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A NOTE ON THE GENERALIZED HIGHER-ORDER ¢-BERNOULLI
NUMBERS AND POLYNOMIALS WITH WEIGHT «

H. Y. Lee and C. S. Ryoo

Abstract. In this paper we give some interesting equation of p-adic g-integrals on
Z,. From those p-adic g-integrals, we present a systemic study of some families
of extended Carlitz ¢g-Bernoulli numbers and polynomials with weight « in p-adic
number field.

1. INTRODUCTION

For ¢-Bernoulli numbers and polynomials, several results have been studied by Car-
litz (see [1, 2]), T. Kim (see [4-11]), Y. Simsek (see [12-16]), and H. Ozden (see [12]).
Bernoulli numbers and polynomials possess many interesting properties and arising in
many areas of mathematics, mathematical physics and statistical physics. Recently,
many mathematicians have studied in the area of Bernoulli numbers and polynomi-
als. T.Kim (see [5]) introduced the weight ¢g-Bernoulli numbers and polynomials with
motivation for weight o, properties and identities. In this paper, we research some
properties of a new type of g-Bernoulli numbers and polynomials with weight o and
some relations of higher order g-Bernoulli polynomials with weight « to attach y. Also
in this paper, if we take o = 1, then [4] is the special case of this paper.

Throughout this paper we use the following notations. By Z, we denote the ring of
p-adic rational integers, QQ, denotes the field of p-adic rational numbers, C,, denotes the
completion of algebraic closure of @, N denotes the set of natural numbers, Z denotes
the ring of rational integers, (Q denotes the field of rational numbers, C denotes the set
of complex numbers, and Z; = NU{0}. Let v/, be the normalized exponential valuation
of C, with |p|, = p~(®) = p~1 When one talks of g-extension, ¢ is considered in
many ways such as an indeterminate, a complex number ¢ € C, or p-adic number
q € C,. If ¢ € C one normally assume that |¢| < 1. If ¢ € C,, we normally assume
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1
that ¢ — 1|, < p »-7T so that ¢* = exp(xlogq) for |z|, < 1. Throughout this paper
we use the notation:

1-¢" 1-(=q9)"
= = f. [1 13,14]) .
[x]q 1— q ’ [IL'] q 1 +q (C [ 53555 35 ])
The ¢-factorial is defined as
[n]q! = [nlgln — 1]q- - [2]4[1]q

and the Gaussian ¢-binomial coefficient is defined by

<n> - ! [rlgln = 1g -+ In =k + 1],

kg [K]g! [K]q!

(1)

Note that

lim (Z)q: (Z) _ n(n—1><n_2]3!...(n_k+1>.

From (1) we easily see that

(0,7 (), 0), =)+ 0,

For a fixed positive interger f , (f,p) =1, let
X = Xy =1im(Z/ fp"7), X, =17,
N

X* = U (a+ fpN7Z,)
O<a<pr
(a,p)=1

and
a+ fpVZ, = {z € X|z = a(mod fp),

where a € Z and 0 < a < fp" see([1,2,5,6,10,12]). We say that f is an uniformly
differential function at a point a € Z, and denote this property by f € UD(Z,) if the
difference quotients

fx) = fy)

Fi(x,y) = pra—

hgve alime, . (a,a) Fr(2,y) = f'(a). For f € UD(Zy) let us begin with the expres-
sion

[p}V] S o= S f@ugle+pVz,)
1 2=0 0<z<pN

representing a g-analogue of the Riemann sum for f. The integral of f on Z, is defined
as the limit ( N — oo) of the sums (if exists). The p-adic g-integral ( or ¢g-Volkenborn
integrals of f € UD(Z,) is defined by
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@ 1= [ S@dn@) = [ f@dn) = im o 3 fa)e

9 g<z<pN

Carlitz’s g-Bernoulli numbers ) , can be defined recursively by 5y, = 1 and by

the value that
1, ifk=1
k — ) )
Q(Qﬁq + 1) Bk,q { 0’ lfn > 1’

with the usual convention of replacing ﬂ; = Big
It is well known that

Sua= [ Widia(w) = [ eljdng(o).me 2,

and
Brq(x) = /Z [z + ylgdug(y) = /X[y + xlydpg(y),n € Zy

P

where (3, 4(x) are called the n-th Carlitz’s ¢-Bernoulli polynomials. Let x be the
Difichlet’s character with conductor f € N. Then the generalized Carlitz’s ¢-Bernoulli
numbers with weight « attached to x are defined as follows:

B = /X X (@) [2] g ().

