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A FAST POISSON SOLVER BY CHEBYSHEV PSEUDOSPECTRAL
METHOD USING REFLEXIVE DECOMPOSITION

Teng-Yao Kuo, Hsin-Chu Chen and Tzyy-Leng Horng*

Abstract. Poisson equation is frequently encountered in mathematical modeling
for scientific and engineering applications. Fast Poisson numerical solvers for 2D
and 3D problems are, thus, highly requested. In this paper, we consider solving
the Poisson equation ∇2u = f(x, y) in the Cartesian domain Ω = [−1, 1] ×
[−1, 1], subject to all types of boundary conditions, discretized with the Chebyshev
pseudospectral method. The main purpose of this paper is to propose a reflexive
decomposition scheme for orthogonally decoupling the linear system obtained from
the discretization into independent subsystems via the exploration of a special
reflexive property inherent in the second-order Chebyshev collocation derivative
matrix. The decomposition will introduce coarse-grain parallelism suitable for
parallel computations. This approach can be applied to more general linear elliptic
problems discretized with the Chebyshev pseudospectral method, so long as the
discretized problems possess reflexive property. Numerical examples with error
analysis are presented to demonstrate the validity and advantage of the proposed
approach.

1. INTRODUCTION

There have been considerable studies in the development of robust and efficient
solvers for Poisson equation. A fast and accurate Poisson solver has many scientific
and engineering applications. These include computer simulations of plasma physics
[3], industrial plasma engineering [17], and planetary dynamics [4]. The popular
projection method for solving Navier-Stokes equations also involves solving a Poisson
equation for the pressure field [7].
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In this paper, we consider solving the Poisson equation ∇2u = f(x, y) in a Carte-
sian domain Ω = [−1, 1]× [−1, 1] with all types of boundary conditions:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2u = f(x, y), (x, y) ∈ (−1, 1)× (−1, 1),

α1u + β1
∂u

∂x
= g1(y), at x = 1,

α2u + β2
∂u

∂x
= g2(y), at x = −1,

α3u + β3
∂u

∂y
= g3(x), at y = 1,

α4u + β4
∂u

∂y
= g4(x), at y = −1,

where αi and βi, ∀i, are constants and can not be zeros at the same time. Also, at
least one of the α′

is is not zero to ensure the uniqueness of solution. The current paper
proposes a reflexive decomposition scheme to solve (1.1) more efficiently when (1.1)
is discretized by the Chebyshev pseudospectral method.
Most Poisson solvers are based on finite difference or finite element methods. While

the geometry of computational domain is rectangular, the Chebyshev pseudospectral
method has advantage over traditional finite difference and finite element methods in
numerical accuracy. Its convergence rate is of exponential order O

(
cN

)
, 0 < c < 1,

for smooth solutions where N is the number of grid points [18].
There have been several literatures about solving Poisson equation over a rectangular

domain by Chebyshev spectral/pseudospectral method, to name a few as follows. Haid-
vogel and Zang [14] applied both ADI and matrix diagonalization techniques to solve
Poisson equation over a square domain, and compared their efficiencies. Their method
can be only applied to Dirichlet boundary conditions. Dang-Vu and Delcarte [11] pre-
sented the solution of Poisson equation using the resolution of the mixed collocation
τ equations into two quasi-tridiagonal systems to simplify the differential operators.
Shizgal et al. [20, 21, 12] used eigenvalue/eigenvector technique to diagonalize the
discretized system, which is a very efficient method but only subject to Dirichlet bound-
ary conditions. So far, the eigenvalue/eigenvector matrix diagonalization method for
solving Poisson equation over a rectangular domain is most efficient [9, 13]. However,
it can be only applied with ease for Dirichlet boundary conditions. For non-Dirichlet
boundary conditions like Neumann or Robin ones, this matrix diagonalization method
requests messy row operations or costly iterations [22].
To apply Chebyshev pseudospectral method coping with Neumann or Robin bound-

