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ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE EQUATION
WITH A DELAY TERM

Shun-Tang Wu

Abstract. The following viscoelastic wave equation with a delay term in internal
feedback:

|ut|ρ utt −Δu−Δutt +
∫ t

0

g(t− s)Δu(s)ds + μ1ut(x, t)+ μ2ut(x, t− τ ) = 0,

is considered in a bounded domain. Under appropriate conditions on μ1, μ2 and
on the kernel g, we prove the local existence result by Faedo-Galerkin method
and establish the decay result by suitable Lyapunov functionals.

1. INTRODUCTION

In this paper, we consider the initial boundary value problem for a nonlinear vis-
coelastic equation with a linear damping and a delay term of the form:

|ut|ρ utt − Δu − Δutt +
∫ t

0
g(t − s)Δu(s)ds + μ1ut(x, t)

(1.1) +μ2ut(x, t− τ) = 0, in Ω × (0, ∞),

(1.2) ut(x, t − τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ),

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.4) u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where ρ > 0, Ω ⊂ RN (N ≥ 1) is a bounded domain with a smooth boundary ∂Ω and
Δ denotes the Laplacian operator with respect to the variable x. Moreover, μ1 and μ2

are positive constants, τ > 0 represents the time delay, g is the kernel of the memory
term and the initial data (u0,u1, f0) are given functions belonging to suitable spaces.

Received October 10, 2012, accepted October 31, 2012.
Communicated by Yosikazu Giga.
2010 Mathematics Subject Classification: 35L05, 35L15, 35L70, 93D15.
Key words and phrases: Global existence, Asymptotic behavior, General decay, Delay.

765



766 Shun-Tang Wu

It is well known that delay effects, which arise in many practical problems, might
induce some instabilities, see [1, 5−7, 19, 26]. Hence, questions related to the behavior
of solutions for the PDEs with time delay effects have become active area of research in
recent years. Many authors have focused on this problem and several results concerning
existence, decay and instability have been obtained, see [5-7,10,19-24,26] and reference
therein. In this regard, Datko et al. [7] showed that a small delay in a boundary control
is a source of instability. Nicaise et al. [19] studied a system of wave equation with a
linear boundary damping term with a delay as follows

(1.5)

utt − Δu = 0, in Ω × (0, ∞),

u(x, t) = 0, x ∈ Γ0, t ≥ 0

∂

∂ν
(x, t) = μ1ut(x, t) + μ2ut(x, t − τ) = 0, in Γ1 × (0, ∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ (0, τ).

where ν is the unit outward normal to ∂Ω. Under the condition

(1.6) μ2 < μ1,

they established a stabilization result by applying inequalities obtained from Carleman
estimates for the wave equation by Lasiecka et al. [11] and by using compactness-
uniqueness arguments. Conversely, if (1.6) does not hold, they showed that there exists
a sequence of delays for which the corresponding solution of (1.5) is unstable. And,
they also obtained the same results if both the damping and the delay act in the domain.
The case of time-varying delay in the wave equation has been studied by Nicaise

et al. [22] in one space dimension, in which they obtained an exponential decay result
subject to the condition
(1.7) μ2 ≤ √

1 − dμ1,

where d is a constant such that

(1.8) τ ′(t) ≤ d < 1, ∀t > 0.

Later, under the same conditions (1.7)-(1.8), Nicaise et al. [23] extended this result to
general space dimension. In fact, they proved exponential stability of the solution for
the wave equation with a time-varying delay in the boundary condition in a bounded
and smooth domain in RN . Recently, inspired the works of Nicaise et al., M. Kirane
and B. Said-Houari [10] considered the following problem

(1.9) utt − Δu − Δutt +
∫ t

0

g(t − s)Δu(s)ds + μ1ut(x, t) + μ2ut(x, t− τ) = 0,

in a bounded domain with the conditions (1.2)-(1.4). In that work, they established
general decay results of the energy via suitable Lyapunov functionals under the condition
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μ2 ≤ μ1. It is worth pointing out that, without imposing the viscoelastic term (i.e.g = 0)
in (1.9), Nicasise and Pignotti [19] had proved some instabilitiesmay occur for μ2 = μ1.
However, due to the presence of the viscoelastic term, M. Kirane and B. Said-Houari
[10] showed that the solution is still exponentially stable even for μ2 = μ1.
In the absence of the delay term (i.e. μ2 = 0), problems similar to (1.1) have been

extensively studied and there are numerous results related to existence, asymptotic
behavior and blow-up of solutions. For example, Cavalcanti et al.[3] considered the
following problem:

(1.10) |ut|ρ utt − Δu − Δutt +
∫ t

0
g(t− s)Δu(s)ds− γΔut = 0,

with the same initial and boundary conditions (1.3)-(1.4), where a global existence
result for γ ≥ 0 and an exponential decay result for γ > 0 were established under
the assumptions 0 < ρ ≤ 2

