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WEAK E-OPTIMAL SOLUTION IN VECTOR OPTIMIZATION

Ke-Quan Zhao, Xin-Min Yang and Jian-Wen Peng*

Abstract. In a real locally convex Hausdorff topological vector space, we first
introduce the concept of nearly E-subconvexlikeness of set-valued maps via im-
provement set and obtain an alternative theorem. Furthermore, under the assump-
tion of nearly subconvexlikeness, we establish scalarization theorem, Lagrange
multiplier theorem, weak E-saddle point criteria and weak E-duality for weak
E-optimal solution in vector optimization with set-valued maps. We also propose
some examples to illustrate the main results.

1. INTRODUCTION

In recent years, there has been growing interest in vector optimization problems
and there are many related literatures, see [1-3] and the references therein. In particu-
lar, it is meaningful to study the scalarization theorems, Lagrange multiplier theorems,
saddle point theorems and duality of various kinds of solutions in vector optimiza-
tion with set-valued maps under the suitable assumptions of generalized convexity, see
[4-8] and the references therein. The concepts of approximate solutions have been
playing an important role when there are no exact solutions in vector optimization
problems. Base on the classic ideas of efficiency and weak efficiency, various kinds
of approximate solutions such as (weak) ε-efficiency [9-14], C(ε)-efficiency [15-19]
and E-optimal solution [20] via improvement set are proposed and some properties
are studied. Especially, under the cone-subconvexlikeness, Rong and Wu established
scalarization theorems and Lagrange multiplier theorems of weak ε-minimal solutions
of vector optimization problems with set-valued maps in [14]. Gutierrez et al studied
optimality conditions of C(ε)-efficiency via scalarization in [17]. Chicco et al. pro-
posed the concept of E-optimal solution based on improvement set and discussed the
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existence of E-optimal solution for vector optimization problems in finite dimensional
space in [20]. Gutierrez et al generalize the concept of improvement set and E-optimal
solution to a real locally convex Hausdorff topological vector space and studied some
properties of improvement set and E-optimal solution in [21].
We notice that the concept of E-optimal solution via improvement set unifies the

concepts of optimal points, approximate optimal solution in scalar optimization, ef-
ficient solution, weak efficient solution and approximate efficient solution in vector
optimization, pareto equilibria and approximate equilibria, see [20-21]. Thus, in a
unified framework and under the assumptions of suitable generalized convexity, it will
be meaningful to establish scalarization theorems, Lagrange multiplier theorems, sad-
dle theorems and duality theorems of weak E-optimal solution in vector optimization
problems with set-valued maps.
Motivated by the works of [5-6, 14, 20-21] we first propose the concept of nearly

E-subconvexlikeness of set-valued maps via improvement set and obtain an alternative
theorem of nearly E-subconvexlikeness in terms of support function in a real locally
convex Hausdorff topological vector space. Furthermore, under the assumption of
nearly subconvexlikeness, we establish scalarization theorem, Lagrange multiplier the-
orem, weak E-saddle point criteria and weak E-duality for weak E-optimal solution in
vector optimization with set-valued maps. We also propose some examples to illustrate
the Lagrange multiplier theorem and weak E-saddle point criteria.

2. PRELIMINARIES

Let X be a linear space, let Y and Z be real locally convex Hausdorff topological
vector space with positive cones K and P , respectively. For a subset A ⊂ Y , intA and
clA denote its topological interior and closure, respectively. 〈x, y〉 indicates the inner
product of x and y. A cone K ⊂ Y is called pointed if K

⋂
(−K) = {0}. Let K and

P be closed convex pointed cones in Y and Z with nonempty interiors intK and intP ,
respectively. For any x, y ∈ Y , we consider the following notation:

x �K y ⇔ y − x ∈ K.

