)| − 1)

= (1− |q(z1)|)[β|z1|(1 + |q(z1)|)− |z1|2 − (α + β)(1− |z1|2)] + 1

≤ (1− |q(z1)|)(2β|z1| − |z1|2 − (α + β)(1− |z1|2)) + 1.

We may consider the following two cases (cf. [30]):
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Case 1. If |z1| ≤
√

2 − 1, then

(1 − |q(z1)|)(2β|z1| − |z1|2 − α(1 − |z1|2) − β(1 − |z1|2)) + 1

≤ (1 − |q(z1)|)(β(2|z1| − 1 + |z1|2) − |z1|2) + 1.

Therefore, to prove the inequality |2γ〈h(z, t), z〉−1| ≤ 1, a.e. t ≥ 0, z = (z1, z2) ∈
C2, |z1|2 + |z2|2 = 1, z2 �= 0, it suffices to prove that

β(|z1|2 + 2|z1| − 1)− |z1|2 ≤ 0.

The roots of the quadratic equation x2 + 2x − 1 = 0 are x1 = −1 − √
2 and

x2 =
√

2 − 1, therefore |z1|2 + 2|z1| − 1 ≤ 0, for |z1| ≤
√

2 − 1. Hence the above
relation is proven.

Case 2. If
√

2 − 1 ≤ |z1| < 1, using the fact that β ∈ [0, 1/2], we obtain that

(1− |q(z1)|)(2β|z1| − |z1|2 − α(1 − |z1|2) − β(1− |z1|2)) + 1

≤ (1− |q(z1)|)(β(2|z1| − 1 + |z1|2)− |z1|2) + 1

≤ 1− |q(z1)|
2

(−|z1|2 + 2|z1| − 1) + 1 = −1 − |q(z1)|
2

(|z1| − 1)2 + 1 ≤ 1.

Finally, it remains to prove that {e−tFα,β(·, t)}t≥0 is a normal family on Bn.
Indeed, since {e−tf(·, t)}t≥0 is a normal family on U , there exists a sequence (tm)
such that 0 < tm → ∞ and e−tmf(z1, tm) → r(z1) locally uniformly on U as
m → ∞. It is clear that r ∈ S, in view of Hurwitz’s theorem. Then it is easy
to see that e−tmFα,β(z, tm) → R(z) locally uniformly on Bn as m → ∞, where
R = Φn,α,β(r), and thus {e−tFα,β(·, t)}t≥0 is also a normal family on Bn .
Combining the above arguments, we deduce that Fα,β(z, t) is a g-Loewner chain,

as desired. This completes the proof.

In view of Theorem 2.1, we obtain the following particular cases. Corollary 2.1
was obtained in [18], in the case γ = 0. Also, Corollary 2.1 was recently obtained in
[6], in the case α = 0.

Corollary 2.1. If f : U → C has g-parametric representation and α ∈ [0, 1],
β ∈ [0, 1/2], α + β ≤ 1, then F = Φn,α,β(f) ∈ S0

g (Bn), where g(ζ) = 1−ζ
1+(1−2γ)ζ ,

ζ ∈ U , and γ ∈ (0, 1).

Proof. Since f has g-parametric representation, there exists a g-Loewner chain
f(ζ, t) such that f = f(·, 0). In view of the proof of Theorem 2.1, we deduce that the
mapping Fα,β(z, t) given by (2.1) is also a g-Loewner chain. Since F = Fα,β(·, 0),
we deduce that F ∈ S0

g(Bn), as desired. This completes the proof.

The following result was obtained by Hamada, Kohr and Kohr [27], in the case
α = 0, β = γ = 1/2, and by Liu [30], in the case γ ∈ (0, 1) and α ∈ [0, 1],
β ∈ [0, 1/2], α + β ≤ 1. If γ = 0, the result below was obtained in [18].
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Corollary 2.2. If f ∈ S∗
γ and α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1, then F =

Φn,α,β(f) ∈ S∗
γ(Bn), where γ ∈ (0, 1). In particular, the Roper-Suffridge extension

operator preserves the notion of starlikeness of order γ .