N−2 if N ≥ 3 or ρ > 0 if N = 1, 2 and g(t) decays
exponentially. Lately, these decay results were extended by Messaoudi and Tatar [14]
to a situation where a source term is present. Recently, Messaoudi and Tatar [15] studied
problem (1.10) for case of γ = 0, they showed that the solution goes to zero with an
exponential or polynomial rate under some restrictions on the relaxation function. For
other related works, we refer the readers to [8-9, 13, 17-18, 25] and references therein.
As ρ = 0 and there is no dispersion term, Cavalcanti et al. [4] considered the

single viscoelastic equation as the form:

utt − Δu +
∫ t

0
g(t− s)Δu(s)ds + a(x)ut + |u|γ u = 0, in Ω × (0, ∞),

with the same initial and boundary conditions (1.3)-(1.4), where a : Ω → R+ is a
function whish may vanish outside a subset ω ⊂ Ω of positive measure and g(t)
decays exponentially, they proved an exponential decay result for the energy function.
This result was later extended by Berrimi and Messaoudi [2] to the nonlinear damping
case by introducing a new a functional, they weakened the conditions in a(x) and g(t)
and obtained the decay result.
Motivated by previous works, in this paper, it is interesting to investigate whether

there are similar decay results as in [10] for problem (1.1)-(1.4), in which more general
form than that of problem (1.9) is considered. Our proof technique closely follows
the arguments of [10], with the modifications being needed for our problem. Indeed,
under the hypothesis on μ1 and μ2, our first intention is to study the well-posedness
of problem (1.1)-(1.4) by making use of Faedo-Galerkin procedure. Then, based on
some estimates of the viscoelastic wave equation and some ideas developed in [10,19],
our next intention is to establish the decay result for μ2 ≤ μ1. In this way, we can
extend the results of [10] where the authors considered (1.1) with ρ = 0. The content
of this paper is organized as follows. In Section 2, we provide assumptions that will
be used later, state and prove the existence result Theorem 2.3. In Section 3, we prove
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our stability result that is given in Theorem 3.5. Finally, we give some examples to
illustrate our result.

2. PRELIMINARIES RESULTS

In this section, we shall give some lemmas and assumptions which will be used
throughout this work. We use the standard Lebesgue space Lp(Ω) and Sobolev space
H1

0 (Ω) with their usual products and norms.

Lemma 2.1. (Sobolev-Poincaré inequality). Let 2 ≤ p ≤ 2N
N−2 , the inequality

‖u‖p ≤ cs ‖∇u‖2 for u ∈ H1
0 (Ω),

holds with some positive constant cs.

Assume that ρ satisfies

(2.1) 0 < ρ ≤ 2
N − 2

if N ≥ 3 or ρ > 0 if N = 1, 2.

Regarding the relaxation function g(t), we assume that it verifies:
(A1) g : R+ → R+ is a bounded C1 function satisfying

(2.2) 1−
∫ ∞

0
g(s)ds = l > 0,

and there exists a positive nonincreasing function ξ such that, for t ≥ 0,

(2.3) g′(t) ≤ −ξ(t)g(t) and
∫ ∞

0
ξ(s)ds = ∞.

We also need the following technical Lemma in the course of the investigation.

Lemma 2.2. [10]. For any g ∈ C1(R) and φ ∈ H1 (0, T ) , we have

−2
∫ t

0

∫
Ω

g(t − s)φφtdxds =
d

dt

(
(g ◦ φ) (t) −

∫ t

0
g(s)ds ‖φ‖2

2

)
+g(t) ‖φ‖2

2 −
(
g′ ◦ φ

)
(t),

where
(g ◦ φ)(t) =

∫ t

0
g(t − s)

∫
Ω
|φ(s) − φ(t)|2 dxds.

In order to prove the existence of solutions of problem (1.1)-(1.4), we introduced
the new variable z as in [19],

z(x, κ, t) = ut(x, t− τκ), x ∈ Ω, κ ∈ (0, 1),

which implies that
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τzt(x, κ, t) + zκ(x, κ, t) = 0 in Ω × (0, 1)× (0,∞).

Therefore, problem (1.1)-(1.4) can be transformed as follows

(2.4)

|ut|ρ utt − Δu − Δutt +
∫ t

0

g(t − s)Δu(s)ds + μ1ut(x, t)

+μ2z(x, 1, t) = 0, in Ω × (0, ∞),
τzt(x, κ, t) + zκ(x, κ, t) = 0, x ∈ Ω, κ ∈ (0, 1), t > 0,

z(x, 0, t) = ut(x, t), x ∈ Ω, t > 0,

z(x, κ, 0) = f0(x,−τκ), x ∈ Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

In the following, we will give sufficient conditions that guarantee the well-posedness
of problem (2.4) by using the Fadeo-Galerkin procedure.

Theorem 2.3. Suppose that μ2 < μ1, (A1) and (2.1) hold. Assume that u0, u1 ∈
H1

0 (Ω) and f0 ∈ L2 (Ω × (0, 1)) . Then there exists a unique solution (u, z) of (2.4)
satisfying

u, ut ∈ C
(
[0, T ); H1

0 (Ω)
)
,

z ∈ C
(
[0, T ); L2 (Ω × (0, 1))

)
,

for T > 0.

Proof. Let (wn)n∈N be a basis in H1
0 (Ω) and Wn be the space generated by

w1,· · · , wn, n = 1, 2, 3, · · · . Now, we define for 1 ≤ i ≤ n, the sequence ϕi(x, κ) as
follows ϕi(x, 0) = wi(x). Then, we may extend ϕi(x, 0) byϕi(x, κ) over L2 (Ω× [0, 1])
and denote Vn to be the space generated by ϕ1,· · · , ϕn, n = 1, 2, 3, · · · . Let us consider

un(t) =
n∑

i=1

cin(t)wi(x)

and
zn(t) =

n∑
i=1

rin(t)ϕi(x, κ),

where (un(t), zn(t)) are the solutions of the following approximate problem corre-
sponding to (2.4)∫

