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MILD WELL-POSEDNESS OF SECOND ORDER DIFFERENTIAL
EQUATIONS ON THE REAL LINE

Shangquan Bu* and Gang Cai

Abstract. We study the (W 2,p, W 1,p)-mild well-posedness of the second order
differential equation (P2) : u′′ = Au+f on the real line R, where A is a densely
defined closed operator on a Banach space X. We completely characterize the
(W 2,p, W 1,p)-mild well-posedness of (P2) by Lp-Fourier multipliers defined by
the resolvent of A.

1. INTRODUCTION

Recently, Bu considered the (W 1,p, Lp)-mild well-posedness of the following prob-
lem:

(P1) : u′(t) = Au(t) + f(t)
on the real line R, where A is a closed operator on a complex Banach space X and
1 ≤ p < ∞ [6]. He has shown that (P1) is (W 1,p, Lp)-mildly well-posed if and
only if iR ⊂ ρ(A) and the function m given by m(x) = (ix − A)−1 defines an Lp-
Fourier multiplier, where ρ(A) denotes the resolvent set of A. On the other hand, the
corresponding mild well-posedness for the periodic problem:

(P1,per) :
{

u′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π,

u(0) = u(2π),

has been studied by Keyantuo and Lizama, where f ∈ Lp(0, 2π; X), 1 ≤ p < ∞ [8].
They have shown that (P1,per) is (W 1,p, Lp)-mild well-posed if and only if iZ ⊂ ρ(A)
and ((in−A)−1)n∈Z is an Lp-Fourier multiplier. In the same paper, they also considered
the second order inhomogeneous problem of the form:

(P2,per) :

⎧⎨
⎩

u′′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π,

u(0) = u(2π),
u′(0) = u′(2π),
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in the space Lp(0, 2π; X), 1 ≤ p < ∞. They introduced two notions of mild well-
posedness for (P2,per) and they completely characterized the mild well-posedness of
(P2,per) byLp-Fourier multipliers. More precisely, they proved that (P2,per) is (W 2,p, Lp)-
mildly well-posed if and only if

{−k2 : k ∈ Z
} ⊂ ρ(A) and ((k2 + A)−1)k∈Z is

an Lp-Fourier multiplier; (P2,per) is (W 2,p, W 1,p)-mildly well-posed if and only if{−k2 : k ∈ Z
} ⊂ ρ(A) and (ik(k2 + A)−1)k∈Z is an Lp-Fourier multiplier. We note

that the mild well-posedness of (P1,per) was initially studied by Staffans in the special
case when X is a Hilbert space and p = 2 [11].
In this paper, we study the (W 2,p, W 1,p)-mild well-posedness of the following

problem:
(P2) : u′′(t) = Au(t) + f(t)

on the real line R, where A is a closed operator in a complex Banach space X and 1 ≤
p < ∞. Our main result is a characterization of the (W 2,p, W 1,p)-mild well-posedness
for (P2): when A is densely defined, then (P2) is (W 2,p, W 1,p)-mild well-posed if and
only if (−∞, 0] ⊂ ρ(A) and the functions m1, m2 given by m1(x) = −(x2 + A)−1

and m2(x) = −ix(x2 + A)−1 define Lp-Fourier multipliers. We also introduce and
study the (W 2,p, W 1+θ,p)-mild well-posedness for (P2) when 0 ≤ θ ≤ 1. When θ = 0,
we recover our main result.
We recall that the regularity of the problems (P1) and (P2) have been extensively

studied in recent years. See e.g. [4-11] and references therein. Weis obtained a char-
acterization of Lp-well-posedness for (P1) using his operator-valued Fourier multiplier
theorem on Lp(R; X) when X is a UMD Banach space and 1 < p < ∞ [12]. Arendt
and Bu studied Lp-well-posedness in interpolation spaces between X and D(A) and
mild well-poseness for (P1) using the method of sum of bisectorial operators [4].
Schweiker studied the Lp-mild well-posedness and the well-posedness in the space
BUC(R; X) of X-valued bounded and uniformly continuous functions for (P1) and
(P2) [10]. Arendt, Batty and Bu obtained a characterization of the well-posedness of
(P1) in Hölder continuous function space [2] (see also [1] for a systematic study of
(P1) and (P2)).