ary conditions, even more general second-order arbitrary-coefficient elliptic partial dif-
ferential equations, we need to use Kronecker product during discretization for Poisson
equation in 2D/3D rectangular domains. The resultant linear system is very costly to
solve, especially for 3D problems, by direct Gaussian elimination or iteration methods.
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To solve this problem, here we explore the reflexive property [10] of Chebyshev collo-
cation derivative matrix for possible coarse-grain decomposition of the resultant huge
matrix. To be more elaborate, we apply reflexive decomposition to orthogonally de-
compose the original linear system into two, or more, smaller decoupled subsystems so
that we can save enormous computation time by solving several smaller linear systems
instead. This coarse-grain system reduction can further foster coarse-grain parallelism,
which can save more computation time by parallel computation.
The organization of this paper is as follows. In section 2, we begin with an observa-

tion that the second-order Chebyshev collocation derivative matrix is centrosymmetric
and then show that the matrix associated with the 2D discretized Poisson equation us-
ing Chebyshev pseudospectral method with a tensor product is block-centrosymmetric
and therefore reflexive. In section 3, we further decompose the resultant matrix into
submatrices via orthogonal reflexive decomposition. Operations count and numeri-
cal experiments with error analysis showing exponential convergence are presented in
section 4, and conclusion is given in section 5.

2. REFLEXIVE PROPERTY OF CHEBYSHEV COLLOCATION DERIVATIVE MATRIX

2.1. Chebyshev pseudospectral method

Given Chebyshev-Gauss-Lobatto points, xj = cos (jπ/N ) , j = 0, 1, ..., N, satis-
fying T

′
N (xj)

(
1 − x2

j

)
= 0, where TN (x) is the Chebyshev polynomial of degree N ,

the Lagrange interpolating polynomials based on Chebyshev-Gauss-Lobatto points can
be obtained as follows

LN,j (x) =
(−1)j+1 (

1− x2
)
T

′
N (x)

c̄jN 2(x − xj)
, j = 0, 1, ..., N,

where c̄j =
{

2, for j = 0, N,

1, otherwise, and LN,j (xl) = δjl with δjl being Kronecker delta.

A function u (x) can be approximated by interpolating polynomials above,

u (x) ≈
N∑

j=0

LN,j (x)u (xj) ,

and its derivative values at Chebyshev-Gauss-Lobatto points can be therefore approxi-
mated by

u′ (xi) ≈
N∑

j=0

L′
N,j (xi)u (xj) =

N∑
j=0

(DN)ij u (xj) , i = 0, 1, ..., N,
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where DN is Chebyshev collocation derivative matrix with (DN)ij = L′
N,j (xi) . The

entries of DN have long been available in literatures [15, 16, 18] and are given as

(DN )00 =
2N 2 + 1

6
, (DN )NN = −2N 2 + 1

6
,

(DN)jj =
−xj

2
(
1− x2

j

) , j = 1, 2, ..., N − 1,

(DN )ij =
ci (−1)i+j

cj (xi − xj)
, i �= j, and i, j = 0, 1, ..., N,

where ci =
{

2, for i = 0, N,

1, otherwise, and note that DN is a (N + 1) × (N + 1) matrix.

Likewise, the kth derivative values of a function u (x) at Chebyshev-Gauss-Lobatto
points can be approximated by

(
∂ku

∂xk

)
x=xi

≈
N∑

j=0

(
Dk

N

)
ij

u (xj) , i = 0, 1, ..., N,

where Dk
N represents the kth power of DN . Note that DN is an anti-centrosymmetric

matrix, that satisfies

(DN)ij = − (DN )N−i,N−j , i, j = 0, 1, ..., N,

or

DN = −JN+1DNJN+1, where JN+1 =

⎡
⎣ 1

· · ·
1

⎤
⎦ .

Accordingly, the second-order derivative matrix D2
N , denoted by S, will be a cen-

trosymmetric matrix [1, 2, 6, 19] satisfying

(S)ij = (S)N−i,N−j , i, j = 0, 1, ..., N,

or
S = JN+1SJN+1.

Deriving this will use the property J2
N+1 = IN+1, where IN+1 is the identity matrix

of dimension N + 1. Extending this idea, Dk
N will be anti-centrosymmetric for any

odd k and centrosymmetric for any even k, i.e.,
(
Dk

N

)
ij

= (−1)k (
Dk

N

)
N−i,N−j

,
i, j = 0, 1, ..., N.