Ω

∣∣u′
n

∣∣ρ u′′
n(t)widx +

∫
Ω
∇un(t) · ∇widx

−
∫ t

0
g(t − τ)

∫
Ω
∇un(τ) · ∇widxdτ +

∫
Ω
∇u′′

n(t) · ∇widx
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(2.5) +
∫

Ω

(
μ1u

′
n(t, x) + μ2zn(x, 1, t)

)
widx = 0,

(2.6) un(0) = u0n → u0 in H1
0 (Ω), u′

n(0) = u1n → u1 in H1
0 (Ω),

and

(2.7)
∫

Ω

(
τz′n(x, κ, t) + znκ(x, κ, t)

)
ϕidx = 0,

(2.8) zn(0) = z0n → f0 in L2(Ω × (0, 1)),

where i = 1, 2, · · · , n. In view of the assumption (2.1), from Hölder inequality, the
nonlinear term

∫
Ω |u′

n|ρ u′′
n(t)widx makes sense in (2.5). Then, by standard methods

in ordinary differential equations, we infer the existence of solutions to (2.5)− (2.8)
on some interval [0, tn), 0 < tn < T for some arbitrary T > 0. And the solution can
be extended to the whole interval [0, T ) by the the first estimate below.
The first estimate: Multiplying (2.5) by c′in(t) and summing with respect to i, we
obtain

(2.9)

d

dt

(
1

ρ + 2

∥∥u′
n(t)

∥∥ρ+2

ρ+2
+

1
2
‖∇un(t)‖2

2 +
1
2

∥∥∇u′
n(t)

∥∥2

2

)

+μ1

∥∥u′
n(t)

∥∥2

2
+
∫

Ω
μ2zn(x, 1, t)u′

n(t)dx

− ∫ t
0 g(t− s)

∫
Ω ∇un(s) · ∇u′

n(t)dxds = 0.

Using Lemma 2.2 on the last term of the left hand side of (2.9), we find

(2.10)

d

dt

(
1

ρ + 2

∥∥u′
n(t)

∥∥ρ+2

ρ+2
+

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇un(t)‖2

2

+
1
2
∥∥∇u′

n(t)
∥∥2

2
+

1
2
(g◦∇un)(t)

)
+μ1

∥∥u′
n(t)

∥∥2

2
+
∫

Ω

μ2zn(x, 1, t)u′
n(t)dx

+
1
2
g(t) ‖∇un(t)‖2

2 −
1
2
(g′ ◦ ∇un)(t) = 0.

Integrating (2.10) over (0, t), we arrive at

(2.11)

1
ρ + 2

∥∥u′
n(t)

∥∥ρ+2

ρ+2
+

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇un(t)‖2

2 +
1
2

∥∥∇u′
n(t)

∥∥2

2

+
1
2
(g ◦ ∇un)(t)+μ1

∫ t

0

∥∥u′
n(s)

∥∥2

2
ds+μ2

∫ t

0

∫
Ω

zn(x, 1, s)u′
n(s)dxds

+
1
2

∫ t

0

g(s) ‖∇un(s)‖2
2 ds −

∫ t

0

1
2
(g′ ◦ ∇un)(s)ds

=
1

ρ + 2
‖u1n‖ρ+2

ρ+2 +
1
2
‖∇u0n‖2

2 +
1
2
‖∇u1n‖2

2 .
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Letting ζ > 0 be chosen later and multiplying (2.7) by ζ
τ rin(t), summing with respect

to i and integrating over (0, t)× (0, 1), we obtain

(2.12)

ζ

2

∫
Ω

∫ 1

0
z2
n(x, κ, t)dκdx +

ζ

τ

∫ t

0

∫
Ω

∫ 1

0
znκ(x, κ, s)zn(x, κ, s)dκdxds

=
ζ

2
‖z0n‖2

L2(Ω×(0,1)) .

Additionally, we note that

(2.13)

∫ t

0

∫
Ω

∫ 1

0
znκ(x, κ, s)zn(x, κ, s)dκdxds

=
1
2

∫ t

0

∫
Ω

(
z2
n(x, 1, s)− z2

n(x, 0, s)
)
dxds.

Then, combining (2.12) and (2.11) together and taking (2.13) into account, we obtain

(2.14)

En(t) +
(

μ1 − ζ

2τ

)∫ t

0

∥∥u′
n(s)

∥∥2

2
ds +

ζ

2τ

∫ t

0

∫
Ω

z2
n(x, 1, s)dxds

+μ2

∫ t

0

∫
Ω

zn(x, 1, s)u′
n(s)dxds

+
1
2

∫ t

0
g(s) ‖∇un(s)‖2

2 ds −
∫ t

0

1
2
(g′ ◦ ∇un)(s)ds

= En(0),

where

En(t) =
1

ρ + 2
∥∥u′

n(t)
∥∥ρ+2

ρ+2
+

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇un(t)‖2

2

+
1
2

∥∥∇u′
n(t)

∥∥2

2
+

1
2
(g ◦ ∇un)(t) +

ζ

2

∫
Ω

∫ 1

0
z2
n(x, κ, t)dκdx.