2. MILD-WELL-POSEDNESS AND Lp-FOURIER MULTIPLIERS

Let X be a complex Banach space and 1 ≤ p < ∞, we define as usual the first
order Sobolev spaces by

(1) W 1,p(R; X) :=
{
f ∈ Lp(R; X) : f ′ ∈ Lp(R; X)

}
where f ′ is the distributional derivative of f , equipped with the norm

‖f‖W 1,p := ‖f‖Lp +
∥∥f ′∥∥

Lp

and the second order Sobolev spaces by

(2) W 2,p(R; X) :=
{
f ∈ Lp(R; X) : f ′, f ′′ ∈ Lp(R; X)

}
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equipped with the norm

‖f‖W 2,p := ‖f‖Lp +
∥∥f ′∥∥

Lp +
∥∥f ′′∥∥

Lp .

It is well known that W 1,p(R; X) and W 2,p(R; X) are Banach spaces.
Let A be a densely defined closed operator on X , we will always consider D(A) as

a Banach space equipped with its graph norm and we will consider the D(A)-valued
Sobolev space W 2,p(R; D(A)) which is a dense subspace of Lp(R; X) (see Lemma
2.3).
If f ∈ Lp(R; X), u ∈ W 2,p(R; X)∩ Lp(R; D(A)) is called a strong Lp-solution

of (P2), if the equation (P2) is satisfied a.e. on R. We say that (P2) is Lp-well-posed
if for each f ∈ Lp(R; X), there exists a unique strong Lp-solutuion of (P2). When
(P2) is Lp-well-posed, we let Bf := u, then B is linear and B maps continuously
Lp(R; X) into W 2,p(R; X) by the Closed Graph Theorem. Therefore the image of
Lp(R; X) by B is contained in W 1,p(R; X). On the other hand, it is easy to verify
that ABu = BAu = u when u ∈ W 2,p(R; D(A)) by the Lp-well-posedness of (P2),
where A is defined by Au = u′′ − Au with domain D(A) := W 2,p(R; D(A)).
For the characterization of the Lp-well-posedness of (P2), strong conditions on the

geometry of the underlying Banach space X and the Rademacher boundedness of the
resolvent of A are needed [5]. This is the reason we consider in this paper a mild
well-posedness for (P2): besides other conditions on the closed operator A, we assume
that there exists a strong Lp-solution of (P2) only for f in a dense subspace (namely
W 1,p(R; D(A))) of Lp(R; X) (see [8] for a similar notion for (P2,per)).

Definition 2.1. Let 1 ≤ p < ∞ and let A be a densely defined closed operator on
X with domain D(A). We say that (P2) is (W 2,p, W 1,p)-mildly well-posed, if there
exists a bounded linear operator B that maps Lp(R; X) continuously into itself with
range contained in W 1,p(R; X), B(W 1,p(R; D(A))) ⊂ W 2,p(R; D(A)) and ABu =
BAu = u when u ∈ W 2,p(R; D(A)), whereAu = u′′−Au when u ∈ W 2,p(R; D(A)).
We call B the solution operator of the problem (P2).

Remarks 2.1.
1. When (P2) is (W 2,p, W 1,p)-mildly well-posed, if B is the solution operator, for
each u ∈ W 2,p(R; D(A)), we have (Bu)′′−A(Bu) = u by assumption. Suppose
that v ∈ W 2,p(R; D(A)) also satisfies v′′ − Av = u, i.e., Av = u. Then
BAv = Bu = v by assumption. This shows that for each u ∈ W 2,p(R; D(A)),
there exists a unique solution v ∈ W 2,p(R; D(A)) satisfying v′′ − Av = u and
this solution is given by Bu.