Proof. Since f is starlike of order γ , it follows that f(ζ, t) = etf(ζ) is a g-
Loewner chain (see e.g. [40]), where g(ζ) = 1−ζ

1+(1−2γ)ζ , |ζ| < 1. In view of the
proof of Theorem 2.1, we deduce that the mapping Fα,β(z, t) given by (2.1) is a g-
Loewner chain. Since f(ζ, t) = etf(ζ) it follows that Fα,β(z, t) = etF (z), and thus
F = Φn,α,β(f) is starlike of order γ , as desired.

Remark 2.6. Since K ⊂ S∗
1/2 (see e.g. [20] and [35]), it follows in view of

Corollary 2.2 that Φn,α,β(K) ⊂ S∗
1/2(B

n) for α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1.
However, Φn,α,β(K) � K(Bn) for (α, β) �= (0, 1/2) (see [18]).

The following result is due to Liu and Liu [31] (see also [30] and [42]).

Corollary 2.3. Let α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1, δ ∈ (−π/2, π/2) and
γ ∈ (0, 1). Also, let f : U → C be a spirallike function of type δ and order γ on U ,
and let F = Φn,α,β(f). Then F is also spirallike of type δ and order γ on Bn.

Proof. First, we prove that f(z1, t) = e(1−ia)tf(eiatz1) is a g-Loewner chain,
where g(ζ) = 1−ζ

1+(1−2γ)ζ , |ζ| < 1 and a = tan δ (see also [7]). Indeed, since f is
spirallike of type δ and order γ , it is also spirallike of type δ on U . Hence f(z1, t) is
a Loewner chain (see [26]). The mapping p = p(z1, t) which occurs in the Loewner
differential equation

∂f

∂t
(z1, t) = z1f

′(z1, t)p(z1, t), a.e. t ≥ 0, ∀z1 ∈ U

is given by

p(z1, t) = ia + (1 − ia)
f(eiatz1)

eiatz1f ′(eiatz1)
, z1 ∈ U, t ≥ 0.

From the relation (1.2) we obtain that p(z1, t) ∈ g(U) a.e. t ≥ 0 and z1 ∈ U .
It remains to prove that {e−tf(·, t)}t≥0 is a normal family on U . Indeed, since f

is bounded on each closed disc U r, r ∈ (0, 1), it follows that for each r ∈ (0, 1) there
exists M = M(r) ≥ 0 such that

|e−tf(z1, t)| = |e−iatf(eiatz1)| = |f(eiatz1)| ≤ M(r), |z1| ≤ r, t ≥ 0.

Consequently, {e−tf(·, t)}t≥0 is a locally uniformly bounded family on U and thus is
normal. Hence f(z1, t) = e(1−ia)tf(eiatz1) is a g-Loewner chain.
In view of the proof of Theorem 2.1, we deduce that the mapping Fα,β(z, t) given

by (2.1) is a g-Loewner chain. It is easily seen that Fα,β(z, t) = e(1−ia)tF (eiatz).
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Thus we know that 1
‖z‖2 〈h(z, t), z〉 ∈ g(U), a.e. t ≥ 0, z ∈ Bn \ {0}, where h(z, t) is

obtained from the Loewner differential equation

∂Fα,β

∂t
(z, t) = DFα,β(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.

The mapping h(z, t) is given by

h(z, t) = iaz + (1− ia)e−iat[DF (eiatz)]−1F (eiatz), z ∈ Bn, t ≥ 0.

It is easily seen that the relation 1
‖z‖2 〈h(z, t), z〉 ∈ g(U) implies relation (1.2), therefore

F is spirallike of type δ and order γ , as desired. This completes the proof.

3. SUBORDINATION ASSOCIATED WITH THE OPERATOR Φn,α,β

We next obtain a subordination preserving result under the operator Φn,α,β. More
precisely, we prove the following (see [27], in the case α = 0 and β = 1/2):

Theorem 3.1. Let f, g : U →C be two locally univalent functions such that f(0)
= g(0) = 0, f ′(0) = a and g′(0) = b, where 0 < a ≤ b. Assume that f(z1) �= 0 and
g(z1) �= 0 for 0 < |z1| < 1. If α ≥ 0, β ∈ [0, 1/2] and f ≺ g, then Φn,α,β(f) ≺
Φn,α,β(g). We choose the branches of the power functions such that

[f ′(z1)]β|z1=0 = aβ,

[
f(z1)

z1

]α ∣∣∣∣
z1=0

= aα,

[g′(z1)]β|z1=0 = bβ,

[
g(z1)
z1

]α ∣∣∣∣
z1=0

= bα.