Making use of the inequality ab ≤ 1
2a2 + 1

2b2 on the fourth term of the left hand side
of (2.14), we deduce that

(2.15)

En(t) +
(

μ1 − ζ

2τ
− μ2

2

)∫ t

0

∥∥u′
n(s)

∥∥2

2
ds

+
(

ζ

2τ
− μ2

2

)∫ t

0

∫
Ω

z2
n(x, 1, s)dxds

+
1
2

∫ t

0
g(s) ‖∇un(s)‖2

2 ds −
∫ t

0

1
2
(g′ ◦ ∇un)(s)ds

= En(0).
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Now, we choose ζ such that

(2.16) τμ2 < ζ < τ (2μ1 − μ2) ,

which implies that

c1 = μ1 − ζ

2τ
− μ2

2
> 0 and c2 =

ζ

2τ
− μ2

2
> 0,

due to μ1 > μ2. Hence, from (A1) and (2.15), we obtain

(2.17)

∥∥u′
n

∥∥ρ+2

ρ+2
+ ‖∇un‖2

2 +
∥∥∇u′

n

∥∥2

2
+
∫ t

0

∫
Ω

z2
n(x, 1, s)dxds

+(g ◦ ∇un)(t) +
∫

Ω

∫ 1

0
z2
n(x, κ, t)dκdx ≤ L1,

where L1 is a positive constant independent of n ∈ N and t ∈ [0, T ).
The second estimate: Multiplying (2.5) by c′′in(t) and summing with respect to i, it
holds that

(2.18)

∫
Ω

∣∣u′
n

∣∣ρ ∣∣u′′
n(t)

∣∣2 dx +
∥∥∇u′′

n

∥∥2

2
+

μ1

2
d

dt

∥∥u′
n(t)

∥∥2

2

= −
∫

Ω
∇un(t) · ∇u′′

n(t)dx +
∫ t

0
g(t − τ)

∫
Ω
∇un(τ) · ∇u′′

n(t)dxdτ

−μ2

∫
Ω

zn(x, 1, t)u′′
n(t)dx.

Exploiting Hölder inequality, Young’s inequality, (A1) and Lemma 2.1, for η > 0, we
have

(2.19)
∣∣∣∣−
∫

Ω
∇un(t) · ∇u′′

n(t)dx

∣∣∣∣ ≤ η
∥∥∇u′′

n(t)
∥∥2

2
+

1
4η

‖∇un(t)‖2
2 ,

(2.20)

∣∣∣∣
∫ t

0
g(t − s)

∫
Ω
∇un(s) · ∇u′′

n(t)dxdτ

∣∣∣∣
≤ η

∥∥∇u′′
n(t)

∥∥2

2
+

(1 − l)g(0)
4η

∫ t

0
‖∇un(s)‖2

2 ds,

and

(2.21)
∣∣∣∣−
∫

Ω
zn(x, 1, t)u′′

n(t)dx

∣∣∣∣ ≤ η

μ2

∥∥∇u′′
n(t)

∥∥2

2
+

μ2c
2
s

4η

∫
Ω

z2
n(x, 1, t)dx.

Substituting these estimates (2.19)-(2.21) into (2.18), then integrating the obtained in-
equality over (0, t) and using (2.17), we deduce that

(2.22)

∫ t

0

∫
Ω

∣∣u′
n

∣∣ρ ∣∣u′′
n(t)

∣∣2 dxds + (1− 3η)
∫ t

0

∥∥∇u′′
n

∥∥2

2
ds +

μ1

2

∥∥u′
n(t)

∥∥2

2

≤ L1

4η

(
μ2

2c
2
s + (1 + (1 − l)g(0)T )T

)
+ c3,
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where c3 is a positive constant depending only on ‖u1‖2
2 . Choosing η > 0 small enough

in (2.22), we obtain the second estimate

(2.23)
∥∥u′

n(t)
∥∥2

2
+
∫ t

0

∥∥∇u′′
n(t)

∥∥2

2
dt ≤ L2,

where L2 is a positive constant independent of n ∈ N and t ∈ [0, T ).
We observe that estimates (2.17) and (2.23) imply that there exists a subsequence

(ui, zi) of (un, zn) and a function (u, z) such that

ui ⇀ u weak star in L∞(0, T ; H1
0(Ω)),(2.24)

u′
i ⇀ u′ weak star in L∞(0, T ; H1

0(Ω)),(2.25)

u′′
i ⇀ u′′ weakly in L2(0, T ; H1

0(Ω))(2.26)

zi ⇀ z weak star in L∞(0, T ; L2(Ω× (0, 1))).(2.27)

Further, by Aubin’s Lemma [12], it follows from (2.25) and (2.26) that there exists a
subsequence (ui) , still represented by the same notation, such that

u′
i → u′ strongly in L2(0, T ; L2(Ω)),

which implies u′
i → u′ a.e. on Ω × (0, T ). Hence

(2.28)
∣∣u′

i

∣∣ρ u′
i ⇀

∣∣u′∣∣ρ u′ a.e. on Ω × (0, T ).

On the other hand, from the first estimate and Lemma 2.1, we deduce that

(2.29)

‖|u′
i|ρ u′

i‖L2(0,T ;L2(Ω)) =
∫ T

0

∫
Ω

∣∣u′
i

∣∣2(ρ+1)
dxdt

≤ c2(ρ+1)
s

∫ T

0

∥∥∇u′
i

∥∥2(ρ+1)

2
dt

≤ c2(ρ+1)
s TLρ+1

1 .

Combining (2.28) and (2.29) and owing to Lion’s Lemma [12], we derive that∣∣u′
i

∣∣ρ u′
i ⇀

∣∣u′∣∣ρ u′ weakly in L2(0, T ; L2(Ω)).

The proof now can be completed arguing as in [12, Theorem 3.1].