In this paper, we present a systemic study of some families of multiple Carlitz’s
g-Bernoulli numbers and polynomials with weight o by using the integral equations of
p-adic g-integrals on Z,. From the p-adic g-integrals on Z, we derive some interesting
formula for the higher-order Calitz’s g-Bernoulli numbers and polynomials with weight
« in the p-adic number field.

2. ON THE GENERALIZED HIGHER-ORDER ¢-BERNOULLI NUMBERS AND
PoLyNoMIALS WITH WEIGHT «

Our primary goal of this section is to define g-Bernoulli numbers By(ﬁq) and polyno-
mials By(ﬁq) (x) with weight a. We also find generating functions of ¢g-Bernoulli numbers
5% and polynomials 5% (z) with weight a.

For o € Z and ¢ € C,, with |1 — ¢|, < 1, Bernoulli polynomials with weight «,
8% (x) are defined by

(3) B () = / ¢V + o) dig ().

P

From (3), we see that
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Note that for « =1 and n € N,
(5) hm B(l -n Z x+m)" " = By(x),

where B,,(x) are called the n-th ordinary Bernoulli polynomials. In particular, z = 0,

() (0) = B are called the n-th g-Bernoulli numbers.
By (4) and (5), one has the following lemma.

Lemma 1. For n > 0, one has

5@ = [ a7+ yljedug(v

P

(6) = —% i g=tmefy 4 m]f;a_l
4 m=0
“ (@) 2 (e

=0

We consider the ¢-Bernoulli polynomials with weight « of order » € N as below.

Zﬁ(ar

_ / . / q—(I1+I2+...+xr)e[l’+I1+a:2+...+a:r]qatduq(:L.1> . 'dﬂq(xr>~
Zp Zp

r—times

By (7), one has as below.
B(ar ( )

( ) Zyp Ly

(7

T—timesn ,
:< 1 ) Z? 0 (n)(_1>lqala:<ﬁ> )
In the special case z = 0, 857 (0) = BL%") is regarded as the g-extension of
Bernoulli numbers with weight a of order r. For f € N, one has
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B(ar( )

:/ / g AT [ gy w4 2y Radptg(21) - dptg ()
Zp Zp

(9) r—times

el £ By

a1,a2, =0 [=0 q/

[f]g_r ]i:l B(ar<$+a1+a2+"'+ar>
= ol 7 .

By (8) and (9), we have the following theorem.

7 ai,az,-,a,=0

Theorem 2. Forr € Zy, f € N, one has

ﬂ(ar( )= [f];r<1_1qa>" Z Z( ) 1)lg(etertazt +ar)al<[a_l>r

a1,a, =0 [=0 al]qf
— —1
_ g fZ: B(a;<x+a1+ag+~~+ar>.
07 a1 asamo f

Let x be the primitive Dirichlet’s character with conductor f € N. Then the general-
ized q-Bernoulli polynomials with weight o attached to x are defined by

(10) Z B o /X X()g Vel e tdy, (y).

From (10),

:Zx(a) lim ﬁ Z [z +a+ fylge

ni1 " /n Q
) = (=) T (7)o

-1 o0
= N X(@) YD I oy st

m=0

= ol 2 @

m=0
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we can give the generating function for the generalized g-Bernoulli polynomials with
weight « attached to x as below.

