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STABLE POISSON CONVERGENCE FOR INTEGER-VALUED RANDOM
VARIABLES

Tsung-Lin Cheng* and Shun-Yi Yang

Abstract. In this paper, we obtain some stable Poisson Convergence Theorems
for arrays of integer-valued dependent random variables. We prove that the limit-
ing distribution is a mixture of Poisson distribution when the conditional second
moments on a given σ-algebra of the sequence converge to some positive random
variable. Moreover, we apply the main results to the indicator functions of rowise
interchangeable events and obtain some interesting stable Poisson convergence
theorems.

1. INTRODUCTION

It is likely that the greatest accomplishment of modern probability theory is the
unified elegant theory of limits for sums of independent or stationary random variables.
The former studies the limiting theorems when dependence structure is relaxed to
comprising only independent random variables, while the later consider dependent but
time-invariant distributed random variables. The mathematical theory of martingales
may be regarded as an extension of the independence theory which has been firstly
studied by Bernstein (1927) and Lévy (1935, 1937). Lévy introduced the conditional
variance for martingales

V 2
n =

n∑
j=1

E(X2
j |Fj−1),

where (Sn,Fn, n ≥ 1) is a zero-mean, square integrable martingale and Xn = Sn −
Sn−1 is the martingale difference. Doob (1953), Billingsley (1961), and Ibragimov
(1963) established the Central Limit Theorem for martingales with stationary and er-
godic differences. For such martingales the conditional variance is asymptotically
constant; namely,

(1) s−2
n V 2

n
p→ 1,
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where s2
n = E(V 2

n ). Further extensions have been made by Rosén (1967a,b), Dvoret-
zky (1969, 1971, 1972) and Brown (1971), among others. Especially, as indicated
by Brown (1971), the crucial point for martingale convergence is the condition (1)
but stationarity or ergodicity. In McLeish (1974), an elegant proof about the martin-
gale central limit theorem and invariance principles were given. The convergence of
normalized martingales to more general distributions were investigated by Brown and
Eagleson (1971), Eagleson (1976), Adler et al.(1978), among others. Since its first
commencement in Rényi(1963), the concept of stable convergence has been largely
extended and applied to many general setting and problems concerning asymptotic be-
haviors of martingale arrays or stationary arrays. The stable convergence can be defined
as follows. Let (Ω,F , P ) be a probability space, G be a sub-σ-algebra of F and (Yn)
be a sequence of random variables. Let Yn

d−→ Y . If for every B ∈ G, there is a
countable, dense set of points x, such that

lim
n→∞P ({Yn ≤ x} ∩ B) = Q(x, B)

exists, then we say that Yn converges stably in G to Y and denote it by Yn
stably−→ FY (or

Y) on G, or
Yn

(s,G)−→ Y.

The mapping Q(x, B) in the above definition is a distribution function when we fix
B ∈ G, and it is a probability measure on G when we fix the real number x. If
G = {∅, Ω}, then (s,G)−→ is just d−→. If G = F , then (s,G)−→ is the usual Yn

stably−→ FY (we
drop the F ), denoted by s−→ . From the proof of Lemma 1 in Cheng and Chow (2002),
we know that for almost every x in the value set of Yn, Q(x, ·) is a measure absolutely
continuous with respect to P. Unlike convergence in distribution, stable convergence
in distribution is a property of sequences of random variables rather than that of their
corresponding distribution functions. For more details about stable convergence we
refer the readers to Aldous (1978).
The idea behind Rényi’s stable convergence is to generalize the renowned Central

Limit Theorems to a mixture of normal distributions. The notion of a mixture of a
well known distribution with a random parameter stems from Bayesian analysis. In
Bayesian structure, a parameter emerging in the probability density function is assumed
to be nonconstant, more generally, a random variable. The distribution of the random
parameter is called the “prior”. Imagine a sequence of dependent random variables
which converges “in distribution” to a well known distribution, say, to a normal dis-
tribution when conditioned on the event that the random parameter is fixed at some
constant value. We will try to look for the posterior utilizing the observations at hand.
Classical Poisson limit theorems assume the random variables to be i.i.d., integer-

valued or just be independent but not identically distributed. For an infinite exchange-
able sequence of random variables, conditioned on the tail events, the sequence will
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behave like an i.i.d. sequence (Chow and Teicher 1997). However, this property doesn’t
hold for an array of finitely exchangeable random variables. Martingale methods pro-
vide a unified approach to both situations. The martingale method was suggested by
Loynes (1969) in the context of U-statistics and developed by Eagleson (1979, 1982)
and Weber (1980) for exchangeable variables. A Poisson convergence theorem follows
from the results for infinitely divisible laws developed by Brown and Eagleson (1971).
See also Freedman (1974).