The generated cone of a set A ⊂ Y is cone(A) = {λa| λ ≥ 0, a ∈ A}. We say that
A is solid if intA �= ∅ and free disposal with respect to K (free disposal for short) if
A + K = A (see [22]). Let Y ∗ denote the topological dual space of Y . The positive
dual cone of A ⊂ Y is defined as

A+ = {μ ∈ Y ∗|〈y, μ〉 ≥ 0, ∀y ∈ A},

the strict positive dual cone of A is defined as

A+s = {μ ∈ Y ∗|〈y, μ〉 > 0, ∀y ∈ A\{0}}.
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Definition 2.1. [21]. A nonempty set E ⊂ Y is said to be an improvement set (or
an improvement set with respect to K) if 0 /∈ E and E is free disposal. We denote the
family of the improvement sets in Y by TY .
Throughout this paper, we suppose that E ∈ TY and intE �= ∅. Consider the following
vector optimization problem with set-valued maps:

(VP) minF (x)

s.t. x ∈ C = {x ∈ S|G(x)
⋂

(−P ) �= ∅},

where S ⊂ X , F : S ⇒ Y and G : S ⇒ Z are set-valued maps with nonempty value.
We assume that the feasible set C of (VP) is nonempty and let

〈F (x), μ〉 = {〈y, μ〉|y ∈ F (x)} , F (A) =
⋃
x∈A

F (x), 〈F (A), μ〉 =
⋃
x∈A

〈F (x), μ〉,

where μ ∈ Y ∗ and A ⊂ X . Let L(Z, Y ) be the set of all continuous linear operators
from Z to Y . A subset L+(Z, Y ) of L(Z, Y ) is defined as

L+ = L+(Z, Y ) = {T ∈ L(Z, Y )|T (P ) ⊂ K}.

Let (F, G) be the map from S to Y × Z defined by (F, G)(x) = F (x) × G(x). If
T ∈ L(Z, Y ), we also define F + TG : S ⇒ Y by (F + TG)(x) = F (x) + T (G(x)).
If there exists x̂ ∈ S such that G(x̂)

⋂
(−intP ) �= ∅, we say that (VP) satisfies the

generalized Slater constraint qualification (see [23]).
Gutirrez et al. proposed the concepts of E-optimal solution and weak E-optimal so-

lution for vector optimization with vector-valued maps in [21]. Similarly, we introduce
the corresponding concepts for (VP).

Definition 2.2. A point x0 ∈ C is called an E-optimal solution of (VP) if there
exists y0 ∈ F (x0) such that

(y0 − E)
⋂

F (C) = ∅.

Definition 2.3. A point x0 ∈ C is called a weak E-optimal solution of (VP) if
there exists y0 ∈ F (x0) such that

(y0 − intE)
⋂

F (C) = ∅.

Remark 2.1. It is clear that E-optimality of (VP) implies weak E-optimality of
(VP), but the converse is not necessarily true. The following example illustrates this
point.
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Example 2.1. Let X = Y = Z = R
2, K = P = R

2
+, E = {(y1, y2) ∈ R

2|y1 ≥
0, y2 ≥ 0, y1 + y2 ≥ 1}, S = [−1, 1]× [−1, 1]. The set-valued maps F : S ⇒ Y and
G : S ⇒ Z are respectively defined as

F (x) = {(y1, y2) ∈ R
2|(y1, y2) ∈ [0, |x1|] × [0, |x2|]}, ∀(x1, x2) ∈ S,

G(x) = {(z1, z2) ∈ R
2|(z1, z2) ∈ [−1, 0]× [−|x1| − |x2|, 0]}, ∀(x1, x2) ∈ S.

Clearly, the feasible set C = S. Let x0 = (1, 0) and y0 = (1, 0) ∈ F (x0). We can
verify that x0 is a weak E-optimal solution of (VP). However, (y0 − E)

⋂
F (C) =

{(0, 0)} �= ∅, which implies that x0 is not a E-optimal solution of (VP).
Let OintE(F (C)) be the set of weak E-optimal solutions of (VP) and

OintE(F (C)) = {y0 ∈ F (x0)|(y0 + intE)
⋂

F (C) = ∅, x0 ∈ C}.

Definition 2.4. A point pair (x0, y0) is called a weak E-optimal point of (VP) if
x0 ∈ C, y0 ∈ F (x0) and

(y0 − intE)
⋂

F (C) = ∅.

Lemma 2.1. intE = E + intK.

Proof. The proof is similar with Lemma 3.4 in [24] and is omitted.

Lemma 2.2. clcone(A + E) = clcone(A + intE).

Proof. From E ∈ TY , Proposition 3.3 in [5] and Lemma 2.1, we have

clcone(A+E) = clcone(A+E+K) = clcone(A+E+intK) = clcone(A+intE).

3. NEARLY E-SUBCONVEXLIKENESS

In this section, we introduce the concept of nearly E-subconvexlikeness of set-
valued maps and establish an alternative theorem in terms of improvement set.

