
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 2, pp. 545-558, April 2013
DOI: 10.11650/tjm.17.2013.2095
This paper is available online at http://journal.taiwanmathsoc.org.tw

OSCILLATION OF THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL
EQUATIONS

Ravi P. Agarwal, Martin Bohner, Tongxing Li and Chenghui Zhang*

Abstract. In this paper, we study the oscillatory behavior of a class of third-order
nonlinear delay differential equations

(a(t)(b(t)y′(t))′)′ + q(t)yγ (τ (t)) = 0.

Some new oscillation criteria are presented by transforming this equation to the
first-order delayed and advanced differential equations. Employing suitable com-
parison theorems we establish new results on oscillation of the studied equation.
Assumptions in our theorems are less restrictive, these criteria improve those in
the recent paper [Appl. Math. Comput., 202 (2008), 102-112] and related con-
tributions to the subject. Examples are provided to illustrate new results.

1. INTRODUCTION

In the real world, one can predict dynamic behavior of solutions of third-order partial
differential equations by using the qualitative behavior of the third-order differential
equations. For instance, in a wide variety fascinating physical phenomena, Kuramoto–
Sivashinsky equation

ut + uxxxx + uxx +
1
2
u2 = 0

plays some roles, it is used to describe pattern formulation in reaction diffusion sys-
tems, and to model the instability of flame front propagation; see [15, 17]. To find the
travelling wave solutions of this partial differential equation, one may use the substi-
tution of the form u(x, ct) = u(x − ct) with peed c and solve a third-order nonlinear
differential equation

λu′′′(x) + u′(x) + f(u) = 0.
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Hence, it is interesting to investigate third-order differential equations of the form

y′′′(t) + p(t)y′(t) + q(t)yγ(τ(t)) = 0.

Note that the above equation can be written as a binomial equation

(
v2(t)

(
1

v(t)
y′(t)

)′)′
+ v(t)q(t)yγ(τ(t)) = 0,

where v is a positive solution of an equation v′′(t)+p(t)v(t) = 0; see the related ideas
exploited in [9].
Based on the above background details, we are here concerned with the oscillation

of a third-order nonlinear delay differential equation

(E) (a(t)(b(t)y′(t))′)′ + q(t)yγ(τ(t)) = 0.

Throughout this paper, it is always assumed that
(i) γ is the ratio of odd positive integers;
(ii) a, b, q ∈ C([t0,∞), R), a(t) > 0, b(t) > 0, q(t) > 0;

(iii) τ ∈ C([t0,∞), R), τ(t) < t, τ(t) is nondecreasing, and limt→∞ τ(t) = ∞.
Further we will consider the following two cases

(1.1)
∫ ∞

t0

dt

a(t)
< ∞,

∫ ∞

t0

dt

b(t)
= ∞

and

(1.2)
∫ ∞

t0

dt

a(t)
< ∞,

∫ ∞

t0

dt

b(t)
< ∞.

By a solution of equation (E) we mean a nontrivial function y ∈ C([Ty,∞)),
Ty ≥ t0, which satisfies (E) on [Ty,∞). We consider only those solutions y of (E)
which satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty and assume that (E) possesses
such solutions. A solution of (E) is called oscillatory if it has arbitrarily large zeros
on [Ty,∞); otherwise it is called nonoscillatory. Equation (E) is said to be oscillatory
if all its solutions oscillate.
Regarding the oscillation of differential equations with deviating arguments, we

refer the reader to [1-14, 16, 18-22] and the references cited therein. Baculı́ková and
Džurina [5, 6] and Grace et al. [12] studied a third-order nonlinear delay differential
equation

(a(t)(x′′(t))α)′ + q(t)f(x(τ(t))) = 0,
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and established some oscillation results provided that∫ ∞

t0

a−1/α(t)dt = ∞
or ∫ ∞

t0

a−1/α(t)dt < ∞.

Candan and Dahiya [8] considered equation (E) in the case where

γ = 1 and
∫ ∞

t0

dt

a(t)
=
∫ ∞

t0

dt

b(t)
= ∞.