Proof. Let F = Φn,α,β(f) and G = Φn,α,β(g). Since f ≺ g it follows that there
exists a Schwarz function v = v(z1) such that f(z1) = g(v(z1)), z1 ∈ U . It is clear
that v′(0) = a

b and since f and g are locally univalent on U , v is locally univalent on
U too. Let V : Bn → Cn be given by

V (z) = (v(z1), z̃
[
v(z1)
z1

]α

[v′(z1)]β), z = (z1, z̃) ∈ Bn.

We choose the branches of the power functions such that [v′(z1)]β|z1=0 =
(

a
b

)β and[
v(z1)

z1

]α ∣∣∣∣
z1=0

=
(

a
b

)α. Then V is a locally biholomorphic mapping on Bn, V (0) = 0

and it is easy to deduce that V (z) ∈ Bn , z ∈ Bn. Indeed, fix z ∈ Bn and let
w = V (z). Applying the Schwarz-Pick lemma, we deduce that
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|w1|2 + ‖w̃‖2 = |v(z1)|2 + ‖z̃‖2

∣∣∣∣v(z1)
z1

∣∣∣∣
2α

|v′(z1)|2β

≤ |v(z1)|2 + ‖z̃‖2

∣∣∣∣v(z1)
z1

∣∣∣∣2α [1 − |v(z1)|2
1 − |z1|2

]2β

≤ |v(z1)|2 + ‖z̃‖2 1 − |v(z1)|2
1 − |z1|2 < |v(z1)|2 + 1 − |v(z1)|2 = 1.

Here we have used that |v(z1)| ≤ |z1|, z1 ∈ U and α ≥ 0, β ∈ [0, 1/2]. Hence
w ∈ Bn, as desired. Moreover, we can easily deduce that F (z) = G(V (z)), z ∈ Bn.
Indeed, since v(z1) �= 0 for z1 �= 0,

G(V (z)) = (g(v(z1)), z̃
[
v(z1)
z1

]α

[v′(z1)]β
[
g(v(z1))
v(z1)

]α

[g′(v(z1))]β)

= (g(v(z1)), z̃
[
g(v(z1))

z1

]α

[(g ◦ v)′(z1)]β)

= (f(z1), z̃
[
f(z1)

z1

]α

[f ′(z1)]β) = F (z), z ∈ Bn.

Therefore F ≺ G. This completes the proof.

We next obtain certain consequences of the above result. These results were ob-
tained in [27], for α = 0 and β = 1/2.

Corollary 3.1. Let f ∈ LS and M ≥ 1 be such that |f(z1)| ≤ M , z1 ∈ U .
Assume that f(z1) �= 0 for 0 < |z1| < 1. Then ‖Φn,α,β(f)(z)‖ ≤ M , z ∈ Bn,
whenever α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1.

Proof. Let g(z1) = Mz1, for z1 ∈ U . Then f ≺ g and hence Φn,α,β(f) ≺
Φn,α,β(g), for α ≥ 0, β ∈ [0, 1/2], by Theorem 3.1. Since Φn,α,β(g)(z) = (Mz1,

z̃Mα+β), z = (z1, z̃) ∈ Bn and α+β ≤ 1, it is easy to see that ‖Φn,α,β(f)(z)‖ ≤ M ,
z ∈ Bn .

Corollary 3.2. Let f ∈ LS and M ≥ 1 be such that |f(z1)| ≤ M , z1 ∈ U .
Assume that f(z1) �= 0 for 0 < |z1| < 1. Then Φn,α,β(f) ∈ S0(Bn

r ), where α ∈ [0, 1],
β ∈ [0, 1/2], α + β ≤ 1, and r = 1/(M +

√
M2 − 1).