Theorem A. (Brown and Eagleson 1971, Freedman 1974). Let {An,k, Fn,k; 1 ≤
k ≤ n, n ≥ 1} be an array of dependent events on the probability space (Ω,F , P )
(Fn,k ⊂ Fn,k+1 ⊂ F , An,k is Fn,k-measurable) and Fn,0 be a sub-σ-algebra of Fn,1.
If λ > 0 is a constant and for n → ∞,

n∑
k=1

P(An,k | Fn,k−1)
p→ λ,

max
1≤k≤n

P(An,k | Fn,k−1)
p→ 0,

then Sn =
∑n

k=1 IAn,k

d→ Poisson(λ).

The conditions in Theorem A have also been used by Kaplan(1977), Brown(1978)
and Silverman and Brown(1978). However, so far as our knowledge goes, there were
no literature discussing stable Poisson convergence. Therefore, we are going to try to
derive a stable Poisson convergence theorem (SPCT, for abbreviation) with the limiting
distribution of the type of a Poisson mixture, namely, with the intensity parameter
λ being a nonnegative random variable. In Cheng and Chow (2002), they proved
an auxiliary lemma and obtained some interesting theorems on stable convergence to
normal mixture. Under a mild (but not trivial) modification, we may obtain some
theorems on stable Poisson convergence.
This paper is organized as below: In Section 2, we consider λ to be a random

variable and generalize the Poisson convergence theorem to comprises the stable Poisson
convergence theorems by exploiting the conditional characteristic function introduced
by Brown (1971), Hall and Heyde (1980), and Cheng and Chow (2002). In Section
3, we apply our main results to arrays of row-exchangeable events. Throughout this
paper, all equalities and inequalities between random variables are in the sense of
“with probability one” and IA denotes the indicator function of the set. All kinds of
convergence, in distribution, in probability and in Lp, are denoted respectively by

d−→
,

p−→, and Lp−→. The fact that Xn
p−→ 0 in probability is abbreviated by Xn = op(1).

2. MAIN RESULTS

The following result is an auxiliary lemma for proving stable convergence.
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Lemma 2.1. (Cheng and Chow, 2002). Yn
(s,G)−→ Y iff there exists a r.v. Y

′ on
(Ω× I, G × B, P × u), where I = (0, 1), B is the class of all Borel sets in I and u is
the Lebesque measure on B, with the same distribution as Y such that for all real t,
E(eitYnIA) → E(eitY

′
IA×I), for all A ∈ G, and E(eitY

′
IA×I ) is continuous at t = 0

for all A ∈ G.

Let {An,k, Fn,k; 1 ≤ k ≤ mn, n ≥ 1} be an array of events on the probability space
(Ω,F , P ) and Fn,0 be a sub-σ-algebra of Fn,1. Set X̃n,k = IAn,k

, S̃n =
∑mn

k=1 X̃n,k,
and fn(t) =

∏mn
k=1 En,k−1(eitX̃n,k), where En,k−1(X) = E(X |Fn,k−1).

Theorem 2.1. Suppose there exists a sub-σ-algebra G �
⋂∞

n=1 Fn,0 and a positive
G-measurable random variable λ such that for n → ∞,

mn∑
k=1

P(An,k | Fn,k−1)
p→ λ,(2)

max
1≤k≤mn

P(An,k | Fn,k−1)
p→ 0,(3)

E(eitS̃n − fn(t) | G)
p→ 0,(4)

then S̃n
(s,G)−→ Z, where the random variable Z has characteristic function E(exp{λ(eit−

1)}) and for any A∈ G, E(eitS̃nIA) → E(exp{λ(eit − 1)}IA).