To solve 2D Poisson problem like (1.1), we apply tensor product to discretize the
equation as

(2.1) LNu = f, with LN ∈ �(N+1)2×(N+1)2, u, f ∈ �(N+1)2,
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where LN is the discretized Laplacian operator that can be expressed as

(2.2) LN = IN+1 ⊗ S + S ⊗ IN+1,

with ⊗ representing the Kronecker product [18]. The Kronecker product of two ma-
trices A and B, denoted by A⊗B, with dimensionsm×n and p× q respectively, can
be expressed as an m × n block matrix with the i, j block being aijB. For example,

⎡
⎣ a11 a12

a21 a22

a31 a32

⎤
⎦ ⊗

[
1 2
3 4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1a11 2a11 1a12 2a12

3a11 4a11 3a12 4a12

1a21 2a21 1a22 2a22

3a21 4a21 3a22 4a22

1a31 2a31 1a32 2a32

3a31 4a31 3a32 4a32

⎤
⎥⎥⎥⎥⎥⎥⎦

.

2.2. Implementation of boundary conditions

To cope with coarse-grain decomposition later, here we allow all kinds of boundary
conditions at y = ±1, but only consider Dirichlet boundary conditions at x = ±1. It
should be noted that at least on one of the coordinate direction the boundary conditions
at both end boundaries are of Dirichlet type. Otherwise, the reflexive property is lost
and the method may fail. Hence, S should be modified to include boundary conditions
mentioned above. Let S̃ and S̄ denote the boundary-operator-included S matrices along
x and y directions respectively. We then have

(2.3) S̃ =

⎡
⎢⎢⎢⎢⎣
1 0 · · · 0 0

(S)ij

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ and S̄ =

⎡
⎢⎢⎢⎢⎣

α3(IN+1)1,j+1 + β3(DN)0,j

(S)ij

α4(IN+1)N+1,j+1 + β4(DN)N,j

⎤
⎥⎥⎥⎥⎦ .

Therefore, the resultant matrix LN for this case is

(2.4) LN = IN+1 ⊗ S̄ + S̃ ⊗ IN+1 = K1 + K2

with explicit expression of K1 and K2 being

K1=

⎡
⎢⎢⎢⎢⎢⎣

0
S̄

. . .
S̄

0

⎤
⎥⎥⎥⎥⎥⎦and K2=

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0
s10I00 s11I00 s1,N I00

. . .
sN−1,0I00 sN−1,1I00 sN−1,NI00

0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦ ,
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where

sij = (S)ij, I = IN+1, and I00 =

⎡
⎣0

IN−1

0

⎤
⎦

(N+1)×(N+1)

.

Actually, we can further express

(2.5) K1 = I00 ⊗ S̄ and K2 = S̃ ⊗ I00 + (I − I00) ⊗ (I − I00) .

Note that LN above is already further modified to include the boundary condition at
y = ±1. To take care of the compatibility of different kinds of boundary conditions
at the corner boundary points, extra modification of the boundary condition there is
further needed.

2.3. Reflexive property of LN

Let R be the reflection matrix with R = JN+1 ⊗ IN+1. Here we want to show
that LN in (2.4) is reflexive with respect to R. It suffices to say so if both K1 and K2

are reflexive with respect to R. In following, we drop the subscripts of I and J for
notational brevity. First, we can easily observe that K1 is reflexive with respect to R
by

RK1R =

⎡
⎢⎢⎢⎢⎣

I
I

· · ·
I

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
S̄

. . .
S̄

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I
I

· · ·
I

I

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
S̄

. . .
S̄

0

⎤
⎥⎥⎥⎥⎥⎦ = K1.

Similarly, K2 also satisfies the reflexive property by

RK2R =

⎡
⎢⎢⎢⎢⎣

I
I

· · ·
I

I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0
s10I00 s11I00 s1,NI00

. . .
sN−1,0I00 sN−1,1I00 sN−1,NI00

0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I
I

· · ·
I

I

⎤
⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0
sN−1,NI00 sN−1,1I00 sN−1,0I00

. . .
s1,NI00 s11I00 s10I00

0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0
s10I00 s11I00 s1,NI00

. . .
sN−1,0I00 sN−1,1I00 sN−1,NI00

0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎦ = K2.