3. ASYMPTOTIC BEHAVIOR

In this section, we shall investigate the asymptotic behavior of problem (1.1)-(1.4)
for μ2 ≤ μ1. To achieve this, we will use the energy method combined with the choice
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of a suitable functional as in the work of M. Kirane and B. Said-Houari [10]. First,
we define the energy function of problem (1.1)-(1.4) as

(3.1)
E(t) =

1
ρ + 2

‖ut‖ρ+2
ρ+2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g ◦ ∇u)(t)

+
1
2
‖∇ut(t)‖2

2 +
ζ

2

∫
Ω

∫ 1

0
u2

t (x, t − τκ)dκdx,

where ζ is a positive constant such that

(3.2) τμ2 ≤ ζ ≤ τ (2μ1 − μ2) .

Remark 3.1. (i) It is clear that this energy function E(t) by (3.1) is larger than
the usual one

1
ρ + 2

‖ut‖ρ+2
ρ+2 +

1
2

(
1 −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g ◦ ∇u)(t) +

1
2
‖∇ut(t)‖2

2

and contains an additional term that comes from the delay term.
(ii) The local existence theorem 2.3 does not include the case μ1 = μ2, however, we
find our decay result also hold for μ1 = μ2. For this reason, the existence of local
solution for μ1 = μ2 is hypothesized in this work.

Lemma 3.2. E(t) is a nonincreasing function on [0, T ] and

E ′(t) = −c1 ‖ut‖2
2 − c2

∫
Ω

u2
t (x, t − τ)dx +

1
2
(g′ ◦ ∇u)(t) − 1

2
g(t) ‖∇u(t)‖2

2

≤ 1
2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖∇u(t)‖2

2 ≤ 0, ∀t ≥ 0.

Proof. As in deriving (2.15), we see that

d

dt
E(t) ≤ −c1 ‖ut‖2

2 − c2

∫
Ω

u2
t (x, t − τ)dx +

1
2
(g′ ◦ ∇u)(t) − 1

2
g(t) ‖∇u(t)‖2

2

≤ 1
2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖∇u(t)‖2

2 ≤ 0, ∀t ≥ 0,

where

c1 =

⎧⎨
⎩ μ1 − ζ

2τ
− μ2

2
> 0, if μ2 < μ1

0, if μ2 = μ1,
,

and

c2 =

⎧⎨
⎩

ζ

2τ
− μ2

2
> 0, if μ2 < μ1

0, if μ2 = μ1,
,
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since ζ is chosen satisfying assumption (3.2).

Remark 3.3. It follows from the definition of E(t) by (3.1) and Lemma 3.2 that
the energy function is uniformly bounded and decreasing in t, which implies that

(3.3) l ‖∇u‖2
2 + ‖∇ut‖2

2 ≤ 2E(t) ≤ 2E(0), ∀t ≥ 0.

This infers that the solution of problem (1.1) is bounded and global in time.
Now, we define

(3.4) G(t) = ME(t) + ε1Φ(t) + ε2I(t) + Ψ(t),

where M , ε1 and ε2 are positive constants which will be specified later and

(3.5) Φ(t) =
1

ρ + 1

∫
Ω
|ut|ρ utudx +

∫
Ω
∇ut(t) · ∇u(t)dx,

(3.6) I(t) =
∫

Ω

∫ 1

0
e−2τκu2

t (x, t− τκ)dκdx,

(3.7) Ψ(t) =
∫

Ω

(
Δut − 1

ρ + 1
|ut|ρ ut

)∫ t

0
g(t− s) (u(t) − u(s)) dsdx.

The following lemma tells us that G(t) and E(t) are equivalent.

Lemma 3.4. Let u be a solution of problem (1.1)-(1.4), then there exists two
positive constants β1 and β2 such that

(3.8) β1E(t) ≤ G(t) ≤ β2E(t), ∀ t ≥ 0,

for M sufficiently large.

Proof. By Young’s inequality, Lemma 2.1 and (3.3), we have

(3.9)

∣∣∣∣ 1
ρ + 1

∫
Ω
|ut|ρ utudx

∣∣∣∣
≤ 1

ρ + 2
‖ut‖ρ+2

ρ+2 +
c
ρ+2
s

(ρ + 2) (ρ + 1)

(
2E(0)

l

)ρ
2 ‖∇u‖2

2

and

(3.10)
∣∣∣∣
∫

Ω
∇ut(t) · ∇u(t)dx

∣∣∣∣ ≤ 1
2
‖∇ut‖2

2 +
1
2
‖∇u‖2

2 .

It follows from (3.6) that

(3.11) |I(t)| ≤ c3

∫
Ω

∫ 1

0
u2

t (x, t− τκ)dκdx,
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where c3 is a positive constant. Further, from (3.7), we have

(3.12)
Ψ(t) = −

∫
Ω
∇ut ·

∫ t

0
g(t − s) (∇u(t) −∇u(s)) dsdx

− 1
ρ + 1

∫
Ω
|ut|ρ ut

∫ t

0
g(t− s) (u(t) − u(s)) dsdx.