Proof. For clarity and convenience, we define En,k−1(X) = E(X | Fn,k−1).
First, we want to show that fn(t)

p→ exp{λ(eit − 1)}. According to the inequality
|eix −∑n

k=0
(ix)k

k! | ≤ min{2|x|n
n! , |x|n+1

(n+1)!
}, we have |eix − 1 − ix| ≤ min{2|x|, |x|22 }.

We might set B(x) ≡ 2 ∧ |x|
2 and consider a function, say A(x), with |A(x)| ≤ B(x)

such that eix = 1 + ix + x ·A(x). It follows that

En,k−1(eitX̃n,k ) = 1 + iEn,k−1(tX̃n,k) + tEn,k−1(X̃n,k ·A(tX̃n,k))

= 1 + itEn,k−1(X̃n,k) + tA(t)En,k−1(X̃n,k).

Fix t, define δn,k ≡ itEn,k−1(X̃n,k) + tA(t)En,k−1(X̃n,k).
Since |A(t)| ≤ 2, we have

|δn,k| = |itEn,k−1(X̃n,k) + tA(t)En,k−1(X̃n,k)| ≤ 3|t| · En,k−1(X̃n,k).

By (3),

max
1≤k≤mn

|δn,k| ≤ 3|t| · max
1≤k≤mn

En,k−1(X̃n,k)
p→ 0.(5)
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Since for any z∈ C with |z| ≤ 1,

log(1 + z) − z =
∫ z

0

(
1

1 + w
− 1)dw =

∫ z

0

−w

1 + w
dw.

Hence,

| log(1 + z) − z| ≤
∫ z

0
| −w

1 + w
|dw ≤ 1

1 − |z| ·
∫ z

0
|w|dw ≤ 1

1 − |z| ·
|z|2
2

,

and

log fn(t) =
mn∑
k=1

logEn,k−1(eitX̃n,k ) =
mn∑
k=1

log(1 + δn,k)

=
mn∑
k=1

δn,k + Rn,

where

|Rn| ≤ 1
2

mn∑
k=1

|δn,k|2
1− |δn,k| ,

and max1≤k≤mn |δn,k| < 1.
On the set {w ∈ Ω ; max1≤k≤mn |δn,k| < 1}, by (2), (3), we have

(6)

|Rn| ≤ 1
2

mn∑
k=1

|δn,k|2
1− |δn,k| ≤

1
1− max1≤k≤mn |δn,k| ·

mn∑
k=1

|δn,k|2

=

(
1 − max1≤k≤mn |δn,k|
1 − max1≤k≤mn |δn,k| +

max1≤k≤mn |δn,k|
1 − max1≤k≤mn |δn,k|

)
·

mn∑
k=1

|δn,k|2

= (1 + op(1)) ·
mn∑
k=1

|δn,k|2 = 9t2(1 + op(1)) ·
mn∑
k=1

E2
n,k−1(X̃n,k)

≤ Ct2 · max
1≤k≤mn

En,k−1(X̃n,k) ·
mn∑
k=1

En,k−1(X̃n,k)
p−→ 0.

Hence, by (6), for all ε > 0, as n → ∞,

P(|Rn| > ε) = P(|Rn| > ε, max
1≤k≤mn

|δn,k| < 1) + P(|Rn| > ε, max
1≤k≤mn

|δn,k| ≥ 1)

≤ P(|Rn| > ε, max
1≤k≤mn

|δn,k| < 1) + P( max
1≤k≤mn

|δn,k| ≥ 1)

−→ 0.
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Therefore,

log fn(t) =
mn∑
k=1

δn,k + op(1)

= it

mn∑
k=1

En,k−1(X̃n,k) + tA(t)
mn∑
k=1

En,k−1(X̃n,k) + op(1)

p→ itλ + tA(t)λ = λ(it + tA(t)) = λ(eit − 1).

Thus, fn(t)
p→ exp{λ(eit − 1)}, and as a result, for all A ∈ G,

fn(t) · IA
p→ exp{λ(eit − 1)} · IA.

By uniform integrability,

E(fn(t) · IA) → E[exp{λ(eit − 1)} · IA].

By (4) and uniform integrability, for A ∈ G,
E[(eitS̃n − fn(t)) · IA] → 0.

Consequently,

E(eitS̃nIA) → E(exp{λ(eit − 1)}IA).