Oél’ m TTM|qex tn
(12) an: t) __tz (Hm)eletmlant Zﬂnxq( >nl
n=0

From (2), (10) we note that

f—1 pN—1
x(a) lim [+ a+ fy]
(13> ]q az; N—»oo ]qf y=0
_ f]f;af . (a (a:—i—a,)
e - OX an 7

In particular, = = 0, ) xa(0) = (a)

numbers with weight « attached to x.

v,q are called the n-th generalized g-Bernoulli

Let us consider the higher-order g-Bernoulli polynomials with weight o attached
to x as follows;

Z B 7(LaXT‘1

= / .. / H X(xi>q—(af1+...+a:r)e[ﬂ?+a:1+...+a:r]qatduq(x1> . 'dﬂq(xr>u
X Xi=1

r—times

(14)

where B{%/)(x) are called the n-th generalized - Bernoulli polynomials with weight
« of order r attached to .
From (14) we note that

B ()
N /X B /X HX(eTz‘)q_(Iﬁm—mr)[x t a1t e dpg (1) - - dpg(r)
=1
r—times

(15)

- (11__21f>n[f];7"

Z HX ( )n 3 <TZL>(_1>lqal(a:+a1+...+ar)(%)T

ai, =01i=1 =0
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S S T ()

ai,ar=01i=1

In particular, z = 0, B8%72(0) = 8%} are called the n-th generalized g-Bernoulli
numbers with weight « attached to x.

By (14), (15) one has the following theorem.

Theorem 3. Let x be the primitive Dirichlet’s character with conductor f € N,
Forn € Z,, r € N, one has

ﬂﬁlaxrq
<[?f> _Z H, () ;aq,;)<x+a14}--~+ar>.

For h € Z and r € N, we introduce the extended higher-order ¢-Bernoulli polyno-
mials with weight « as follows;

ﬁ(hocr( )

(16) = / .o / ngzl(h_j_l)xj [:Ln + T + e + xr]qanduq(a}1> .o d/’Lq(IBT>
X X

r—times

From (12), we note that

n<~ /n hal=1y )
B(har (z) = (1_1qa> y <l)(—1)lqalm% W'q!’

= q

and
— T+ a+ +a
- " (h—9)a; o(h,a, 1 .
(17> B(har ( ) = [f]ga[f]qr Z qzy—l( ])%sz,q? 7")( f 7">.
ai, - ar=0
I (h,ou,r) _ plhar) .
n the special case, + = 0, [, '(0) = (n,g =’ are called the n-th Bernoulli

numbers with weight « of order r.
By (17), we obtain the following theorem.
Theorem 4. For h € Z, r € N, one has
h+al—1) '

ﬁ(hocr ( ) _ (1 _1qa>nzn: <7) (—1>lqalazgh+%:fl) #.q!u
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and
f—1

(18) B (@) = [flgalfly” > qZ§_1<h—j)ajﬂ§Lffé?7r)<x+a14;~-+ar>.

Let x be the primitive Dirichlet’s character with conductor f € N. Then we
consider the generalized (h, ¢)-Bernoulli polynomials with weight « attached to x of
order r as follows;

h,
szxaq”( )
/ / )5 PTG gy g g () - dpg ().

r— tzmes

a1, ,ar=0

From (19) with some calculation, we note that

g f_l - ... .
(20) B (2)= [[J;]q: S (L cta)g=imstmglhan (220 J} rar)
4 ay-ar=0 j=1

In the special case = = 0, 85%7(0) = BY4%") are called the n-th generalized
(h, ¢)-Bernoulli numbers with Welght « attached to x of order r.

By (19), (20) and q*(1#2-+0) = (g% — 1)[zy + @ + -+ + 24]ge + 1, We see
that

B(h,a,r)

n,x,q

(21) / -/ TT o)t g™ 40 5 alhd =024 g () g )

P] 1
_ (qa _ 1)57(3_1&);0;7-) + 67(th (; o 7)
By (16), we get similar property as above for 4"
h—a,
(22) 67(;7204,7’) _ (qa N 1)67(14-170;& ™)y B(h a,oT)

From (16) and (22), we derive as below.
/ . / q(an—2)3:1+(o¢n—3)x2+...+(om—7-_1)xrd'uq(l,l) . -d,uq(xr)
ZP ZP

. / ¢S im (CI D gon(etwa ke ) dpy ()
Zp

(23) _ /Z . /Z qz;1<—j—1m§:<7>(qw_1)l[x1+. oty ) dpig (1) - - dpg ()

=0
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and

/ . / q(an—Z)xl+(an—3)x2+...+(an—r—1)xrduq(x1> .. 'dﬂq(xr>
Zp Zp

n = [ o) [ it [T

P ZP P
-1
)
(Omr_l) , [r]q!
Also, by simple calculation we obtain as below.
n
n ; ; an+h—1

25 *—1) 1 ,qh=2eq =
@ (G e o = S,

By (22), (23), (24) and (25), we get the following theorem.