By Young’s inequality, Hölder inequality and (3.8), we see that

(3.13)

∣∣∣∣−
∫

Ω
∇ut ·

∫ t

0
g(t− s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤ 1

2
‖∇ut‖2

2 +
1
2

∫
Ω

(∫ t

0
g(t − s) (∇u(t)−∇u(s)) ds

)2

dx

≤ 1
2
‖∇ut‖2

2 +
1 − l

2
(g ◦ ∇u) (t),

and

(3.14)

∣∣∣∣− 1
ρ + 1

∫
Ω

|ut|ρ ut

∫ t

0

g(t− s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ 1

ρ + 2

(
‖ut‖ρ+2

ρ+2 +
1

ρ + 1

∫
Ω

(∫ t

0
g(t − s) (u(t) − u(s))ds

)ρ+2

dx

)

≤ 1
ρ + 2

(
‖ut‖ρ+2

ρ+2+
(1−l)ρ+1 cρ+2

s

ρ + 1

∫ t

0
g(t−s) ‖∇u(t)−∇u(s)‖ρ+2

2 ds

)

≤ 1
ρ + 2

(
‖ut‖ρ+2

ρ+2 +
(1− l)ρ+1 c

ρ+2
s

ρ + 1

(
8E(0)

l

)ρ
2

(g ◦ ∇u) (t)

)
.

Hence, combining (3.9)− (3.14) with (3.4) yields

|G(t) − ME(t)| = ε1Φ(t) + ε2I(t) + Ψ(t)

≤ c4 ‖ut‖ρ+2
ρ+2 + c5 ‖∇u‖2

2 + c6 ‖∇ut‖2
2

+c7 (g ◦ ∇u) (t) + c3ε2

∫
Ω

∫ 1

0

u2
t (x, t− τκ)dκdx

≤ c8E(t),

where c4 = 1+ε1
ρ+2 , c5 = ε1

(
cρ+2
s

(ρ+2)(ρ+1)

(
2E(0)

l

) ρ
2 + 1

2

)
, c6 = ε1+1

2 , c7 = 1−l
2 +

(1−l)ρ+1cρ+2
s

(ρ+2)(ρ+1)

(
8E(0)

l

) ρ
2
, and c8 = max(c3ε2, c4, c5, c6, c7). Thus, from the definition
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of E(t) by (3.1) and selecting M sufficiently large, there exist two positive constants
β1 and β2 such that

β1E(t) ≤ G(t) ≤ β2E(t).

Theorem 3.5. Let u0, u1 ∈ H1
0 (Ω) be given. Suppose that (A1), (2.1), (3.2) and

μ2 ≤ μ1 hold. Then for each t0 > 0 the solution energy of problem (1.1) − (1.4)
satisfies

(3.15) E(t) ≤ Ke
−α

∫ t
t0

ξ(s)ds
, t ≥ t0,

where α and K are some positive constants given in the proof.

Proof. In order to obtain the decay result of E(t), it is sufficient to prove that of
G(t). To this end, we need to estimate the derivative of G(t). It follows from (3.5)
that

(3.16)

Φ′(t)

= −‖∇u‖2
2 +

∫
Ω
∇u(t) ·

∫ t

0
g(t− s)∇u(s)dsdx − μ1

∫
Ω

ut(x, t)u(t)dx

−μ2

∫
Ω

ut(x, t− τ)u(t)dx +
1

ρ + 1
‖ut‖ρ+2

ρ+2 + ‖∇ut‖2
2 .

We estimate the second term in the right hand side of (3.16) as follows, for η > 0,

(3.17)

∣∣∣∣
∫

Ω
∇u(t) ·

∫ t

0
g(t− s)∇u(s)dsdx

∣∣∣∣
≤ 1

2
‖∇u‖2

2 +
1
2

∫
Ω

(∫ t

0
g(t − s) (|∇u(s) −∇u(t)| + |∇u(t)|) ds

)2

dx

≤ 1 + (1 + η) (1 − l)2

2
‖∇u‖2

2 +

(
1 + 1

η

)
(1 − l)

2
(g ◦ ∇u) (t).

For the third term and the fourth term, Young’s inequality and Lemma 2.1 imply that,
for δ1 > 0,

(3.18)
∣∣∣∣
∫

Ω
ut(x, t)u(t)dx

∣∣∣∣ ≤ δ1c
2
s ‖∇u‖2

2 +
c2
s

4δ1
‖∇ut‖2

2 ,

and

(3.19)
∣∣∣∣
∫

Ω
ut(x, t− τ)u(t)dx

∣∣∣∣ ≤ δ1c
2
s ‖∇u‖2

2 +
1

4δ1

∫
Ω

u2
t (x, t − τ)dx.

Letting η = l
1−l in (3.17) and using (3.18)-(3.19), we derive from (3.16) that

(3.20)

Φ′(t)

≤ −
(

l

2
− δ1c

2
s (μ1 + μ2)

)
‖∇u‖2

2 +
1 − l

2l
(g ◦ ∇u) (t) +

1
ρ + 1

‖ut‖ρ+2
ρ+2

+
μ2

4δ1

∫
Ω

u2
t (x, t− τ)dx +

(
μ1c

2
s

4δ1
+ 1
)
‖∇ut‖2

2 .
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As in [10], the derivative of I(t) can be estimated as

(3.21)
d
dtI(t) ≤ −κI(t) +

1
2τ

‖ut‖2
2 −

c9

2τ

∫
Ω

u2
t (x, t− τ)dx

≤ −κI(t) +
c2
s

2τ
‖∇ut‖2

2 −
c9

2τ

∫
Ω

u2
t (x, t − τ)dx,

where c9 is a positive constant. Taking the derivative of Ψ(t) in (3.7) and using Eq.
(1.1), we get

(3.22)

Ψ′(t)