2. When (P2) is (W 2,p, W 1,p)-mildly well-posed, if B is the solution operator,
then B is a bounded linear operator from Lp(R; X) into W 1,p(R; X). Indeed,
if un, u ∈ Lp(R; X), un → u in Lp(R; X) and Bun → v in W 1,p(R; X),
then Bun → v in Lp(R; X) as W 1,p(R; X) ⊂ Lp(R; X) and the inclusion is
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obviously continuous, therefore v = Bu by the boundedness of B on Lp(R; X).
This implies that B is a bounded linear operator from Lp(R; X) intoW 1,p(R; X)
by the Closed Graph Theorem. A similar argument shows that B is a bounded
linear operator from W 1,p(R; D(A)) into W 2,p(R; D(A)). This implies that B
acts also boundedly on W 2,p(R; D(A)) by the Closed Graph Theorem.

In this paper, we will show that (P2) is (W 2,p, W 1,p)-mild well-posed if and only
if (−∞, 0] ⊂ ρ(A) and the functions m1, m2 given by m1(x) = −(x2 + A)−1 and
m2(x) = −ix(x2 + A)−1 define Lp-Fourier multipliers. This may be considered as
the parallel result for (P2) of Keyantuo and Lizama’s result obtained in [8] for the
periodic problem (P2,per).
In order to study the (W 2,p, W 1,p)-mild well-posedness, we need to introduce the

Fourier transform for vector-valued functions. Let X be a complex Banach space, we
denote by S(R; X) the Schwartz class consisting of all X-valued rapidly decreasing
smooth functions on R, more precisely an X-valued function φ on R is in S(R; X) if
φ is infinitely differentiable and for all m, n ∈ N ∪ {0}, we have

sup
s∈R

(1 + |s|)m
∥∥∥φ(n)(s)

∥∥∥ < ∞.

It is well-known that the Fourier transform F defined on L1(R; X) by

(Fφ)(t) :=
∫

R

e−itsφ(s)ds, (t ∈ R)

is an isomorphism on S(R; X) and its inverse on S(R; X) is given by

(F−1φ)(t) :=
1
2π

∫
R

eitsφ(s)ds, (t ∈ R).

It is well known that S(R; X) is dense in Lp(R; X), W 1,p(R; X) andW 2,p(R; X)
when 1 ≤ p < ∞ (see Lemma 2.3). Thus W 1,p(R; X) (resp. W 2,p(R; X)) is the
completion of S(R; X) under the norm ‖ · ‖W 1,p (resp. ‖ · ‖W 2,p).
Let m : R → L(X) be a bounded measurable function and 1 ≤ p < ∞, where

L(X) is the space of all bounded linear operators on X . We say that m defines an
Lp-Fourier multiplier, if there exists a constant C > 0 such that∥∥F−1(mFf)

∥∥
Lp ≤ C ‖f‖Lp

whenever f ∈ S(R; X) [1, 12]. We note that when f ∈ S(R; X), the functionmFf is
in L1(R; X), therefore the term F−1(mFf) in the left hand side makes sense. When
m is an Lp-Fourier multiplier, there exists a unique bounded linear operator B on
Lp(R; X) satisfying F (Bf) = mFf when f ∈ S(R; X). This follows easily from
the density of S(R; X) in Lp(R; X) [5].
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Next we introduce the weightedLp-spacesLp
α,ω(R; X), first order weighted Sobolev

spaces W 1,p
α,ω(R; X) and second order weighted Sobolev spaces W 2,p

α,ω(R; X). We let
ω be a fixed C2-function on R such that ω(t) ≥ 1 for t ∈ R and ω(t) = |t| when
|t| ≥ 2. For fixed α > 0, we let Lp

α,ω(R; X) be the space of all measurable functions
f : R → X such that

‖f‖Lp
α,ω

:=
(∫

R

e−pαω(t) ‖f(t)‖p dt

)1/p

< ∞.