Li et al. [16], Saker and Džurina [19], and Zhang et al. [22] investigated a third-order
quasilinear delay differential equation

(a(t)(x′′(t))α)′ + q(t)xβ(τ(t)) = 0,

and presented new criteria which guarantee that all non-oscillatory solutions of such
equation tend to zero. Li et al. [21] studied equation (E) for the case where γ = 1,
and obtained some sufficient conditions which insure that the solution x of (E) is
oscillatory or satisfies limt→∞ x(t) = 0.
As a special case, when b(t) = 1, (E) reduces to

(1.3) (a(t)y′′(t))′ + q(t)yγ(τ(t)) = 0,

which has been studied in [5, 6, 10, 12]. Grace et al. [12] obtained several oscillation
criteria for (1.3), one of which we present below for the convenience of the reader.

Theorem 1. (See [12, Theorem 2.2]). Let
∫∞
t0

(a(s))−1ds < ∞. Assume that
there exist two functions ξ, η ∈ C1([t0,∞), R) such that

ξ′(t) ≥ 0, η′(t) ≥ 0, and τ(t) < ξ(t) < η(t) < t for t ≥ t0.

Assume also that both first-order delay equations

y′(t) + cq(t)τγ(t)

(∫ τ (t)

T

s

a(s)
ds

)γ

yγ(τ(t)) = 0

for any constant c, 0 < c < 1 and all T ≥ t0, and

z′(t) + q(t)(ξ(t)− τ(t))γ

(∫ η(t)

ξ(t)

ds

a(s)

)γ

zγ(η(t)) = 0

are oscillatory. If

(1.4)
∫ ∞

t0

1
a(u)

∫ u

t0

q(s)τγ(s)

(∫ ∞

τ (s)

dv

a(v)

)γ

dsdu = ∞,

then (1.3) is oscillatory.
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The purpose of this paper is to supplement and improve results in [5, 6, 8, 10, 12,
16, 19, 21, 22]. In what follows, all functional inequalities considered in this paper
are assumed to hold eventually, that is, they are satisfied for all t large enough.

2. MAIN RESULTS

In the following, we will establish some oscillation criteria for (E). To simplify
our notation, let us denote z(t) := −ω(t) := −a(t)(b(t)y′(t))′ and B(t) :=

∫∞
t

ds
b(s)
.

Theorem 1. Let (1.1) hold. Assume that there exist numbers α ≤ γ , β ≥ γ ,
and two functions ξ, σ ∈ C([t0,∞), R) such that α, β are the ratios of odd positive
integers, ξ(t) > t, ξ(t) is nondecreasing, τ(ξ(ξ(t))) < t, σ(t) is nondecreasing, and
σ(t) > t. If for all sufficiently large t1 ≥ t0 and for t2 > t1, the first-order delay
differential equation

(E1) ω′(t) + c1
γ−αq(t)

(∫ τ (t)

t2

∫ s
t1

du
a(u)

b(s)
ds

)α

ωα(τ(t)) = 0

is oscillatory for all constants c1 > 0, the first-order delay differential equation

(E2) ν′(t) +

(
1

b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2

)
νγ(τ(ξ(ξ(t)))) = 0

is oscillatory, the first-order advanced differential equation

(E3) z′(t) − c2
γ−βq(t)

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

zβ(σ(t)) = 0

is oscillatory for all constants c2 > 0, then (E) is oscillatory.

Proof. Let y be a non-oscillatory solution of (E). Without loss of generality, we
may suppose that y is positive. Then there exist three possible cases:

case (1). y(t) > 0, y′(t) > 0, (b(t)y′(t))′ > 0, (a(t)(b(t)y′(t))′)′ < 0;

case (2). y(t) > 0, y′(t) < 0, (b(t)y′(t))′ > 0, (a(t)(b(t)y′(t))′)′ < 0;

and

case (3). y(t) > 0, y′(t) > 0, (b(t)y′(t))′ < 0, (a(t)(b(t)y′(t))′)′ < 0

for t ≥ t1, where t1 ≥ t0 is large enough. Assume that case (1) holds. Using
(a(t) (b(t)y′(t))′)′ < 0, we have

b(t)y′(t) ≥
∫ t

t1

a(s)(b(s)y′(s))′

a(s)
ds ≥ a(t)(b(t)y′(t))′

∫ t

t1

ds

a(s)
.
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That is,

y′(t) ≥ a(t)(b(t)y′(t))′

b(t)

∫ t

t1

ds

a(s)
.