=
∫

Ω

∇u(t) ·
∫ t

0

g(t− s) (∇u(t) −∇u(s)) dsdx

−
∫

Ω

(∫ t

0
g(t−s)∇u(s)ds

)
·
(∫ t

0
g(t−s) (∇u(t)−∇u(s))ds

)
dx

+μ1

∫
Ω

ut(t)
∫ t

0
g(t − s) (u(t)− u(s)) dsdx

+μ2

∫
Ω

ut(x, t − τ)
∫ t

0
g(t − s) (u(t) − u(s)) dsdx

−
∫

Ω
∇ut(t) ·

∫ t

0
g′(t − s) (∇u(t) −∇u(s)) dsdx

− 1
ρ + 1

∫
Ω
|ut|ρ ut

∫ t

0
g′(t − s) (u(t) − u(s)) dsdx

−
(∫ t

0
g(s)ds

)
‖∇ut‖2

2 −
1

ρ + 1

(∫ t

0
g(s)ds

)
‖ut‖ρ+2

ρ+2 .

In what follows we will estimate the right hand side of (3.22). Using Hölder inequality,
Young’s inequality and (2.2), for δ > 0, we have

(3.23)

∣∣∣∣
∫

Ω
∇u(t) ·

∫ t

0
g(t − s) (∇u(t)−∇u(s)) dsdx

∣∣∣∣
≤ δ ‖∇u‖2

2 +
1− l

4δ
(g ◦ ∇u) (t).

and

(3.24)

∣∣∣∣
∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)
·
(∫ t

0
g(t− s) (∇u(t) −∇u(s)) ds

)
dx

∣∣∣∣
≤ δ

∫
Ω

(∫ t

0

g(t − s) |∇u(s)| ds

)2

dx

+
1
4δ

∫
Ω

(∫ t

0
g(t − s) |∇u(t) −∇u(s)| ds

)2

dx.
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Similar to the estimate of (3.17), for η1 > 0, we have

(3.25)

∫
Ω

(∫ t

0
g(t − s) |∇u(s)| ds

)2

dx

≤
∫

Ω

(∫ t

0
g(t − s) (|∇u(s) −∇u(t)| + |∇u(t)|) ds

)2

dx

≤ (1 + η1) (1 − l)2 ‖∇u‖2
2 +

(
1 +

1
η1

)
(1 − l) (g ◦ ∇u) (t).

Taking η1 = 1 in (3.25), we then get from (3.24) that

(3.26)

∣∣∣∣
∫

Ω

(∫ t

0
g(t− s)∇u(s)ds

)
·
(∫ t

0
g(t− s) (∇u(t) −∇u(s)) ds

)
dx

∣∣∣∣
≤ 2δ (1 − l)2 ‖∇u‖2

2 +
(

2δ +
1
4δ

)
(1 − l) (g ◦ ∇u) (t).

By Young’s inequality and Lemma 2.1, the third term and the fourth term on the right
hand side of (3.22) can be estimated as

(3.27)

∣∣∣∣μ1

∫
Ω

ut(t)
∫ t

0

g(t− s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ δ2μ1c

2
s ‖∇ut‖2

2 +
μ1c

2
s(1− l)
4δ2

(g ◦ ∇u) (t), δ2 > 0,

and

(3.28)

∣∣∣∣μ2

∫
Ω

ut(x, t − τ)
∫ t

0
g(t − s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ μ2δ3

∫
Ω

u2
t (x, t − τ)dx +

μ2(1− l)c2
s

4δ3
(g ◦ ∇u) (t),

for δ3 > 0. Using Young’s inequality and (A1) to deal with the fifth term

(3.29)

∣∣∣∣
∫

Ω
∇ut(t)

∫ t

0
g′(t − s) (∇u(t)−∇u(s)) dsdx

∣∣∣∣
≤ δ4 ‖∇ut‖2

2 +
1

4δ4

∫
Ω

(∫ t

0
g′(t − s) (∇u(t) −∇u(s)) ds

)2

dx

≤ δ4 ‖∇ut‖2
2 −

g(0)
4δ4

(
g′ ◦ ∇u

)
(t), δ4 > 0.
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Employing Young’s inequality, (2.1), Lemma 2.1 and (3.3), we have, for δ5 > 0,

(3.30)

∣∣∣∣ 1
ρ+1

∫
Ω
|ut|ρ ut

∫ t

0
g′(t − s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ 1

ρ+1

(
δ5 ‖ut‖2(ρ+1)

2(ρ+1)
+

1
4δ5

∫
Ω

(∫ t

0
g′(t − s) (u(t) − u(s)) ds

)2

dx

)

≤ 1
ρ+1

(
δ5 ‖ut‖2(ρ+1)

2(ρ+1)
− g(0)c2

s

4δ5

∫
Ω

∫ t

0
g′(t−s) |∇u(t)−∇u(s)|2 dsdx

)

≤ δ5c
2(ρ+1)
s

ρ+1
(2E(0))ρ ‖∇ut‖2

2 −
g(0)c2

s

4δ5 (ρ + 1)
(
g′ ◦ ∇u

)
(t).

A substitution of (3.23)-(3.30) into (3.22) yields

(3.31)

Ψ′(t) ≤ δc10 ‖∇u‖2
2 + c11 (g ◦ ∇u) (t) − c12

(
g′ ◦ ∇u

)
(t)

+
(

c13 −
∫ t

0
g(s)ds

)
‖∇ut‖2

2 + μ2δ3

∫
Ω

u2
t (x, t − τ)dx

− 1
ρ + 1

(∫ t

0
g(s)ds

)
‖ut‖ρ+2

ρ+2 ,

where c10 = 1+2 (1 − l)2 , c11 =
(
2δ + 1

2δ + μ1c2s
4δ2

+ μ2c2s
4δ3

)
(1 − l) , c12 = g(0)c2s

4δ5(ρ+1) +
g(0)
4δ4

, and c13 = δ2μ1c
2
s + δ4 + δ5c

2(ρ+1)
s
ρ+1 (2E(0))ρ . Since g is positive, continuous and

g(0) > 0, then for any t0 > 0, we have

(3.32)
∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0, ∀ t ≥ t0.