Lp
α,ω(R; X) equipped with the norm ‖·‖Lp

α,ω
becomes a Banach space. We define first

weighted Sobolev spaces W 1,p
α,ω(R; X) as the space of all functions f ∈ Lp

α,ω(R; X)
such that f ′ ∈ Lp

α,ω(R; X). Here f ′ is understood in the sense of distributions.
W 1,p

α,ω(R; X) equipped with the norm

‖f‖
W 1,p

α,ω
:= ‖f‖L

p
α,ω

+
∥∥f ′∥∥

Lp
α,ω

is a Banach space. In a similar way, we define the second order weighted Sobolev
spaces W 2,p

α,ω(R; X) as the space of all functions f ∈ Lp
α,ω(R; X) such that f ′, f ′′ ∈

Lp
α,ω(R; X), where f ′, f ′′ are also understood in the sense of distributions. W 2,p

α,ω(R; X)
equipped with the norm

‖f‖W 2,p
α,ω

:= ‖f‖Lp
α,ω

+
∥∥f ′∥∥

L
p
α,ω

+
∥∥f ′′∥∥

L
p
α,ω

is a Banach space. We need the following preparation.

Lemma 2.1. The mapping f �→ Φ(f) :=e−αωf is an isomorphism fromLp
α,ω(R; X)

into Lp(R; X), from W 1,p
α,ω(R; X) into W 1,p(R; X) and from W 2,p

α,ω(R; X) into
W 2,p(R; X).

Proof. Follows the same lines as the proof in Bu [6], we have that the mapping
f �→ Φ(f) is an isomorphism from Lp

α,ω(R; X) into Lp(R; X) and from W 1,p
α,ω(R; X)

into W 1,p(R; X). Next we prove that the mapping f �→ Φ(f) is also an isomorphism
from W 2,p

α,ω(R; X) into W 2,p(R; X). Indeed, we note that when f ∈ W 2,p
α,ω(R; X),

(e−αωf)′ = −αw′e−αωf + e−αωf ′,

and

(e−αωf)′′ = −αω′′e−αωf − αw′(−αw′e−αωf + e−αωf ′) − αω′e−αωf ′ + e−αωf ′′

= (−αω′′ + α2(ω′)2)e−αωf − 2αω′e−αωf ′ + e−αωf ′′.

observe that ω′, ω′′ are bounded on R. Thus Φ(f) ∈ W 2,p(R; X) whenever f ∈
W 2,p

α,ω(R; X) and ‖Φ(f)‖W 2,p ≤ C ‖f‖
W

2,p
α,ω
for some constant C ≥ 0 depending only
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on α, ω and p. The map Φ is clearly injective from W 2,p
α,ω(R; X) into W 2,p(R; X), it

remains to show that Φ is surjective. To this end we let g ∈ W 2,p(R; X) and f = eαωg.
We observe that

f ′ = αw′eαωg + eαωg′,

and

f ′′ = αω′′eαωg + αw′(αw′eαωg + eαωg′) + αω′eαωg′ + eαωg′′

= (αω′′ + α2(ω′)2)eαωg + 2αω′eαωg′ + eαωg′′,

which implies that f ∈ W 2,p
α,ω(R; X) and Φ(f) = g. Here we have also used the fact

that ω′, ω′′ are bounded on R. This completes the proof.

We will transform the (W 2,p, W 1,p)-mild well-posedness of (P2) into a similar
mild well-posedness in weighted function spaces. This idea was firstly used by Mielke
in the study of Lp-well-posedness for (P1) [9] (see also [6] and [10]).

Definition 2.2. Let X be a Banach space, 1 ≤ p < ∞, α > 0 and let A : D(A) →
X be a densely defined closed operator on X . We say that (P2) is (W 2,p

α,ω, W 1,p
α,ω)-

mildly well-posed, if there exists a bounded linear operator Bα that maps boundedly
from Lp

α,ω(R; X) intoW 1,p
α,ω(R; X), Bα(W 2,p

α,ω(R; D(A))) ⊂ W 2,p
α,ω(R; D(A)), Bα also

satisfies BαAαu = AαBαu = u when u ∈ W 2,p
α,ω(R; D(A)), where Aα = u′′ − Au

when u ∈ W 2,p
α,ω(R; D(A)).