Here we used the centrosymmetric property sij =
(
D2

N

)
ij

=
(
D2

N

)
N−i,N−j

= sN−i,N−j

for the derivation above.

3. REFLEXIVE DECOMPOSITION OF LN

As seen in the previous section, the matrix LN is reflexive with respect to R. This
reflexive property enables us to decompose LN into smaller submatrices using orthog-
onal transformation. The decomposition is referred to as the reflexive decomposition
because of the reflection matrix R.

3.1. General forms of the decomposition

The general forms of the decomposition of LN are categorized to N +1 being even
or odd. For notational brevity, let

(3.1) LN = K.

Decomposition 1: N+1 even. Let N +1 = 2k. We evenly partition R and K into
2× 2 sub-blocks as

(3.2) R =
[

0 R1

R1 0

]
and K =

[
K11 K12

K21 K22

]
,

where R1 = Jk ⊗ IN+1; Kij ∈ �k(N+1)×k(N+1), ∀ i, j = 1, 2. From the reflexive
property K = RKR, we can derive the following relations easily,

(3.3) K11 = R1K22R1, K12 = R1K21R1, K21 = R1K12R1, K22 = R1K11R1.

Let Q be the following orthogonal matrix,

(3.4) Q =
1√
2

[
I −R1

R1 I

]
.
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Using (3.3) and the facts R2
1 = I and RT

1 = R1, it can be easily shown that the trans-
formation QTKQ is block-diagonal and therefore decouples K into two independent
submatrices as follows [5, 8, 10],

(3.5) QT KQ =
1
2

[
I R1

−R1 I

][
K11 K12

K21 K22

][
I −R1

R1 I

]
=

[
D1 0
0 D2

]
,

where
D1 = K11 + K12R1 and D2 = K22 − K21R1.

Decomposition 2: N+1 odd. Let N + 1 = 2k + 1. Let R be partitioned as

(3.6) R =

⎡
⎣ R1

IN+1

R1

⎤
⎦ , R1 = Jk ⊗ IN+1.

The matrix K is then partitioned in accordance with R as

K =

⎡
⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎦ , K11, K13, K31, K33 ∈ �k(N+1)×k(N+1),

K12, K32 ∈ �k(N+1)×(N+1), K21, K23 ∈ �(N+1)×k(N+1), K22 ∈ �(N+1)×(N+1).

From K = RKR, we can derive

(3.7) K11 = R1K33R1, K12 = R1K32, K13 = R1K31R1, K21 = K23R1.

Let Q be the following orthogonal matrix,

(3.8) Q =
1√
2

⎡
⎣ I 0 −R1

0
√

2IN+1 0
R1 0 I

⎤
⎦ .

By (3.7), the orthogonal transformation QTKQ yields [10]

(3.9) QTKQ =
[
D1 0
0 D2

]

with
D1 =

[
K11 + K13R1

√
2K12√

2K21 K22

]
, D2 = K33 − K31R1.

Then, the process of solving linear system (2.1) by reflexive decomposition starts
with

Ku = f,
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and then
QTKQQT u = QT f,

or expressed as

(3.10) K̂û = f̂ ,

with K̂ = QTKQ, û = QT u, and f̂ = QT f. By D1 and D2 obtained above, (3.10)
can be further expressed as

(3.11)
[
D1 0
0 D2

] [
û1

û2

]
=

[
f̂1

f̂2

]
,

or {
D1û1 = f̂1,

D2û2 = f̂2.

After solving û1 and û2, we can recover û, and finally obtain u by u = Qû.

3.2. Explicit forms of the decomposition

In this section, we want to derive the explicit forms of D1 and D2 mentioned above
for the convenience of coding. Again, we categorize cases according to N + 1 being
even or odd.

Explicit form 1: N + 1 = 2k. Let Ik and Ok denote the identity matrix and null
matrix of dimension k. Let also

(3.12) I01 =
[
0

Ik−1

]
, I10 =

[
Ik−1

0

]
, O10 =

[
1

Ok−1

]
, O01 =

[
Ok−1

1

]
,

and we can easily see

(3.13) I00 =
[
I01 0
0 I10

]
.