Proof. Assume first that M = 1. Then |f(z1)| ≤ 1, z1 ∈ U . Taking into account
the Schwarz lemma and the fact that f is normalized by f(0) = 0 and f ′(0) = 1, we
deduce that f(z1) = z1 for z1 ∈ U . Hence, in this case the conclusion is obvious.
Assume next that M > 1. Since |f(z1)| ≤ M , z1 ∈ U , it follows in view of a

well-known result of Landau (see e.g. [4, Theorem 1]) that f is univalent on the disc
Ur, where r = 1/(M +

√
M2 − 1). Now, let fr(z1) = f(rz1)/r, for z1 ∈ U . Then
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fr ∈ S and hence Φn,α,β(fr) ∈ S0(Bn), since α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1 (see
[18]). On the other hand, it is easy to see that

Φn,α,β(fr)(z) =
1
r
Φn,α,β(f)(rz), z ∈ Bn.

The conclusion now follows.

Corollary 3.3. Let f : U → C be a locally univalent function on U such that
f(0) = 0 and f ′(0) = a, where a ∈ (0, 1]. Assume that f(z1) �= 0 for 0 < |z1| < 1.
Also let g ∈ S and assume that f ≺ g. Then ‖Φn,α,β(f)(z)‖ ≤ ‖z‖/(1 − ‖z‖)2,
z ∈ Bn , whenever α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1.

Proof. Since g ∈ S it follows that Φn,α,β(g) ∈ S0(Bn), for α ∈ [0, 1], β ∈ [0, 1/2],
α + β ≤ 1 (see [18]). Hence ‖Φn,α,β(g)(z)‖ ≤ ‖z‖/(1 − ‖z‖)2, z ∈ Bn, by [15,
Corollary 2.4]. Next, it suffices to apply Theorem 3.1.

Corollary 3.4. Let f be a locally univalent function on the unit disc U with f(0) =
0 and f ′(0) = a ∈ (0, 1]. Assume that f(z1) �= 0 for 0 < |z1| < 1. Also let g ∈ S∗

γ ,
γ ∈ (0, 1), and assume that f ≺ g. Then ‖Φn,α,β(f)(z)‖ ≤ ‖z‖/(1 − ‖z‖)2(1−γ),
z ∈ Bn , whenever α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1.

Proof. Since g ∈ S∗
γ and α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1, it follows that

Φn,α,β(g) ∈ S∗
γ(Bn), by Corollary 2.2. Hence ‖Φn,α,β(g)(z)‖ ≤ ‖z‖/(1−‖z‖)2(1−γ),

z ∈ Bn (see e.g. [8]) . Next, it suffices to apply Theorem 3.1.

In view of Corollary 3.4, we obtain the following consequence.

Corollary 3.5. Let f be a locally univalent function on the unit disc U with
f(0) = 0 and f ′(0) = a ∈ (0, 1]. Assume that f(z1) �= 0 for 0 < |z1| < 1. Also
let g ∈ K and assume that f ≺ g. Then ‖Φn,α,β(f)(z)‖ ≤ ‖z‖/(1− ‖z‖), z ∈ Bn,
whenever α ∈ [0, 1], β ∈ [0, 1/2], α + β ≤ 1.

Proof. Since g ∈ K, it follows that g ∈ S∗
1/2. The result follows in view of

Corollary 3.4.

We now present another consequence of Theorem 3.1 (see [27] for α = 0 and
β = 1/2).

Corollary 3.6. Let F = Φn,α,β(f) and G = Φn,α,β(g) where f is a locally
univalent function on the unit disc such that f(0) = 0, f ′(0) = a ∈ (0, 1], f(z1) �= 0
for 0 < |z1| < 1, g ∈ K, α ≥ 0, β ∈ [0, 1/2]. Assume DF (z)(z) ≺ DG(z)(z),
z ∈ Bn . Then F (z) ≺ G(z), z ∈ Bn.
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Proof. We may assume that n = 2, since the general case is easily handled. A
short computation yields that

DF (z)(z) =

(
z1f

′(z1), z1z2α[f ′(z1)]β
[
f(z1)

z1

]α−1 [f(z1)
z1

]′

+ z1z2β

[
f(z1)

z1

]α

[f ′(z1)]β−1f ′′(z1) + z2

[
f(z1)

z1

]α

[f ′(z1)]β
)

and

DG(z)(z) =

(
z1g

′(z1), z1z2α[g′(z1)]β
[
g(z1)
z1

]α−1 [g(z1)
z1

]′

+ z1z2β

[
g(z1)
z1

]α

[g′(z1)]β−1g′′(z1) + z2

[
g(z1)
z1

]α

[g′(z1)]β
)

,

for all z = (z1, z2) ∈ B2. Let S(z) = DF (z)(z) and T (z) = DG(z)(z). Since S ≺
T , there exists a Schwarz mapping ω such that S(z) = T (ω(z)), z ∈ B2. Therefore
z1f

′(z1) = ω1(z)g′(ω1(z)), where ω(z) = (ω1(z), ω2(z)), z = (z1, z2) ∈ B2. Taking
z = (z1, 0) ∈ B2, we obtain that

(3.1) z1f
′(z1) = ω1(z1, 0)g′(ω1(z1, 0)).