Theorem 5. For h € Z, r € N and n € Z-+, one has

6(hoc7’ _ (qa_1>6(h—06,047’ B(h o,a,T)

n+1,q

and
B(h,oc,r) _ (qa _ 1>B(h—oc,oc ) 4 B(h ona,r) .

,X,9 n+1,x,q 7,X,9

furthermore, we get

n

O L e e

7=0
n B (O o 7’ B (anr—l) 7’!
Z <l)(q 1) B - (an—l)q[r]q!'

=0

From now on, we study 82" (z) in the special case h = 0.
By (@)
_ / . / [l’ +x 4+ xr]gaq(—%cl—ng—...—(r-_l)xr)d'uq(xl) .. -d,uq(xr)
1 n M <7’l> L ole (al,,_l)T!
— - (_1) qa T - _r .
(1_q ) ; ; ( lr 1)[7“](1!

Hence, from (26) we have the following theorem.

(26)
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Theorem 6. For r € N and n € Z., one has

al—1

_a (Oar :n n_lala:(r)r_!
( ) B ( ) ZZO:<Z)( 1>q (oclr—l)q[r]q!'

N\
Q"\
Q
3
N
B
X
Q
3
&
3
[
+
X
Q
3
3
—
Py
£
ISH
=
—
Z
ISH
=
_
—
K
S
N

— (n —2x1—-—(r+1)x

- “ (n (0047)
=0

Therefore, we obtain the following theorem.

Theorem 7. For r € N and n € Z., one has
qana: (Omr_l) 7’_’ _ Zn: <n)( ) B(O Q1)
(anr_l)q [r]q! =0 !

We consider the other expression for B(O o) (x) as below.

7(Loqa G / / T+ + -+ 2 gag TR T () - dpg ()
(27) r— tzmes
n f_l
_ [f]qa Z qz;zljaw(o,?,r)(ﬂc-ﬁ-m +---+a7.)-
e o5 0 a f

From the multivariate p-adic g-integral on Z,, one has
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/ .. / [€+2y+--+ xr];zaq—2a:1—...—(r+1)a:rduq(x1> e dpg(zr)
Zp Zp

r—times

/ / o+ ¢z a2+ F 2p)ge)"
Zp

(28)
e G L dpig(w1) - - - dpg ()
_ Z < ) n l/ / all’ 5131 + - ]
P Ly Zyp
q—%l_"'_(”l)m’"duq(xl) .. .duq(xr),
and
/ . / [Tty +a+- o+ apag 2 U A () - dpg ()
Ly Zp
r—times
(20)

(st ot

q—2a:1_..._(r+1)a:rduq(x1> . 'dﬂq(xr>~
From (28) and (29), we obtain the following corollary.

Corollary 8. Forr € N and n € Z,, one has

B(Oar( >:Z<7)[x]g l ala:B(OOCT’

=0

and .
B(Oar (x+y> _ Z <7) [y]:; l alyB(Oar (x>
=0

Now, we also consider the polynomial of B( ol),

Z,, , we see that

From the integral equation on

Bl (z)
B / [+ 21 g™ "2 dpg (21)
P

- (=) () v e

=0
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From (30), it is easy to show that

P >:<1—1 )ﬂZ”:

oo
_ _ni Z q(h-i—oc—l)m—l—ar[x + m];za—l

[a]q

+(h=1)(1—q) > ¢" V" x+mlja

m=0

Therefore, we obtain the following theorem.