Next, put β(ω, x) = P (X ≤ x|λ), where X is a mixture of a Poisson distribution with
random intensity λ. Define Y ′(ω, y) on (Ω×I, G×B, P ×u) as in Lemma 1 of Cheng
and Chow (2002), i.e. Y ′(ω, y) = inf{x : −∞ < x < ∞, β(ω, x) ≥ y}. Then

E
(
eitY ′(ω,y) · IA×I

)
=
∫

A
dP

∫ 1

0
eitY ′(ω,y)dy∫

A
dP

∫ ∞

−∞
eitxdβ(ω, x) =

∫
A

exp{λ(eit − 1)}dP

= E[exp{λ(eitx − 1)} · IA].

By Lemma 2.1, we complete the proof.

Remark 2.1. It seems that the conditions of Theorem 2.1 are stronger than Theorem
A. It is because that, similar to Theorem 1 in Cheng and Chow (2002), the stable
convergence is a generalization of the classical distributional convergence. When G =
{∅, Ω}, condition (4) is satisfied automatically (see Remark 2.2 below), and in this
case, Theorem A is valid as a result. The function fn(t) plays an important role in
proving the stable convergence. However, when conditioned on G �= {∅, Ω}, it might
not be coincident with E(eitS̃n) which is crucial in proving distributional convergence.
It will be interesting to study the conditions implying the coincidence of fn(t) and
E(eitS̃n) when conditioned on G �= {∅, Ω}.
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In order to obtain a more complete version of SPCT, we add a condition to the
original assumptions of Theorem 2.1 to ensure the SPCT for the partial sum Sn. Let
{Xn,k,Fn,k; 1 ≤ k ≤ mn} be any array of nonnegative integer-valued random varibles
on (Ω,F , P ) and Fn,0 be a sub-σ-algebra of Fn,1. Set Sn =

mn∑
k=1

Xn,k , X̃n,k =

I{Xn,k=1}, S̃n =
mn∑
k=1

X̃n,k, and fn(t) =
mn∏
k=1

En,k−1(eitX̃n,k).

Corollary 2.1. Let λ be a positive G-measurable random variable, where G is a
sub-σ-algebra of F . If for n → ∞,

mn∑
k=1

P(Xn,k = 1 | Fn,k−1)
p→ λ,(7)

max
1≤k≤mn

P(Xn,k = 1 | Fn,k−1)
p→ 0,(8)

then fn(t)
p→ exp{λ(eit − 1)}. Moreover, if G �

⋂∞
n=1 Fn,0 and

E(eitS̃n − fn(t) | G)
p→ 0,(9)

mn∑
k=1

P(Xn,k ≥ 2) → 0,(10)

then Sn
(s,G)−→ Z, where where the random variable Z has characteristic function

E(exp{λ(eit − 1)}) and for A∈ G, E(eitSnIA) → E(exp{λ(eit − 1)}IA).

Proof. Let An,k = {Xn,k = 1}. From (10), we have

P(Sn �= S̃n) = P(Sn − S̃n > 0) ≤∑mn
k=1 P(Xn,k ≥ 2) → 0.

Therefore, by Theorem 2.1, we have completed the proof.

Remark 2.2. When λ is a constant, according to the Theorem 3 of Beśka(1982), we
have S̃n

d→ Poisson(λ), if fn(t)
p→ exp{λ(eit−1)}. And by (10), Sn

d→ Poisson(λ).

From Corollary 2.1 and Remark 2.2, we can obtain the following corollary con-
cerning classical Poisson convergence theorem for arrays of independent integer-valued
random variables.

Corollary 2.2. Let Xn,k, 1 ≤ k ≤ mn, be independent nonnegative integer-valued
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random variables. If λ > 0 is a constant and for n → ∞,
mn∑
k=1

P(Xn,k = 1) → λ,

max
1≤k≤mn

P(Xn,k = 1) → 0,

mn∑
k=1

P(Xn,k ≥ 2) → 0,

then

Sn =
mn∑
k=1

Xn,k
d→ Poisson(λ).

The following theorem can be proven in a fashion similar to Theorem 2.1 given in
Section 2.