Definition 3.1. Let F : S ⇒ Y be a set-valued map. F is said to be nearly
E-subconvexlike on S if clcone(F (S) + E) is a convex set.

Remark 3.1. If E such that intK ⊂ E ⊂ K\{0}, then from Lemma 2.2 and
Proposition 3.3 in [5], it follows that clcone(F (S) + E) = clcone(F (S) + intK) =
cone(F (S) + K). This implies that nearly E-subconvexlikeness coincides with nearly
K-subconvexlikeness.

Remark 3.2. Nearly E-subconvexlikeness of set-valued map does not necessarily
imply nearly K-subconvexlikeness, the following example illustrates it.
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Example 3.1. Let X = Y = R
2, K = R

2
+, E = {(y1, y2) ∈ R

2|y1 ≥ 0, y2 ≥
0, y1 + y2 ≥ 1}, S = [−1, 1]× [−1, 1]. The set-valued map F : S ⇒ Y is defined as

F (x)=

{{(y1, y2) ∈ R
2|(y1, y2) ∈ [−1, x1]×[0, |x2|]}, ∀(x1, x2) ∈ [−1, 0)×[−1, 1],

{(y1, y2) ∈ R
2|(y1, y2) ∈ [0, x1] × [−1, x2]}, ∀(x1, x2) ∈ [0, 1]× [−1, 1].

Clearly, clcone(F (S)+E) is a convex set and clcone(F (S)+R
2
+) is not a convex set.

Let the support functional of Q at y be defined as σQ(y∗) = sup
y∈Q

{y∗(y)}, ∀y∗ ∈ Y ∗.

Theorem 3.1. Let the set-valued map F be nearly E-subconvexlike on S. Then,
one and only one of the following statements is true:

(i) ∃ x ∈ S, F (x)
⋂

(−intE) �= ∅;

(ii) ∃ μ ∈ K+\{0Y ∗}, 〈y, μ〉 − σ−E(μ) ≥ 0, ∀y ∈ F (S).

Proof. Assume that both (i) and (ii) hold. Then, there exists x ∈ S such that

F (x)
⋂

(−intE) �= ∅.

From Lemma 2.1, this implies that there exist y ∈ F (x) and e ∈ E such that y + e ∈
−intK. Hence, 〈y + e, μ〉 < 0, i.e.

〈y, μ〉 < 〈−e, μ〉 ≤ sup
ẽ∈−E

〈ẽ, μ〉 = σ−E(μ).

Then〈y, μ〉 − σ−E(μ) < 0, which contradicts (ii).
Assume that (i) does not hold. Clearly, (F (S) + E)

⋂
(−intK) = ∅. Thus,

clcone(F (S) + E)
⋂

(−intK) = ∅.

From the nearly E-subconvexlikeness of F , clcone(F (S)+E) is a convex set. Hence,
there exists μ ∈ Y ∗\{0Y ∗} such that

(1) 〈y + e + εr, μ〉 ≥ 0, ∀y ∈ F (S), ∀e ∈ E, ∀r ∈ intK, ∀ε > 0.

Letting ε → +∞ in (1), we have 〈r, μ〉 ≥ 0, ∀r ∈ intK. Consequently, 〈r, μ〉 ≥
0, ∀r ∈ K. Therefore, μ ∈ K+\{0Y ∗}. Letting ε → 0 in (1), we obtain

〈y, μ〉 ≥ 〈−e, μ〉, ∀y ∈ F (S), ∀e ∈ E.

Then
〈y, μ〉 ≥ sup

ẽ∈−E
〈ẽ, μ〉 = σ−E(μ), ∀y ∈ F (S).

This implies that (ii) does hold.
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4. SCALARIZATION THEOREM

In this section, we establish scalarization theorem of weak E-optimal solution for
(VP) by making use of the alternative theorem for nearly E-subconvexlike set-valued
map. Consider the following scalar optimization problem:

(VP)µ min
x∈C

〈F (x), μ〉, μ ∈ Y ∗\{0Y ∗}.

Definition 4.1 A point x0 ∈ C is called an optimal solution of (VP)µ with respect
to E if there exists y0 ∈ F (x0) such that

(2) 〈y − y0, μ〉 ≥ σ−E(μ), ∀x ∈ C, ∀y ∈ F (x).