Let w(ζ) = ω1(ζ, 0), |ζ| < 1. Then w is holomorphic on U , w(0) = 0 and

|w(ζ)| = |ω1(ζ, 0)| ≤ ‖ω(ζ, 0)‖ ≤ ‖(ζ, 0)‖ = |ζ|, |ζ| < 1.

Here we have used the fact that ω is a Schwarz mapping. We have obtained that
|w(ζ)| ≤ |ζ| < 1, ζ ∈ U , hence w is a Schwarz function on U .
Relation (3.1) can be written as z1f

′(z1) = w(z1)g′(w(z1)), where w is the above
Schwarz function on the unit disc. Hence z1f

′(z1) ≺ z1g
′(z1), z1 ∈ U . Since g ∈ K,

we may apply a well known result (see [39]), to deduce that f(z1) ≺ g(z1). Finally,
in view of Theorem 3.1, the conclusion follows, as desired.

4. RADIUS PROBLEMS AND THE OPERATOR Φn,α,β

We next consider some radius problems associated with the operator Φn,α,β. First,
we recall the concept of the radius for a certain property in a certain set (see e.g. [14]
and [20]).

Definition 4.1. Given F a nonempty subset of S(Bn) and a property P which the
mappings in F may or may not have in a ball Bn

r , the radius for the property P in the
set F is denoted by RP(F ) and is the largest R such that every mapping in the set F
has the property P in each ball Bn

r for every r < R.
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We let RS∗(F ) be the radius of starlikeness of F , RK(F ) the radius of convexity,
RS∗

γ
(F ) the radius of starlikeness of order γ and RŜδ

(F ) the radius of spirallikeness
of type δ of F .
It is well known that RK(S) = RK(S∗) = 2 − √

3 and RS∗(S) = tanh(π/4)
(see e.g. [35]). Graham, Kohr and Kohr [22] obtained the radius of starlikeness and
convexity associated with Φn(S). Also, Graham, Hamada, Kohr and Suffridge [18]
obtained the radius of starlikeness associated with Φn,α,β(S). In this section, we shall
obtain other radius problems for some subsets of S(Bn) associated with the operator
Φn,α,β. We begin with the following remark (cf. [18]):

Remark 4.1. If Φn,α,β(f) ∈ S(Bn
r ), then f ∈ S(Ur), for α ∈ [0, 1], β ∈ [0, 1/2]

such that α + β ≤ 1 and r ∈ (0, 1). On the other hand, if Φn,α,β(f) ∈ S∗(Bn
r )

(respectively K(Bn
r ), S∗

γ(Bn
r ), Ŝδ(Bn

r )), then f ∈ S∗(Ur) (K(Ur), S∗
γ(Ur), Ŝδ(Ur),

respectively). Also, if f ∈ S(Ur) thenΦn,α,β(f) ∈ S0(Bn
r ), for α ∈ [0, 1], β ∈ [0, 1/2]

and α + β ≤ 1, since the equality

Φn,α,β(fr)(z) =
1
r
Φn,α,β(f)(rz)

holds on Bn, where fr(ζ) = 1
rf(rζ), ζ ∈ U .

Now, we obtain the following result regarding the radius of spirallikeness of type
δ for the set Φn,α,β(S).

Theorem 4.1. RŜδ
(Φn,α,β(S)) = tanh

[
π
4 − |δ|

2

]
, for α ∈ [0, 1], β ∈ [0, 1/2] such

that α + β ≤ 1 and δ ∈ (−π/2, π/2).