Integrating the latter inequality from t2 (t2 > t1) to t, we get by the definition of ω

that

(2.1) y(t) ≥ a(t)(b(t)y′(t))′
∫ t

t2

∫ s
t1

1
a(u)du

b(s)
ds = ω(t)

∫ t

t2

∫ s
t1

1
a(u)du

b(s)
ds.

From (E) and the fact that y′(t) > 0, we see that there exists a constant c1 > 0 such
that

(a(t)(b(t)y′(t))′)′ + c1
γ−αq(t)yα(τ(t)) ≤ 0.

Using (2.1) in the above inequality, we have

ω′(t) + c1
γ−αq(t)

(∫ τ (t)

t2

∫ s
t1

1
a(u)

du

b(s)
ds

)α

ωα(τ(t)) ≤ 0.

By virtue of [18, Theorem 1], the associated delay differential equation (E1) also has
a positive solution, which is a contradiction. Assume that case (2) holds. Integrating
(E) from t to ξ(t) implies that

a(t)(b(t)y′(t))′ ≥
∫ ξ(t)

t
q(s1)yγ(τ(s1))ds1 ≥ yγ(τ(ξ(t)))

∫ ξ(t)

t
q(s1)ds1.

That is,

(b(t)y′(t))′ ≥ yγ(τ(ξ(t)))
a(t)

∫ ξ(t)

t
q(s1)ds1.

Integrating the above inequality from t to ξ(t), we have

−b(t)y′(t) ≥
∫ ξ(t)

t

yγ(τ(ξ(s2)))
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2

≥ yγ(τ(ξ(ξ(t))))
∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2.

That is,
−y′(t) ≥ yγ(τ(ξ(ξ(t))))

b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2.

Integrating the latter inequality from t to ∞, one gets

y(t) ≥
∫ ∞

t

yγ(τ(ξ(ξ(s3))))
b(s3)

∫ ξ(s3)

s3

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2ds3.
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Let us denote the right hand side of the last inequality by ν(t). Then ν(t) > 0, and
one can easily verify that ν is a solution of the differential inequality

ν′(t) +

(
1

b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2

)
νγ(τ(ξ(ξ(t)))) ≤ 0.

By [18, Theorem 1], the associated delay differential equation (E2) also has a positive
solution, which is a contradiction. Assume that case (3) holds. As (a(t) (b(t)y′(t))′)′ <
0, we see that a(t) (b(t)y′(t))′ is decreasing. Thus, we get

a(s)(b(s)y′(s))′ ≤ a(t)(b(t)y′(t))′ for s ≥ t ≥ t1.

Dividing the above inequality by a(s) and integrating the resulting inequality from t to
l, we obtain

b(l)y′(l) ≤ b(t)y′(t) + a(t)(b(t)y′(t))′
∫ l

t

ds

a(s)
.

Letting l → ∞, we have

(2.2) b(t)y′(t) ≥ −a(t)(b(t)y′(t))′
∫ ∞

t

ds

a(s)
.

Using conditions y(t) > 0 and (b(t)y′(t))′ < 0, we have

(2.3) y(t) ≥ b(t)y′(t)
∫ t

t1

ds

b(s)
.

Thus,

(2.4)

(
y(t)∫ t
t1

ds
b(s)

)′
≤ 0.

Combining (2.2) and (2.3), we get

(2.5) y(t) ≥ −a(t)(b(t)y′(t))′
∫ ∞

t

ds

a(s)

∫ t

t1

ds

b(s)
.

On the other hand, we have by (2.4) and σ(t) ≥ τ(t) that

(2.6) yγ(τ(t)) ≥
⎛
⎝
∫ τ (t)
t1

ds
b(s)∫ σ(t)

t1
ds

b(s)

⎞
⎠

γ

yγ(σ(t)) =

⎛
⎝
∫ τ (t)
t1

ds
b(s)∫ σ(t)

t1
ds

b(s)

⎞
⎠

γ

yβ(σ(t))yγ−β(σ(t)).