The point pair (x0, y0) is called an optimal point of (VP)µ with respect to E .

Remark 4.1. If ε ∈ K\{0}, E = ε + K and μ ∈ K+\{0Y ∗}, then E ∈ TY and
(2) reduces to

〈y, μ〉 ≥ 〈y0, μ〉 − 〈ε, μ〉, ∀x ∈ C, ∀y ∈ F (x).

Theorem 4.1. Assume that x0 ∈ C, y0 ∈ F (x0) and F − y0 is nearly E-
subconvexlike on C. Then (x0, y0) is a weak E-optimal point of (VP) if and only
if there exists μ ∈ K+\{0Y ∗} such that (x0, y0) is an optimal point of (VP)µ with
respect to E .

Proof. If (x0, y0) is a weak E-optimal point of (VP), then we have (y0 −
intE)

⋂
F (C) = ∅, i.e.,

(F (C) − y0)
⋂

(−intE) = ∅.

From Theorem 3.1, there exists μ ∈ K+\{0Y ∗} such that
〈y − y0, μ〉 − σ−E(μ) ≥ 0, ∀x ∈ C, ∀y ∈ F (C).

Then, for any x ∈ C, y ∈ F (x),

〈y − y0, μ〉 ≥ σ−E(μ),

which implies that (x0, y0) is an optimal point of (VP)µ with respect to E .

Conversely, assume that there exists μ ∈ K+\{0Y ∗} such that (x0, y0) is an optimal
point of (VP)µ with respect to E . If (x0, y0) is not a weak E-optimal point of (VP),
then from Lemma 2.1, we have

(y0 − E − intK)
⋂

F (C) �= ∅.
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Hence, there exists x̂ ∈ C, ŷ ∈ F (x̂) and ê ∈ E such that

ŷ − y0 + ê ∈ −intK.

Since μ ∈ K+\{0Y ∗}, the above relation implies that
〈ŷ − y0, μ〉 − σE(μ) ≤ 〈ŷ − y0 + ê, μ〉 < 0,

which contradicts the assumption that (x0, y0) is an E-optimal point of (VP)µ.

Remark 4.2 Theorem 4.1 is a generalization of Theorem 6.1 in [5], Theorem 2.1
in [14] and Theorem 5.1 and Theorem 5.3 in [21].

5. LAGRANGE MULTIPLIER THEOREM

In this section, Lagrange multiplier theorem which implies that a weak E-optimal
point of (VP) is a weak E-optimal point of an appropriate unconstrained vector opti-
mization problem with set-valued maps are presented under the assumption of nearly
E-subconvexlikeness.
The Lagrangian function of (VP) L : S × L+(Z, Y ) → 2Y is defined by

L(x, T ) := F (x) + T (G(x)), (x, T ) ∈ S × L+(Z, Y ).

Theorem 5.1. Let (F − y0, G) be nearly (E × P )-subconvexlike on S and (VP)
satisfy the generalized Slater constraint qualification. If (x0, y0) is a weak E-optimal
point of (VP) and 0 ∈ G(x0) , then there exists T ∈ L+ such that (x0, y0) is a weak
E-optimal point of the following unconstrained vector optimization problem:

(UVP) minL(x, T ),

s.t. (x, T ) ∈ S × L+(Z, Y )

and −T (G(x0)
⋂

(−P )) ⊂ (intK
⋃{0})\intE .

Proof. Since (x0, y0) is a weak E-optimal point of (VP), then x0 ∈ C, y0 ∈ F (x0)
and

(F (S)− y0)
⋂

(−intE) = ∅.

Hence,

(3) (F (S)− y0, G(S))
⋂

(−intE,−P ) = ∅.

From the nearly (E ×P )-subconvexlikeness on S of (F − y0, G) and by Theorem 4.1
and (3), there exists (μ, ϕ) ∈ K+ × P+\{(0Y ∗ , 0Z∗)} such that

〈y − y0, μ〉 − σ−E(μ) + 〈z, ϕ〉 − σ−P (ϕ) ≥ 0, ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x).
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That is, for any x ∈ S, y ∈ F (x), z ∈ G(x), e ∈ E, z′ ∈ P ,

(4)

〈y − y0, μ〉 + 〈z, ϕ〉 ≥ σ−E(μ) + σ−P (ϕ)

= sup
ẽ∈−E

〈ẽ, μ〉 + sup
z̃∈−P

〈z̃, ϕ〉
≥ 〈−e, μ〉 + 〈−z′, ϕ〉.