Remark 2.1. When (P2) is (W 2,p
α,ω, W 1,p

α,ω)-mildlywell-posed, for each u ∈ W 2,p
α,ω(R;

D(A)), we have (Bαu)′′ − A(Bαu) = u by assumption. Suppose that v ∈ W 2,p
α,ω(R;

D(A)) also satisfies v′′ − Av = u, i.e., Aαv = u. Then BαAαv = Bαu = v by as-
sumption. This shows that for each u ∈ W 2,p

α,ω(R; D(A)), there exists a unique solution
v ∈ W 2,p

α,ω(R; D(A)) satisfying v′′ − Av = u and this solution is given by Bαu.

The following lemma will be useful for proving the main results of this paper.

Lemma 2.2. Let X be a Banach space, 1 ≤ p < ∞ and let A : D(A) → X be
a densely defined closed operator on X . We assume that (P2) is (W 2,p, W 1,p)-mildly
well-posed. Then it is (W 2,p

α,ω, W 1,p
α,ω)-mildly well-posed when α > 0 is small enough.

Proof. Let Φα,ω(t) = e−αω(t) and Φ−α,ω(t) = eαω(t) when t ∈ R. Since (P2)
is (W 2,p, W 1,p)-mildly well-posed, there exists a bounded linear operator B that maps
Lp(R; X) continuously into itself with range in W 1,p(R; X), B(W 1,p(R; D(A))) ⊂
W 2,p(R; D(A)) and ABu = BAu = u when u ∈ W 2,p(R; D(A)). Let u ∈ W 2,p

α,ω(R;
D(A)) and let u1 = Φα,ωu. It follows from Lemma 2.1 that u1 ∈ W 2,p(R; D(A)).
We have u′′

1 − Au1 ∈ Lp(R; X) and B(u′′
1 − Au1) = u1 by assumption and Remarks

2.1. We observe that
u′

1 = −αω′Φα,ωu + Φα,ωu′,
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and

u′′
1 = −αω′′Φα,ωu − αω′(−αω′Φα,ωu + Φα,ωu′) − αω′Φα,ωu′ + Φα,ωu′′

= (−αω′′ + α2(w′)2)Φα,ωu − 2αω′Φα,ωu′ + Φα,ωu′′.

It follows that

B(u′′
1−Au1)=−αB[(ω′′−α(w′)2)Φα,ωu+2ω′Φα,ωu′]+BΦα,ωu′′−BAΦα,ωu=Φα,ωu,

which implies

(3) BΦα,ω(u′′ − Au) = Φα,ωu + αB[(ω′′ − α(w′)2)Φα,ωu + 2ω′Φα,ωu′].

For u ∈ W 1,p(R; X), we define

Du := B[(ω′′ + α(w′)2)u + 2ω′u′].

By Remarks 2.1, B is a bounded linear operator from W 1,p(R; D(A)) into W 2,p(R;
D(A)), it follows that D is bounded and linear on W 2,p(R; D(A)). Since B maps
boundedlyLp(R; X) intoW 1,p(R; X) by assumption, D is also bounded and linear on
W 1,p(R; X). By (3), we have

BΦα,ω(u′′ − Au) = (I + αD)Φα,ωu

when u ∈ W 2,p
α,ω(R; D(A)). We note that the bounded linear operator I + αD is

invertible on W 1,p(R; X) and W 2,p(R; D(A)) when α > 0 is small enough. For such
α, we obtain

Φ−α,ω(I + αD)−1BΦα,ω(u′′ − Au) = u,(4)

whenever u ∈ W
2,p
α,ω(R; D(A)). Let

Bα := Φ−α,ω(I + αD)−1BΦα,ω.

If u ∈ Lp
α,ω(R; X), then BΦα,ωu ∈ W 1,p(R; X) by assumption and Lemma 2.1, it

follows that Bαu ∈ W 1,p
α,ω(R; X) as we have shown that 1 + αD is invertible on

W 1,p(R; X). Thus Bα is bounded and linear from L
p
α,ω(R; X) into W

1,p
α,ω(R; X).