By virtue of (2.4), we have that there exists a constant c2 such that y(t) ≤ c2

∫ t
t1

ds
b(s) .

Hence by (2.6), we get

(2.7)
yγ(τ(t)) ≥ c2

γ−β

⎛
⎝
∫ τ (t)
t1

ds
b(s)∫ σ(t)

t1
ds

b(s)

⎞
⎠

γ

yβ(σ(t))

(∫ σ(t)

t1

ds

b(s)

)γ−β

= c2
γ−β

(∫ σ(t)

t1

ds

b(s)

)−β (∫ τ (t)

t1

ds

b(s)

)γ

yβ(σ(t)).
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Combining (2.5) and (2.7), we obtain

yγ(τ(t)) ≥ c2
γ−β

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

(−ω(σ(t)))β.(2.8)

Using (2.8) in (E), we have

ω′(t) + c2
γ−βq(t)

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

(−ω(σ(t)))β ≤ 0.

Writing the latter inequality in the form

z′(t)− c2
γ−βq(t)

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

zβ(σ(t)) ≥ 0,

we deduce from [2, Lemma 2.3] that the associated advanced differential equation (E3)
also has a positive solution, which is a contradiction. This completes the proof.

Corollary 1. Let (1.1) hold and γ = 1. Assume that there exist two functions
ξ, σ ∈ C([t0,∞), R) such that ξ(t) > t, ξ(t) is nondecreasing, τ(ξ(ξ(t))) < t, σ(t) is
nondecreasing, and σ(t) > t. If for all sufficiently large t1 ≥ t0 and for t2 > t1,

(2.9) lim inf
t→∞

∫ t

τ (t)
q(s)

∫ τ (s)

t2

∫ μ
t1

du
a(u)

b(μ)
dμds >

1
e
,

(2.10) lim inf
t→∞

∫ t

τ (ξ(ξ(t)))

1
b(s)

∫ ξ(s)

s

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2ds >
1
e
,

and

(2.11) lim inf
t→∞

∫ σ(t)

t
q(s)

∫ ∞

σ(s)

du

a(u)

∫ τ (s)

t1

du

b(u)
ds >

1
e
,

then (E) is oscillatory.

Proof. Let α = β = γ = 1. Then equations (E1), (E2), and (E3) reduce to

ω′(t) + q(t)

(∫ τ (t)

t2

∫ s
t1

1
a(u)du

b(s)
ds

)
ω(τ(t)) = 0,

ν′(t) +

(
1

b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2

)
ν(τ(ξ(ξ(t)))) = 0,

and

z′(t)− q(t)

(∫ ∞

σ(t)

ds

a(s)

)(∫ τ (t)

t1

ds

b(s)

)
z(σ(t)) = 0,

respectively. Applications of Theorem 1 and results of [11] complete the proof.
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Example 1. For t ≥ 1, consider a third-order linear delay differential equation

(2.12)
(
ety′′(t)

)′ + √
2ety

(
t − 15π

4

)
= 0.

Let ξ(t) = t + 1 and σ(t) = t + 1. Then one can obtain that

lim inf
t→∞

∫ t

τ (t)
q(s)

∫ τ (s)

t2

∫ μ
t1

du
a(u)

b(μ)
dμds

=
√

2 lim inf
t→∞

∫ t

t− 15π
4

es

∫ s− 15π
4

t2

(e−t1 − e−μ)dμds = ∞,

lim inf
t→∞

∫ t

τ (ξ(ξ(t)))

1
b(s)

∫ ξ(s)

s

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2ds

=
√

2(e − 1) lim inf
t→∞

∫ t

t+2− 15π
4

ds =
√

2(e − 1)
(

15π

4
− 2
)

>
1
e
,

and

lim inf
t→∞

∫ σ(t)

t

q(s)
∫ ∞

σ(s)

du

a(u)

∫ τ (s)

t1

du

b(u)
ds

=
√

2 lim inf
t→∞

∫ t+1

t
es

∫ ∞

s+1
e−udu

∫ s− 15π
4

t1

duds = ∞.