In particular, letting z′ = 0 in (4), we obtain that

(5) 〈y − y0 + e, μ〉+ 〈z, ϕ〉 ≥ 0, ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x), ∀e ∈ E.

Since G satisfies the generalized Slater constraint qualification and from (5), we have
μ ∈ K∗\{0Y ∗}. Taking k0 ∈ intK satisfying 〈k0, μ〉 = 1 and we define T : Z → Y

by

(6) T (z) = 〈z, ϕ〉k0, z ∈ Z.

Clearly, T ∈ L+(Z, Y ). Taking x = x0, y = y0 and z = z0 ∈ G(x0)
⋂

(−P ) in (5)
and from ϕ ∈ P+, we obtain that

(7) −〈e, μ〉 ≤ 〈z0, ϕ〉 ≤ 0.

From the right inequality of (7), we have that

−T (z0) = −〈z0, ϕ〉k0 ∈ intK
⋃

{0}.

From the left inequality of (7), we have that −T (z0) /∈ intE. Otherwise, from Lemma
2.1, there exists e ∈ E such that −T (z0) − e ∈ intK. Consequently, 〈T (z0) + e, μ〉 <

0, i.e., 〈z0, ϕ〉 < −〈e, μ〉, which contradicts to the left inequality of (7). Noticing that
z0 is arbitrary in the set G(x0)

⋂
(−P ), we obtain that

−T (G(x0)
⋂

(−P )) ⊂ (intK
⋃

{0})\intE.

Furthermore, from T ∈ L+(Z, Y ) and 0 ∈ G(x0), it follows that 0 ∈ T (G(x0)). Thus,
we get that y0 ∈ F (x0) ⊂ F (x0) + T (G(x0)) = L(x0, T ). Hence, from (5) and (6), it
follows that

〈y + T (z), μ〉 = 〈y, μ〉+ 〈z, ϕ〉〈k0, μ〉
= 〈y, μ〉+ 〈z, ϕ〉
≥ 〈y0 − e, μ〉, ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x), ∀e ∈ E.

This implies that

(8) 〈y + T (z)− y0, μ〉 ≥ σE(μ), ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x).
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Hence, (x0, y0) is an optimal point with respect to E for the problem (UVP)µ given
by

(UVP)µ min
(x,T )∈S×L+(Z,Y )

〈L(x, T ), μ〉.

Therefore, (x0, y0) is a weak E-optimal point of (UVP). Otherwise, from Lemma 2.1
and μ ∈ K+\{0Y ∗}, it follows that there exist x̂ ∈ S, ŷ ∈ F (x̂), ẑ ∈ G(x̂) and ê ∈ E
such that

〈ŷ + T (ẑ) − y0, μ〉 < σE(μ),

which contradicts (8). This completes the proof.

Remark 5.1. Theorem 5.1 is a generalization of Theorem 5.1 in [5] and Theorem
3.1 and Theorem 3.2 in [14].

The following example illustrates the above Theorem 5.1.

Example 5.1. Let X = Y = Z = R
2, K = P = R

2
+, E = {(y1, y2) ∈ R

2|y1 ≥
0, y2 ≥ 0, y1 + y2 ≥ 1}, S = [−1, 1] × {0}. The set-valued maps F : S ⇒ Y and
G : S ⇒ Z are, respectively, defined as

F (x1, x2) = {(y1, y2) ∈ R
2|(y1, y2) ∈ {1} × [x1 + 1, x1 + 2]}, ∀(x1, x2) ∈ S,

G(x1, x2) = {(z1, z2) ∈ R
2|(z1, z2) ∈ [−|x1|, 0]× [−|x1|, 0]}, ∀(x1, x2) ∈ S.

It is clear that the feasible set C = [−1, 1] × {0}. Let x0 = (−1, 0), y0 = (1, 0) ∈
F (x0). We can verify that all conditions of Theorem 5.1 are satisfied and (x0, y0)
is a weak E-optimal point of (VP). Then there exists T̄ (z1, z2) = (0.1z1, 0.1z1) ∈
L+(Z, Y ) such that (x0, y0) is a weak E-optimal point of (UVP).