Theorem 9. For r € N and n € Z., one has

B(hal( )Z_n_ (h—f—oc 1)n1+am[x+m]n 1 (h 1 l—q Zq(h 1)ym [x+m]

[]O

From the definition of p-adic g-integral on Z,, we see that

[ e g o)
ZP

m=0

1 fpN -1
= lim g [z 4 2] g™
N—»oo [fp ] $1Z:0 q
—1)a —2)x1 T+a m
)1/ o/ 0-2) [ | +x1} gy (1)
Zp f
T+ ay
nal ( f )
al O

By (30), we easily get
/Z [+ a1]geg™ "D dpg ()
P

(31) =q /Z [+ 2150 (0% = Dl + z1]ge + 1) "D dpry (1)

P

:q_w’f(( )B(h Ococl( >+B(h ococl(a:))
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From (31), one has

B(hocl():q—a (( )B(h aal()-ﬁ-ﬂ(h ococl(a:))
That is,

aarﬂ(hocl( ) ((q _1)/8(h aal( ) B(h ococl(a:))

By (30) and (31), we easily see that

/ [z + x1]2aq$1(h_2)duq(x1)
Zp

(32) = /z,, "2 ([2]ge + ¢* (] ge) " dpg (1)
_Z< ) no gl /Zp D ]l g (1),

By Theorem (9) we easily see that

qh_l/ ¢ @ 4 @y + 1) Padpg(a1) —/ ¢ @+ 2] e dppg (1)
z z

P

nﬁqa[aﬂgf + (1= h)(1 - g)[z]

P

For x = 0, one has as below.

P

(33) _{ 2 ifn=1,

[
0 ifn > 1.

qh_l/Z ¢ g 4 1 adpg (21) _/Z 0" o dpg (1)
P

and

h—1
/B(hvavl):/ q(h—2)a,’1du 331 — .
i, =BT,

From (32) and (33), we can derive the recurrence relation for B(h 1)

(34) h lﬁ(hocl(> B(hocl = 01
where d,, 1 is Kronecker symbol.

By (32), (33) and (34), we obtain the following theorem.

as follows;

797
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Theorem 10. For r € N and n € Z, one has

Bl (@) = Z (7)[33]:; gy

=0
and
hlﬁ(hocl( ) B(hocl()
= n@qw[x]qa + (1 =h)(1 = q)[z]ga
Furthermore, by (34) and (31)
qha l(q _1>Bh aa1(1> —a— lﬂ(h ococl() B(hal = 01

where d,, 1 is Kronecker symbol.
From the definition of p-adic g-integral on Z,,, we note that

[ Doy (0)
ZP

(35) _(_qyngenth—2(_ L \" - <n) |ade_ @+ h—1
=(-1)"q —_— —1)'¢™ ———
(=1) (1_qa> ZZ; )V T,
— ( 1>nqan+h 2B(ho<1 ( )
Therefore, from (35) one has as below.

B (L= ) = (1) 2 e (o),

In particular, in case o = 1, note that

By(1 —a) = lim 50 (1 — @) = limy (=1)"¢""* 2Bl D () = (~1)" Bu(x)

where B,,(x) are the n-th ordinary Bernoulli polynomials. In the special case, z = 1,
for n > 1 we get the following;

B = (—1yrgen 2l (1) = (—1)gen B,

For f € N, it is easy to show that

Bl (fa) = / [fz + 21)0aq "™ dpg (21)
Zp

n -1
— [f]q N ij1< +ch>

a
7 1=0
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Now, we consider Barnes’ type multiple g-Bernoulli polynomials. For wy,ws, - - -,
w" € Zy and 01,02, - -, 6, € Zy,, we define Barnes’ type multiple g-Bernoulli polyno-
mials as follows;

[L"wl,U)Q, ) 517527 75 )

/ / Wiy + - w2l g= = ST dpg (1) - dpag ().
ZP ZP

From (36), we easily derive the following equation.

g (Tlw, wa, - w01, 6,0+, 0)
1—q“ 1=0 ! H§:1 [Ctle 4 5j]q

Let 6, = 61 +r — 1. Then, one has as below.

o (Tlwy,we, - w2 61,01+ 1,001+ = 1)
alwi+d1+r—1

(37) _ (1 jqa> lZnO: <7) (=1)lg Ealwl-f—gl—i—r—lg q [Sq'

T

Hence, from (37) we get the following theorem.
Theorem 11. For wy € Zy,r € N and 61 € Z, one has

o (Tlwy, we, - w2 61,01+ 1,001+ = 1)
alwy+01+r—1

R e

T
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