Hence, we conclude from (3.4), Lemma 3.2, (3.20), (3.21), (3.31) and (3.32) that for
any t ≥ t0 > 0,

G′(t) = ME ′(t) + ε1Φ′(t) + ε2I
′(t) + Ψ′(t)

≤
(

M

2
− c12

)(
g′ ◦ ∇u

)
(t) − g0 − ε1

ρ + 1
‖ut‖ρ+2

ρ+2

−
(

ε1

(
l

2
− δ1c

2
s (μ1 + μ2)

)
− δc10

)
‖∇u‖2

2

−
(

g0 − ε1

(
μ1c

2
s

4δ1
+ 1
)
− ε2c

2
s

2τ
− c13

)
‖∇ut‖2

2

−ε2κI(t) −
(

c9ε2

2τ
− ε1μ2

4δ1
− μ2δ3

)∫
Ω

u2
t (x, t− τ)dx

+
(

ε1(1 − l)
2l

+ c11

)
(g ◦ ∇u) (t).
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At this point, we choose δ1 such that

δ1c
2
s (μ1 + μ2) ≤ l

4
,

and let δ2 = δ4 = δ5 satisfying

c13 = δ2

(
μ1c

2
s + 1 +

c
2(ρ+1)
s

ρ + 1
(2E(0))ρ

)
≤ g0

2
,

After that, we select ε2 so that
ε2c

2
s

2τ
≤ g0

8
.

Once ε2 is fixed, we choose δ3 to satisfy

μ2δ3 ≤ c9ε2

4τ
.

Further, we take ε1 such that

ε1 < min

{
g0
8

μ1c2s
4δ1

+ 1
,

δ1c9ε2

2μ2τ
, g0

}
.

Also let δ small so that

δ <
ε1l
8

c10
=

ε1l

8
(
1 + 2 (1 − l)2

) .

Finally, we pick M sufficiently large such that

M > 4c12 =
g(0)
δ2

(
c2
s

ρ + 1
+ 1
)

.

Consequently, there exist two positive constants λ1 and λ2 satisfying

(3.33) G′(t) ≤ −λ1E(t) + λ2 (g ◦ ∇u) (t), for all t ≥ t0.

Multiplying (3.33) by ξ(t), we have

ξ(t)G′(t) ≤ −λ1ξ(t)E(t) + λ2ξ(t) (g ◦ ∇u) (t).

Then, employing the assumption g′(t) ≤ −ξ(t)g(t) by (2.3) and using the fact that
− (g′ ◦ ∇u) (t) ≤ −2E ′(t) by Lemma 3.2, we get

(3.34)
ξ(t)G′(t) ≤ −λ1ξ(t)E(t)− λ2

(
g′ ◦ ∇u

)
(t)

≤ −λ1ξ(t)E(t)− 2λ2E
′(t), for all t ≥ t0.

Now, we define
F (t) = ξ(t)G(t) + 2λ2E(t),
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which is equivalent to E(t) by Lemma 3.4. Using (3.34) and the assumption ξ′(t) ≤ 0,

∀t ≥ 0 by (A1), we obtain

(3.35)
F ′(t) ≤ ξ′(t)G(t)− λ1ξ(t)E(t)

≤ −λ1ξ(t)E(t) ≤ −λ3ξ(t)F (t), ∀t ≥ t0.

An integration of (3.35) over (t0, t) gives

(3.36) F (t) ≤ F (0)e−λ3

∫ t
t0

ξ(s)ds
, ∀t ≥ t0,

Therefore, the equivalent relation between F (t) and E(t) yields

(3.37) E(t) ≤ Ke
−α

∫ t
t0

ξ(s)ds
, ∀t ≥ t0,

where α and K are some positive constants. This completes the proof.

Remark 3.6. We illustrate the energy decay rate given by Theorem 3.5 through
the following examples which are introduced in [10,16].

(1) If g(t) = a
(1+t)ν , for a > 0 and ν > 1, then ξ(t) = ν

1+t satisfies the condition
(2.3). Thus (3.15) gives the estimate

E(t) ≤ K(1 + t)−α.

(2) If g(t) = ae−b(1+t)ν , for a, b > 0 and 0 < ν ≤ 1, then ξ(t) = bν(1 + t)ν−1

satisfies the condition (2.3). Thus (3.15) gives the estimate

E(t) ≤ Ke−α(1+t)ν .

(3) If g(t) = ae−b lnν(1+t), for a, b > 0 and ν > 1, then ξ(t) = bν lnν−1(1+t)
1+t satisfies

the condition (2.3). Thus (3.15) gives the estimate

E(t) ≤ Ke−α lnν(1+t).

(4) If g(t) = a
(1+t) lnν(1+t) , for a > 0 and ν > 1, then ξ(t) = ln(1+t)+ν

(1+t) lnν (1+t) satisfies
the condition (2.3). Thus (3.15) gives the estimate

E(t) ≤ K ((1 + t) lnν(1 + t))−α .
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