6. WEAK E-SADDLE POINTS

In this section, we give the concept of weak E-saddle point for a set-valued La-
grangian map and establish a weak E-saddle point theorem.

Definition 6.1. An ordered pair (x̄, T̄ ) ∈ S ×L+(Z, Y ) is called a weak E-saddle
point of the set-valued Lagrangian map L(x, T ) if

L(x̄, T̄ )
⋂

OintE(L(S, T̄))
⋂

OintE(L(x̄, L+)) �= ∅.

Theorem 6.1. An ordered pair (x̄, T̄ ) ∈ S × L+(Z, Y ) is a weak E-saddle point
of the set-valued Lagrangian map L(x, T ) iff there exist ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such
that

(i) ȳ + T̄ (z̄) ∈ OintE(L(S, T̄ ));

(ii) G(x̄) ⊂ −P ;
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(iii) −T̄ (z̄) ∈ K\intE;
(iv) (F (x̄) − ȳ − T̄ (z̄))

⋂
intE = ∅.

Proof. Suppose that (x̄, T̄ ) ∈ S×L+(Z, Y ) is a weak E-saddle point of L(x, T ).
Then there exist ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that

(9) ȳ + T̄ (z̄) ∈ OintE(L(S, T̄ )),

(10) ȳ + T̄ (z̄) ∈ OintE(L(x̄, L+)).

Hence, by (9), it follows that (i) holds, and from (10), we have

(11) y + T (z) − ȳ − T̄ (z̄) /∈ intE, ∀y ∈ F (x̄), ∀T ∈ L+(Z, Y ), ∀z ∈ G(x̄).

Taking y = ȳ and z = z̄ in (11), we get

(12) T (z̄) − T̄ (z̄) /∈ intE, ∀T ∈ L+(Z, Y ).

Now, suppose that z̄ /∈ −P . Noticing that Z is a locally convex topological vector
space, we have (P+)+ = clP . By the closeness of P , we have −z̄ /∈ (P+)+. It is
not difficult to show that there exists λ ∈ P+ such that 〈z̄, λ〉 > 0. Taking any fixed
ê ∈ intE and define a map T̂ : Z → Y as

T̂ (z) :=
〈z, λ〉
〈ẑ, λ〉 ê + T̄ (z), z ∈ Z.

Obviously, T̂ ∈ L+(Z, Y ), which satisfies T̂ (z̄) − T̄ (z̄) = ê ∈ intE. This contradicts
(12), and so z̄ ∈ −P . Therefore, −T̄ (z̄) ∈ K. On the other hand, taking T = 0 ∈
L+(Z, Y ) in (12), we have also that −T̄ (z̄) /∈ intE . So, (iii) holds.
Now, we show that G(x̄) ⊂ −P . If it is not true, then this implies that there exists

z0 ∈ G(x̄) such that −z0 /∈ P . We can show that there exists λ0 ∈ P+ such that
〈z0, λ0〉 > 0. Taking a fixed e0 ∈ intE , we define a map T0 : Z → Y as

T0(z) :=
〈z, λ0〉
〈z0, λ〉0 e0, z ∈ Z.

Obviously, T0 ∈ L+(Z, Y ). Noticing that −T̄ (z̄) ∈ K and intE ∈ TY , we also get

(13) T0(z0)− T̄ (z̄) = e0 − T̄ (z̄) ∈ intE + K = intE.

Taking T = T0, y = ȳ and z = z0 in (11), we obtain that T0(z0)− T̄ (z̄) /∈ intE, which
contradicts (13), and so (ii) holds. Taking T = 0 ∈ L+(Z, Y ) in (11), we get

(F (x̄) − ȳ − T̄ (z̄))
⋂
intE = ∅,
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which shows that (iv) holds.

Conversely, from ȳ ∈ F (x̄) and z̄ ∈ G(x̄), we obtain that

(14) ȳ + T̄ (z̄) ∈ F (x̄) + T̄ (G(x̄)) = L(x̄, T̄ ).

From (ii), then −T (G(x̄)) ⊂ T (P ) ⊂ K, ∀T ∈ L+(Z, Y ). Noticing that intE ∈ TY ,
we have

(15) intE − T (G(x̄)) ⊂ intE + K = intE, ∀T ∈ L+(Z, Y ).