Theorem 2.2. Suppose there exists a sub-σ-algebra G ⊂ ⋂∞
n=1 Fn,0 such that

{An,k; 1 ≤ k ≤ mn, n ≥ 1} be conditional independent given G in each row. Let λ
be a positive G-measurable random variable. If for n → ∞,

mn∑
k=1

P(An,k | G)
p→ λ,(11)

max
1≤k≤mn

P(An,k | G)
p→ 0,(12)

then S̃n
(s,G)−→ Z, where the random variable Z has characteristic function

E(exp{λ(eit − 1)}) and for A∈ G, E(eitS̃nIA) → E(exp{λ(eit − 1)}IA).

Proof. By the same way of Theorem 2.1, we have
mn∏
k=1

E(eitX̃n,k | G)
p→ exp{λ(eit − 1)},

which implies that for any A ∈ G,
mn∏
k=1

E(eitX̃n,k | G) · IA
p→ exp{λ(eit − 1)} · IA.

Due to the property of conditional independence,

E(eitS̃n | G) = | G) = ·
mn∏
k=1

E(eitX̃n,k | G).
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Hence,
(eitS̃nIA| G)

p→ exp{λ(eit − 1)} · IA.

Since {E(eitS̃n | G); n ≥ 1} is uniformly integrable, for A ∈ G

E(eitS̃n · IA) → E(exp{λ(eit − 1)} · IA).

3. APPLICATIONS

Let {An,k, k = 1, 2, . . . , mn, n ≥ 1} be an array of row-exchangeable events.
Set Sn,j =

∑j
k=1 IAn,k

, Fn,0 = σ(
∑mn

k=1 IAn,k
), and Fn,j = σ(IAn,1 , IAn,2, . . . , IAn,j ,∑mn

k=j+1 IAn,k
), for j = 1, 2, . . . , mn. Let fn(t) =

∏n
k=1 En,k−1(e

itIAn,k ). Similar to
Eagleson (1979), we may obtain the following results.

Theorem 3.3. Let G be a sub-σ-algebra of
⋂∞

n=1 Fn,0, and λ a positive G-
measurable random variable. If for n → ∞,

n · P(An,1 | G) L1→ λ,(13)

n2 · P(An,1 | G)2 − n2 · P(An,1 ∩ An,2 | G) L1→ 0,(14)

n · P(An,1A
c
n,2) → 0,(15)

mn/n → ∞,(16)

then Sn,n
(s,G)−→ Z, where the random variable Z has characteristic function

E(exp{λ(eit − 1)}) and for A∈ G, E(eitSn,nIA) → E(exp{λ(eit − 1)}IA).

Proof. By (13), we have

nP(An,1) → E(λ) < ∞(17)

which yields

P(An,1) → 0.(18)

Similarly, we have

E[n2 · P(An,1 | G)2 − n2 · P(An,1 ∩ An,2 | G)] → 0,

which implies

n2 · E(IAn,1 · P(An,1 | G))− n2 · P(An,1 ∩ An,2) → 0.(19)

Fix n, j, 1 ≤ j ≤ mn.
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By exchangeability, for any B ∈ Fn,j−1, and each k, j ≤ k ≤ mn,

E(IAn,j · IB) = E(IAn,k
· IB).(20)

Hence, for any B ∈ Fn,j−1,

E(IAn,j · IB) = E(

∑mn
k=j IAn,k

mn − j + 1
· IB).

And
∑mn

k=j IAn,k

mn−j+1 is Fn,j−1-measurable, we have

E(IAn,j | Fn,j−1) =

∑mn
k=j IAn,k

mn − j + 1
.

Similarly, for each t with j ≤ t ≤ mn,

P(An,t | Fn,j−1) =

∑mn
k=j IAn,k

mn − j + 1
.(21)

In particular, for each j with 1 ≤ j ≤ mn,

P(An,j | Fn,j−1) = P(An,mn | Fn,j−1).(22)

Moreover, for each t with 1 ≤ t ≤ mn,

(23)
P(An,1 | G) = E(P(An,j | G) | Fn,0) = E(P(An,1 | Fn,0) | G)

= E(P(An,t | Fn,0) | G) = P(An,t | G).

Now, we want to claim that max1≤j≤n P(An,j | Fn,j−1)
p→ 0.