Following the strategy in previous section, we can evenly partition S̃ into 2 × 2 sub-
blocks as

(3.14) S̃ =
[
S̃11 S̃12

S̃21 S̃22

]
, S̃ij ∈ �k×k.

By (2.5), (3.13), and (3.14), K1 and K2 can then be expressed in their partitioned
forms as

(3.15) K1 = I00 ⊗ S̄ =
[
I01 ⊗ S̄ 0

0 I10 ⊗ S̄

]
,
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and

(3.16)

K2 = S̃ ⊗ I00 + (I − I00) ⊗ (I − I00)

=
[
S̃11 ⊗ I00 S̃12 ⊗ I00

S̃21 ⊗ I00 S̃22 ⊗ I00

]
+

[
O10 ⊗ (I − I00) Ok

Ok O01 ⊗ (I − I00)

]

=
[
S̃11 ⊗ I00 + O10 ⊗ (I − I00) S̃12 ⊗ I00

S̃21 ⊗ I00 S̃22 ⊗ I00 + O01 ⊗ (I − I00)

]
.

Now, from (3.15), (3.16), and (3.2), we have

K11 = I01 ⊗ S̄ + S̃11 ⊗ I00 + O10 ⊗ (I − I00) ,

K12 = S̃12 ⊗ I00,

K21 = S̃21 ⊗ I00,

K22 = I10 ⊗ S̄ + S̃22 ⊗ I00 + O01 ⊗ (I − I00) .

Accordingly, we then obtain the explicit forms of D1 and D2,

(3.17)
D1 =

(
I01 ⊗ S̄ + S̃11 ⊗ I00 + O10 ⊗ (I − I00)

)
+

(
S̃12 ⊗ I00

)
R1,

D2 =
(
I10 ⊗ S̄ + S̃22 ⊗ I00 + O01 ⊗ (I − I00)

)
−

(
S̃21 ⊗ I00

)
R1.

Explicit form 2: N + 1 = 2k + 1. In this case, we partition K1 and K2 by their
tensor-product forms as

K1 = I00 ⊗ S̄ =

⎡
⎣I01 0 0

0 1 0
0 0 I10

⎤
⎦ ⊗ S̄,

and

K2 = S̃ ⊗ I00 + (I − I00)⊗ (I − I00)

=

⎡
⎣S̃11 S̃12 S̃13

S̃21 S̃22 S̃23

S̃31 S̃32 S̃33

⎤
⎦ ⊗ I00 +

⎡
⎣O10

0
O01

⎤
⎦ ⊗ (I − I00) ,

where S̃11, S̃13, S̃31, S̃33 ∈ �k×k, S̃12, S̃32 ∈ �k×1, S̃21, S̃23 ∈ �1×k and S̃22 ∈ �.
Accordingly, we have
K = K1 + K2

=

⎡
⎢⎢⎣

I01 ⊗ S̄ + S̃11 ⊗ I00 + O10 ⊗ (I−I00) S̃12 ⊗ I00 S̃13 ⊗ I00

S̃21 ⊗ I00 S̄+S̃22 ⊗ I00 S̃23 ⊗ I00

S̃31 ⊗ I00 S̃32 ⊗ I00 I10 ⊗ S̄+S̃33 ⊗ I00+O01 ⊗ (I − I00)

⎤
⎥⎥⎦.
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Therefore, the decomposed submatrices D1 and D2 are obtained explicitly as follows,

(3.18)
D1 =

[
I01 ⊗ S̄+S̃11 ⊗ I00+O10 ⊗ (I − I00)+(S̃13 ⊗ I00)R1

√
2(S̃12 ⊗ I00)

√
2(S̃21 ⊗ I00) S̄ + S̃22 ⊗ I00

]
,

D2 = I10 ⊗ S̄ + S̃33 ⊗ I00 + O01 ⊗ (I − I00) − (S̃31 ⊗ I00)R1.