From (15) and (iv), it follows that

(F (x̄) − ȳ − T̄ (z̄))
⋂

(intE − T (G(x̄))) = ∅, ∀T ∈ L+(Z, Y ).

i.e.,
(ȳ + T̄ (z̄) + intE)

⋂
L(x̄, L+) = ∅.

Then

(16) ȳ + T̄ (z̄) ∈ OintE(L(x̄, L+)).

From (i), (14), and (16), we obtain that

ȳ + T̄ (z̄) ∈ L(x̄, T̄ )
⋂

OintE(L(S, T̄))
⋂

OintE(L(x̄, L+)).

Therefore, (x̄, T̄ ) is a weak E-saddle point of L(x, T ).

Remark 6.1. Theorem 6.1 is a generalization of proposition 4.1 in [14].

Theorem 6.2. If an ordered pair (x̄, T̄ ) ∈ S × L+(Z, Y ) is a weak E-saddle
point of the set-valued Lagrangian map L(x, T ) and 0 ∈ G(x̄), then there exists
ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that x̄ is a weak E ′-optimal solution of (VP), where
E ′ := E − T̄ (z̄).

Proof. Since (x̄, T̄ ) ∈ S × L+(Z, Y ) is a weak E-saddle point of L(x, T ) and
by Theorem 6.1, then there exists ȳ ∈ F (x̄) and z̄ ∈ G(x̄) such that ȳ + T̄ (z̄) ∈
OintE(L(S, T̄ )). Hence,

(ȳ + T̄ (z̄) − intE)
⋂

(F (S) + T̄ (G(S))) = ∅,

i.e.
(ȳ + T̄ (z̄) − T̄ (G(S))− intE)

⋂
F (S) = ∅.

Taking E ′ = E − T̄ (z̄). Obviously, E ′ ∈ TY . Noticing that 0 ∈ G(x̄) ⊂ G(S), we
have

−intE ′ = T̄ (z̄) − intE ⊂ T̄ (z̄) − T̄ (G(S))− intE.
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Therefore, (ȳ − intE ′)
⋂

F (S) = ∅. From C ⊂ S, we have (ȳ − intE ′)
⋂

F (C) = ∅.

That is, x̄ is a weak E ′-optimal solution of (VP).

Remark 6.2. Theorem 6.2 is a generalization of Theorem 4.1 in [14].

The following example illustrates the above Theorem 6.2.

Example 6.1. Let X = Y = Z = R
2, K = P = R

2
+, E = {(y1, y2) ∈ R

2|y1 ≥
0, y2 ≥ 0, y1 + y2 ≥ 3}, S = {0} × [−1, 1]. The set-valued maps F : S ⇒ Y and
G : S ⇒ Z are, respectively, defined as

F (x1, x2) = {(y1, y2) ∈ R
2|(y1, y2) ∈ {0} × [−x2, x2]}, ∀(x1, x2) ∈ S,

G(x1, x2) = {(z1, z2) ∈ R
2|(z1, z2) ∈ −λ(|x2|, |x2|), ∀λ ∈ [0, 1]},∀(x1, x2) ∈ S.

Let x̄ = (0, 1), T̄(z1, z2) = (z1, z2) ∈ L+(Z, Y ). Clearly, (x̄, T̄ ) is a weak E-saddle
point of the set-valued Langrangian map L(x, T ). Then from Theorem 6.2, there exist
ȳ = (0,−1) ∈ F (x̄), z̄ = (0, 0) ∈ G(x̄) such that x̄ is a weak E ′-optimal solution of
(VP) with E ′ = E .

7. WEAK E-DUALITY

A set-valued map Φ : L+(Z, Y ) ⇒ 2Y is defined as

Φ(T ) := OintE(L(S, T )), T ∈ L+(Z, Y ),

which is said to be a weak E-dual map of (VP). The vector maximization problem
with set-valued map Φ,

(VD) max
⋃

T∈L+

Φ(T ),

is said to be a dual problem of (VP).

Definition 7.1. A point y ∈ Y is called a feasible point of (VD) if y ∈ ⋃
T∈L+ Φ(T ).

A feasible point ȳ is called a weak E-optimal solution of (VD) if

y − ȳ /∈ intE, y ∈
⋃

T∈L+

Φ(T ).

Theorem 7.1. (Weak E-Duality). Let x̄ be any feasible solution of (VP), ȳ be any
feasible point of (VD). Then, ȳ /∈ F (x̄) + intE.