Since for each n ≥ 1, {P(An,mn | Fn,j−1),Fn,j−1, 1 ≤ j ≤ n} is a martingale.
Hence, by (21), (22) and Doob’s inequality, for any ε > 0,

P( max
1≤j≤n

P(An,j | Fn,j−1) > ε) = P( max
1≤j≤n

P(An,mn | Fn,j−1) > ε)

≤ E[P(An,mn | Fn,n−1)]
ε

=
P(An,mn)

ε
=
P(An,1)

ε
→ 0

Next, claim that
∑n

j=1 P(An,j | Fn,j−1)
p→ λ. By (13), we only need to show that∑n

j=1 P(An,j | Fn,j−1) − n · P(An,1 | G)
p→ 0.
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Since for each j with 1 ≤ j ≤ n, by (13), (14), (15) and Jensen’s inequality, we
have

(E|P(An,j | Fn,j−1) − P(An,1 | G)|)2 = (E|P(An,mn | Fn,j−1) − P(An,mn | G)|)2
≤ E|P(An,mn | Fn,j−1) − P(An,mn | G)|2
= E(IAn,mn

· P(An,mn | Fn,j−1)) − E(IAn,mn
· P(An,mn | G))

= E(IAn,mn
·

mn∑
k=j

IAn,k

mn − j + 1
) − E(IAn,mn

· P(An,mn | G))

≤ P(An,1)
mn − j + 1

+ P(An,1 ∩ An,2) − E(IAn,mn
· P(An,mn | G)),

which implies

E|P(An,j | Fn,j−1) − P(An,1 | G)|

≤ [ P(An,1)
mn−j+1 ]

1
2 + [P(An,1 ∩ An,2) − E(IAn,mn

· P(An,mn | G))]
1
2 .

Moreover, by (13)-(16), we have
n∑

j=1

E|P(An,j | Fn,j−1) − P(An,1 | G)| ≤ [n · P(An,1)]
1
2 · [ n

mn − n
]
1
2

+[n2 · P(An,1 ∩ An,2)− n2 · E(IAn,mn
· P(An,mn | G))]

1
2

−→ E(λ) · 0 + 0 = 0.

Hence, for any ε > 0,

P(|
n∑

j=1

P(An,j | Fn,j−1)− n · P(An,1 | G)| > ε)

≤ 1
ε
· E|

n∑
j=1

[P(An,j | Fn,j−1) − P(An,1 | G)]|

≤ 1
ε
·

n∑
j=1

E|P(An,j | Fn,j−1) − P(An,1 | G)| −→ 0.

Therefore,
∑n

j=1 P(An,j | Fn,j−1)
p→ λ.

Next, since for any fixed n, 1 ≤ k ≤ n,
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|IAn,k
− E(IAn,k

| Fn,k−1)|

= IAn,k
− 1

mn − k + 1

mn∑
j=k

IAn,j · IAn,k
+

1
mn − k + 1

mn∑
j=k

IAn,j · IAc
n,k

=
1

mn − k + 1

mn∑
j=k+1

(IAn,k
− IAn,j · IAn,k

+ IAn,j · IAc
n,k

)

=
1

mn − k + 1
[

mn∑
j=k+1

(IAn,k
· IAc

n,j
+ IAn,j · IAc

n,k
)],

we have for n → ∞, by (15),
n∑

k=1

E|IAn,k
− E(IAn,k

| Fn,k−1)|

= 2 ·
n∑

k=1

mn−k

mn−k+1
· P(An,1A

c
n,2) ≤ 2 ·

n∑
k=1

P(An,1A
c
n,2) = 2n · P(An,1A

c
n,2) → 0.

Note that for any fixed n, 1 ≤ k ≤ n,

|IAc
n,k

− En,k−1(IAc
n,k

)| = |1 − IAn,k
− 1 + En,k−1(IAn,k

)|
= |En,k−1(IAn,k

) − IAn,k
| = |IAn,k

− En,k−1(IAn,k
)|.

Therefore we have for n → ∞,

E(
n∑

k=1

|eitIAn,k − En,k−1(e
itIAn,k )|)

=
n∑

k=1

E|eit · IAn,k
+ IAc

n,k
− eit · En,k−1(IAn,k

)− En,k−1(IAc
n,k

)|

≤
n∑

k=1

E|IAn,k
− En,k−1(IAn,k

)| +
n∑

k=1

E|IAc
n,k

− En,k−1(IAc
n,k

)| → 0.