4. ERROR ANALYSIS AND OPERATIONS COUNT

The spectral convergence is still preserved during decomposition, and this is demon-
strated by the following numerical experiments.

Experiment 1. Considering the following 2D Poisson equation

∇2u = f(x, y), (x, y) ∈ [−1, 1]× [−1, 1],

f(x, y) =
[
2 − π2

(
y2 + 2y + 1

)]
sinπx,

subject to the following boundary conditions

u (±1, y) = 0, uy (x,−1) = 0, and u (x, 1) + uy (x, 1) = 8 sinπx,

with the exact solution being u (x, y) =
(
y2 + 2y + 1

)
sinπx.

Though the aforementioned decomposition is illustrated by 2D cases, it actually
can be extended to 3D as well. A 3D Poisson problem below is also computed here
for demonstration.

Experiment 2. Considering the following 3D Poisson equation

∇2u = f(x, y, z), (x, y, z) ∈ [−1, 1]× [−1, 1]× [−1, 1],

f(x, y, z)=2
[(

y2−1
)
(z−1)+

(
x2−1

)
(z−1)+

(
x2−1

) (
y2−1

)
(z+3)/8

]
ez/2,

subject to the following boundary conditions

u (±1, y, z) = u (x,±1, z) = 0, uz (x, y,−1) = 0,

2u (x, y, 1) + 10uz (x, y, 1) = 10
√

e
(
x2 − 1

) (
y2 − 1

)
,

with the exact solution being

u (x, y, z) =
(
x2 − 1

) (
y2 − 1

)
(z − 1) ez/2.

The errors of both experiments above are shown in Table 1. Basically, we can
observe the exponential convergence, the feature of pseudospectral methods, in Table
1 as N increasing until contaminated by round-off errors (in 3D case).
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Table 1. L∞ error vs. N for experiment 1 and 2
N L∞ error

2D 3D
3 4.31× 10−1 8.4 × 10−3

5 5.8× 10−2 4.06× 10−5

7 1.3× 10−3 8.17× 10−8

9 2.49× 10−5 8.98× 10−11

11 2.98× 10−7 2.2× 10−13

13 3.19× 10−9 1.99× 10−13

17 5.27× 10−13 1.24× 10−12

Taking 2D Poisson problem as example, the structure of LN = K will look like
Figure 1(a). The operations count of solving (2.1) without reflexive decomposition by
Gaussian elimination would be

(4.1) CM =
1
3
M3 + M2 − 1

3
M,

with M = (N + 1)2 . With reflexive decomposition, K is transformed to K̂, and the
structure of K̂ is shown in Figure 1(b).

Fig. 1. The structure of K and K̂ shown in (a) and (b) respectively.

The operations count of solving (2.1) with reflexive decomposition by Gaussian
elimination, including overheads, would then be

(4.2) CM =
{ 1

12
M3 +

1
2
M2 +

5
3
M, M is even,

1
12

M3 +
3
4
M2 +

13
6

M, M is odd.
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In addition to the advantage of computing time reduction by the obvious comparison
between (4.1) and (4.2), the decomposition also yields coarse-grain parallelism, which
can be conducted by parallel computing. If higher computing efficiency is requested,
especially when N is large, it should be noted that D1 and D2 turn out to be reflexive
too, and can be decomposed by the same procedure stated above.

5. CONCLUSION

In this paper, we first explore the inherent reflexive property of second-order Cheby-
shev collocation derivative matrix subject to all kinds of boundary conditions. We then
apply reflexive decomposition to decompose the matrix resultant from the discretization
of Poisson equation by Chebyshev pseudospectral method into two smaller submatrices.
Computing these two smaller linear systems definitely saves time from computing the
original large system, not to mention its availability for coarse-grain parallel computing.
This time saving effect is particularly notable for 3D cases. These two decomposed
submatrices can be further decomposed to four even-smaller submatrices by repeating
reflexive decomposition. Numerical examples are also presented to demonstrate the
spectral accuracy. In addition, the current decomposition can be extended to solve
auxx + buyy + cuy + du = f (x, y) with a, b, c and d being the functions of x and y
and symmetric about y axis subject to the constraint of reflexive property. Certainly,
this includes the famous Helmholtz equation.
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