Proof. Since ȳ is a feasible point of (VD), then ȳ ∈ ⋃
T∈L+ Φ(T ). This implies

that there exists T̄ ∈ L+(Z, Y ) such that ȳ ∈ Φ(T̄ ) = OintE(L(S, T̄), i.e.,

(ȳ − intE)
⋂

(F (S) + T̄ (G(S))) = ∅.
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Then,

(17) ȳ − y − T̄ (z) /∈ intE, ∀y ∈ F (x̄), ∀z ∈ G(x̄).

On the other hand, since x̄ is a feasible solution of (VP), we have G(x̄)
⋂

(−P ) �= ∅.
Then there exists z̄ ∈ G(x̄) such that −z̄ ∈ P and so −T̄ (z̄) ∈ T̄ (P ) ⊂ K. Taking
z = z̄ in (17), we obtain ȳ − y − T̄ (z̄) /∈ intE, ∀y ∈ F (x̄). From −T̄ (z̄) ∈ K and
intE ∈ TY , it follows that ȳ − y /∈ intE, ∀y ∈ F (x̄). This implies that ȳ /∈ F (x̄)
+intE.

Theorem 7.2. Let x̄ be any feasible solution of (VP), ȳ be any feasible point of
(VD), where ȳ ∈ F (x̄). Then, x̄ is a weak E-optimal solution of (VP) and ȳ is a weak
E-optimal solution of (VD).

Proof. Suppose that ȳ is a feasible point of (VD). Then, we have ȳ ∈ ⋃
T∈L+ Φ(T ).

Hence, there exists T̄ ∈ L+(Z, Y ) such that ȳ ∈ Φ(T̄ ) = OintE(L(S, T̄), i.e.,

(18) ȳ − y − T̄ (z) /∈ intE, ∀x ∈ S, ∀y ∈ F (x), ∀z ∈ G(x).

When x ∈ C, we know that there exists z̃ ∈ G(x) such that z̃ ∈ −P . Hence,
−T̄ (z̃) ∈ K. Furthermore, taking z = z̃ in (18), we can prove that

ȳ − y /∈ intE, ∀x ∈ C, ∀y ∈ F (x).

From ȳ ∈ F (x̄), it follows that x̄ is a weak E-optimal solution of (VP). On the other
hand, suppose that x̄ is a feasible point of (VP). By the assumption ȳ ∈ F (x̄) and
Theorem 7.1, we obtain

y − ȳ /∈ intE, ∀y ∈
⋃

T∈L+

Φ(T ).

Thus, ȳ is a weak E-optimal solution of (VD).

Theorem 7.3. (Strong E-Duality). Let (F −ȳ, G) be nearly (E×P )-subconvexlike
on S and (VP) satisfies the generalized Slater constraint qualification. If (x̄, ȳ) is a
weak E-optimal point of (VP) and 0 ∈ G(x̄), then ȳ is a weak E-optimal solution of
(VD).

Proof. By Theorem 5.1, there exists T ∈ L+ such that (x̄, ȳ) is a weak E-optimal
point of (UVP). Hence, we obtain that

ȳ ∈ F (x̄) ⊂ F (x̄) + T (G(x̄)) ∈ L(S, T ), ∀T ∈ L+(Z, Y ).

and
(ȳ − intE)

⋂
L(S, T ) = ∅, ∀T ∈ L+(Z, Y ).
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Then,
ȳ ∈ OintE(L(S, T ) = Φ(T ), ∀T ∈ L+(Z, Y ).

Therefore,

ȳ ∈ F (x̄)
⋂⎛⎝ ⋃

T∈L+

Φ(T )

⎞⎠ .

Then, ȳ is a weak E-optimal solution of (VD) by using Theorem 7.2.

8. CONCLUDING REMARKS

In this paper, we introduce the concepts of nearlyE-subconvexlikeness of set-valued
maps via improvement set in a real locally convex Hausdorff topological vector space
and establish an alternative theorem. Furthermore we apply the alternative theorem
to establish scalarization theorem and Lagrange multiplier theorem of weak E-optimal
solution for (VP). We also establish saddle point criteria and duality of weak E-optimal
solution for (VP). It is meaningful to discuss some new characterizations of weak E-
optimal solution of (VP) and it will be our future research scope.
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