So, for n → ∞,
P{|E(eitSn,n − fn(t) | G)| > ε} ≤ P{E(|eitSn,n − fn(t)| | G) > ε}

≤ 1
ε
· E(|eitSn,n − fn(t)|)

≤ 1
ε
· E(

n∑
k=1

|eitIAn,k − En,k−1(e
itIAn,k )|) → 0.

By Theorem 2.1, we have completed the proof.
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Let {An,k}k≥1 be an array of rowise exchangeable events. Set Sn,j =
∑j

k=1 IAn,k
,

Gn,j = σ(
∑j

k=1 IAn,k
, IAn,j+1 , IAn,j+2 , . . .), j ≥ 1, and Gn,∞ =

⋂∞
j=1 Gn,j , G =⋂∞

n=1 Gn,∞. Similar to Weber(1980), we may obtain the following results.
Theorem 3.4. If there exists a G-measurable integrable random variable λ such

that for n → ∞,
n · P(An,1 | Gn,∞)

p→ λ,(24)

n · P(An,1A
c
n,2) → 0,(25)

then Sn,n
(s,G)−→ Z, where the random variable Z has characteristic function

E(exp{λ(eit − 1)}) and for A∈ G, E(eitSn,nIA) → E(exp{λ(eit − 1)}IA).

Proof. Fix n, j. By exchangeability, for any B ∈ Gn,j , and each k, 1 ≤ k ≤ j,

E(IAn,1 · IB) = E(IAn,k
· IB).

Hence, for any B ∈ Gn,j ,

E(IAn,1 · IB) = E(
∑j

k=1 IAn,k

j
· IB).

And
∑j

k=1 IAn,k

j is Gn,j -measurable, we have

P(An,1 | Gn,j) =
∑j

k=1 IAn,k

j
.(26)

For each n, since Gn,j ⊇ Gn,j+1, then {P(An,1 | Gn,j), Gn,j, n ≥ 1} is a reversed
martingale, and by the reversed martingale convergence theorem , as j → ∞,

P(An,1 | Gn,j)
L2−→ P(An,1 | Gn,∞).(27)

Next, for some m ∈ N, we consider σ-field

Fn,j−1 ≡ σ(IAn,1 , IAn,2 , . . . , IAn,j−1 ,

m∑
k=j

IAn,k
),

then for fixed n and j, by(26) and (27), as m −→ ∞,

P(An,j | Fn,j−1) =

∑m
k=j IAn,k

m − j + 1

=
(
∑m

k=1 IAn,k
−∑j−1

k=1 IAn,k
)

m − j + 1

=
m

m − j + 1
· P(An,1 | Gn,m)− j − 1

m − j + 1
· P(An,1 | Gn,j−1)

L1−→ P(An,1 | Gn,∞),
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which in turn implies for each n, as m −→ ∞,
n∑

j=1

P(An,j | Fn,j−1)
L1−→ n · P(An,1 | Gn,∞).

Thus, for each n, there exists mn ∈ N such that for any m ≥ mn ≥ n, we have

E(|
n∑

j=1

P(An,j | Fn,j−1) − n · P(An,1 | Gn,∞)|) <
1
n

.

Hence, for each n, we can choose σ-fields F ∗
n,j−1 ≡ σ(IAn,1, IAn,2 , . . . , IAn,j−1,∑mn

k=j IAn,k
), 1 ≤ j ≤ n, such that

n∑
j=1

P(An,j | F ∗
n,j−1)− n · P(An,1 | Gn,∞) L1−→ 0.

So, by (24),

n∑
j=1

P(An,j | F ∗
n,j−1)

p−→ λ.

And, in the same way as Theorem 3.1, we have max1≤j≤n P(An,j | F ∗
n,j−1)

p→ 0.

Taking G =
⋂∞

n=1 F ∗
n,0 and fn(t) =

∏n
k=1 E(eitIAn,k | F ∗

n,k−1),
we also have

E(eitSn,n − fn(t) | G)
p→ 0.

Then, by Theorem 2.1, we complete the proof.
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