Proof. It is known that if f ∈ S, then f is spirallike of type δ in Ur, where
r = tanh

[
π
4 − |δ|

2

]
and this number is the radius of spirallikeness of type δ for the

class S (see [38, Theorem 4] for β = 0). Hence

Re
eiδz1f

′(z1)
f(z1)

> 0, |z1| < r,

and the left hand side of the above inequality can be negative if |z1| > r.
Let Fα,β = Φn,α,β(f). Using Remark 4.1 and the fact that the operator Φn,α,β

preserves the notion of spirallikeness of type δ, for α ∈ [0, 1], β ∈ [0, 1/2] such that
α +β ≤ 1 (see e.g. [30]), we deduce that Fα,β ∈ Ŝδ(Bn

r ). Moreover, Fα,β may fail to
be spirallike of type δ in any ball Bn

r1
with r1 > r. Therefore r = tanh

[
π
4 − |δ|

2

]
is

the biggest radius for which each Fα,β ∈ Φn,α,β(S) is spirallike of type δ in Bn
r . This

completes the proof.

Remark 4.2. If we take δ = 0, α ∈ [0, 1], β ∈ [0, 1/2] with α + β ≤ 1, then from
Theorem 4.1 we obtain that RS∗(Φn,α,β(S)) = tanh(π/4). This result was proven in
[18].
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With arguments similar to those in the proof of Theorem 4.1, we may obtain the
following result regarding the radius of starlikeness of order γ for the class Φn,α,β(S).

Theorem 4.2. RS∗
γ
(Φn,α,β(S)) = r, where r is the unique root of the equation

(4.1)
(

1− r

1 + r

)cosx

cosx − γ = 0,

for γ ∈ (0, 1/e), in which x = x(r), 0 < x < π is uniquely determined by the equation

sinx ln
(

1 + r

1− r

)
− x = 0

and r = 1−γ
1+γ , for γ ∈ [1/e, 1).

Proof. Let Fα,β ∈ Φn,α,β(S). Then Fα,β = Φn,α,β(f), where f ∈ S. It is
known that f is starlike of order γ in Ur, where r is defined as above. This number
is the radius of starlikeness of order γ for S (see [38, Theorem 3] for α = 0 and [38,
Theorem 4] for γ = 0). Hence

Re
z1f

′(z1)
f(z1)

> γ, |z1| < r

and the left hand side of the above inequality can be negative if |z1| > r.
From Remark 4.1 and Corollary 2.2, we obtain that Fα,β ∈ S∗

γ(Bn
r ) and Fα,β may

not be starlike of order γ in any ball Bn
r1
with r1 > r. Therefore RS∗

γ
(Φn,α,β(S)) = r.

This completes the proof.

Using the fact that RK(S∗
1/2) =

√
2
√

3 − 3 (see e.g. [14, II p. 87]), Remark 4.1
and the fact that the Roper-Suffridge extension operator preserves convexity (see [19]
and [37]), with reasoning similar to those in Theorems 4.1 and 4.2, we may obtain the
following result.

Theorem 4.3. RK(Φn(S∗
1/2)) =

√
2
√

3− 3.

Similarly, using the results regarding radii of univalence in [14, Chapter 13] and the
fact that the operator Φn,α,β preserves the notions of starlikeness ([18]), starlikeness of
order γ ∈ (0, 1) (Corollary 2.2) and spirallikeness of type δ ∈ (−π/2, π/2) (see e.g.
[30]), we may obtain the following results.

Theorem 4.4. If α ∈ [0, 1], β ∈ [0, 1/2] such that α + β ≤ 1, then the following
relations hold:

(i) RŜδ
(Φn,α,β(S∗

γ)) is the smallest positive root of

((1− 2γ) cosδ)x2 − 2(1− γ)x + cos δ = 0, δ ∈ (−π/2, π/2), γ ∈ (0, 1).
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(ii) RS∗
γ
(Φn,α,β(K)) = sin(γπ/2), γ ∈ (0, 1).

(iii) RŜδ
(Φn,α,β(K)) = cos δ, 0 ≤ δ < 1.

(iv) RS∗(Φn,α,β(Ŝδ)) = 1/(cos δ + | sin δ|), δ ∈ (−π/2, π/2).

Remark 4.3. It would be interesting to see if the results contained in this paper
remain true in the case of g-Loewner chains for other univalent functions g.

Remark 4.4. It would be interesting to see whether the results in this paper may
be generalized to the case of complex Hilbert spaces.
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