Hence equation (2.12) is oscillatory when using Corollary 1. As a matter of fact, one
such solution is y(t) = sin t. Note that

∫ ∞

t0

1
a(u)

∫ u

t0

q(s)τγ(s)

(∫ ∞

τ (s)

dv

a(v)

)γ

dsdu

=
√

2
∫ ∞

1
e−u

∫ u

1
es

(
s − 15π

4

)∫ ∞

s− 15π
4

e−vdvdsdu < ∞.

Thus, Theorem 1 cannot be applied to equation (2.12) since condition (1.4) does not
hold.

Corollary 2. Let (1.1) hold and γ < 1. Assume that there exist a number β > 1
and two functions ξ, σ ∈ C([t0,∞), R) such that β is the ratio of odd positive integers,
ξ(t) > t, ξ(t) is nondecreasing, τ(ξ(ξ(t))) < t, σ(t) is nondecreasing, and σ(t) > t.
Suppose further that for all sufficiently large t1 ≥ t0 and for t3 > t2 > t1,

(2.13)
∫ ∞

t3

q(t)

(∫ τ (t)

t2

∫ s
t1

1
a(u)du

b(s)
ds

)γ

dt = ∞,
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(2.14)
∫ ∞

t0

1
b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2dt = ∞,

and

(2.15)
∫ ∞

t2

q(t)

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

dt = ∞.

Then (E) is oscillatory.
Proof. Let α = γ . Applications of Theorem 1 and results of [14] complete the

proof.

Example 2. For t ≥ 1, consider a third-order sublinear delay differential equation

(2.16) (t2y′′(t))′ + t−1/21y1/3

(
t

8

)
= 0.

Let β = 9/7, ξ(t) = 2t, and σ(t) = 2t. Then one can get∫ ∞

t3

q(t)

(∫ τ (t)

t2

∫ s
t1

1
a(u)

du

b(s)
ds

)γ

dt

=
∫ ∞

t3

t−1/21

(∫ t
8

t2

∫ s

t1

1
u2

duds

)1/3

dt = ∞,

∫ ∞

t0

1
b(t)

∫ ξ(t)

t

1
a(s2)

∫ ξ(s2)

s2

q(s1)ds1ds2dt

=
∫ ∞

1

∫ 2t

t

1
s2
2

∫ 2s2

s2

s
−1/21
1 ds1ds2dt = ∞,

and ∫ ∞

t2

q(t)

(∫ ∞

σ(t)

ds

a(s)

)β (∫ τ (t)

t1

ds

b(s)

)γ

dt

=
∫ ∞

t2

t−1/21

(∫ ∞

2t

ds

s2

)9/7
(∫ t

8

t1

ds

)1/3

dt = ∞.

Hence conditions (2.13), (2.14), and (2.15) are satisfied, and so equation (2.16) is
oscillatory due to Corollary 2. Note that∫ ∞

t0

1
a(u)

∫ u

t0

q(s)τγ(s)

(∫ ∞

τ (s)

dv

a(v)

)γ

dsdu

=
∫ ∞

1

1
u2

∫ u

1
s−1/21

(s

8

)1/3
(∫ ∞

s
8

dv

v2

)1/3

dsdu < ∞.
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Thus, Theorem 1 cannot be applied to equation (2.16) since condition (1.4) does not
hold.

Corollary 3. Let (1.1) hold, γ > 1, and τ ∈ C1([t0,∞), R). Assume that there
exist a number α < 1 and two functions ξ, σ ∈ C([t0,∞), R) such that α is the ratio
of odd positive integers, ξ(t) > t, ξ(t) is nondecreasing, τ(ξ(ξ(t))) < t, σ(t) is non-
decreasing, and σ(t) > t. Suppose also that there exists a function ϕ ∈ C1([t0,∞), R)
such that ϕ′(t) > 0, limt→∞ ϕ(t) = ∞,

(2.17) lim sup
t→∞

ϕ′(τ(ξ(ξ(t))))(τ(ξ(ξ(t))))′

ϕ′(t)
<

1
γ

,

and

(2.18) lim inf
t→∞

(
1

b(t)

∫ ξ(t)
t

1
a(s2)

∫ ξ(s2)
s2

q(s1)ds1ds2

)
e−ϕ(t)

ϕ′(t)
> 0.

If for all sufficiently large t1 ≥ t0 and for t3 > t2 > t1,

(2.19)
∫ ∞

t3

q(t)

(∫ τ (t)

t2

∫ s
t1

1
a(u)du

b(s)
ds

)α

dt = ∞

and

(2.20)
∫ ∞

t2

q(t)

(∫ ∞

σ(t)

ds

a(s)

)γ (∫ τ (t)

t1

ds

b(s)

)γ

dt = ∞,

then (E) is oscillatory.

Proof. Let β = γ . Applications of Theorem 1 and results of [14, 20] complete
the proof.

Next, we establish an oscillation criterion for (E) under the case where (1.2) holds.

Theorem 3. Let all conditions of Theorem 1 hold with (1.1) replaced by (1.2). If

(2.21)
∫ ∞

t0

1
b(v)

∫ v

t0

1
a(u)

∫ u

t0

q(s)Bγ(τ(s))dsdudv = ∞,

then (E) is oscillatory.

Proof. Let y be a non-oscillatory solution of (E). Without loss of generality, we
may suppose that y is positive. Then there exist four possible cases (1), (2), (3) (as
those of Theorem 1), and
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case (4). y(t) > 0, y′(t) < 0, (b(t)y′(t))′ < 0, (a(t)(b(t)y′(t))′)′ < 0

for t ≥ t1, where t1 ≥ t0 is large enough. From the proof of Theorem 1, we can
eliminate cases (1), (2), and (3). Consider now the case (4). Since (b(t)y′(t))′ < 0,
we get

y′(s) ≤ b(t)y′(t)
b(s)

for s ≥ t.

Integrating this inequality from t to l and letting l → ∞ implies that

(2.22) y(t) ≥ −B(t)b(t)y′(t) ≥ LB(t)

for some constant L > 0. From (E), we have

(a(t)(b(t)y′(t))′)′ + Lγq(t)Bγ(τ(t)) ≤ 0.

Integrating the above inequality from t1 to t, we get

a(t)(b(t)y′(t))′ + Lγ

∫ t

t1

q(s)Bγ(τ(s))ds ≤ 0.

Integrating again, we have

b(t)y′(t) + Lγ

∫ t

t1

1
a(u)

∫ u

t1

q(s)Bγ(τ(s))dsdu ≤ 0.

Integrating again, we obtain

y(t1) ≥ Lγ

∫ t

t1

1
b(v)

∫ v

t1

1
a(u)

∫ u

t1

q(s)Bγ(τ(s))dsdudv + y(t),

which contradicts (2.21). This completes the proof.

Remark 1. Based on Theorem 3, similar as Corollary 1, Corollary 2, and Corollary
3, one can obtain some oscillation criteria for (E). The details are left to the reader.

3. CONCLUSIONS

To achieve oscillation criteria for the case where (1.1) holds, we consider three
possible cases. In order to eliminate case (3), the papers [5, 6, 10, 12] gave condition
(1.4) which differs from assumptions provided in this paper. Note that in Example 1
and Example 2, condition (1.4) cannot hold. Therefore, our results are new.
Results given in this paper supplement and improve those reported in [5, 6, 8, 12,

16, 19, 21, 22] since them can be applied to the case when
∫∞
t0

dt
a(t) < ∞, ∫∞

t0
dt

b(t) < ∞,
γ �= 1, and we present sufficient conditions which guarantee that all solutions of (E)
are oscillatory.
We stress that the study of oscillatory properties of (E) brings additional difficulties.

In particular, in order to establish conditions which ensure that (E) oscillates, we are
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forced to require that, as in [6, Theorem 3], τ and ξ are nondecreasing, ξ(t) > t, and
τ(ξ(ξ(t))) < t.
Therefore, an interesting problem for future research can be formulated as follows.
(P ): is it possible to establish oscillation criteria for (E) without requiring condi-

tions that τ and ξ are nondecreasing, ξ(t) > t, and τ(ξ(ξ(t))) < t?
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