We notice that when u ∈ W 2,p
α,ω(R; D(A)), we have BΦα,ωu ∈ W 2,p(R; D(A))

by assumption and Lemma 2.1. Since (I + αD)−1 is bounded on W 2,p(R; D(A)),
it follows that Bαu = Φ−α,ω(I + αD)−1BΦα,ωu ∈ W 2,p

α,ω(R; D(A)) by Lemma 2.1.
We have shown that Bα(W 2,p

α,ω(R; D(A))) ⊂ W 2,p
α,ω(R; D(A)). It is clear from the

definition of Bα and (4) that BαAαu = u when u ∈ W 2,p
α,ω(R; D(A)).

Next we show that AαBαu = u when u ∈ W 2,p
α,ω(R; D(A)). Let v = Bαu ∈

W 2,p
α,ω(R; D(A)). We claim that v′′ = Av +u. In fact, from the definition of v, we see

that
Φα,ωv + αDΦα,ωv = BΦα,ωu,
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which implies

Φα,ωv = BΦα,ωu − αDΦα,ωv

= BΦα,ωu − αB(ω′′ − α(w′)2)Φα,ωv − 2αBω′Φα,ωv′.

Thus we obtain

(5) v = Φ−α,ωBΦα,ωu − αΦ−α,ωB(ω′′ − α(w′)2)Φα,ωv − 2αΦ−α,ωBω′Φα,ωv′.

Since Φα,ωu, (ω′′ − α(w′)2)Φα,ωv ∈ W 2,p(R; D(A)), it follows that Φ−α,ωBΦα,ωu

and Φ−α,ωB(ω′′ − α(w′)2)Φα,ωv belong to W 2,p
α,w(R; D(A)) by Lemma 2.1. This

implies that Φ−α,ωBω′Φα,ωv′ ∈ W 2,p
α,w(R; D(A)) by (5) as v ∈ W 2,p

α,w(R; D(A)). Thus
Bω′Φα,ωv′ ∈ W 2,p(R; D(A)) by Lemma 2.1. It is clear that BΦα,ωu and B(ω′′ −
α(w′)2)Φα,ωv belong to W 2,p(R; D(A)) by assumption and Lemma 2.1. Therefore

[BΦα,ωu]′′ = ABΦα,ωu + Φα,ωu,

[B(ω′′ − α(w′)2)Φα,ωv]′′ = AB(ω′′ − α(w′)2)Φα,ωv + (ω′′ − α(w′)2)Φα,ωv,

and

[Bω′Φα,ωv′]′′ = ABω′Φα,ωv′ + ω′Φα,ωv′.

by the assumption that ABu = u when u ∈ W 2,p(R; D(A)). By (5), we have that

v′ = αω′Φ−α,ωBΦα,ωu + Φ−α,ω[BΦα,ωu]′ − α2ω′Φ−α,ωB(ω′′ − α(w′)2)Φα,ωv

− αΦ−α,ω[B(ω′′ − α(w′)2)Φα,ωv]′ − 2α2ω′Φ−α,ωBω′Φα,ωv′

− 2αΦ−α,ω[Bω′Φα,ωv′]′,

which implies

v′′ = αω′′Φ−α,ωBΦα,ωu + αω′{αω′Φ−α,ωBΦα,ωu + Φ−α,ω[BΦα,ωu]′}
+ αω′Φ−α,ω[BΦα,ωu]′ + Φ−α,ω[BΦα,ωu]′′ − α2ω′′Φ−α,ωB(ω′′ − α(w′)2)Φα,ωv

+ −α2ω′{αω′Φ−α,ωB(ω′′ − α(w′)2)Φα,ωvΦ−α,ω[B(ω′′ − α(w′)2)Φα,ωv]′}
− α2ω′Φ−α,ω[B(ω′′ − α(w′)2)Φα,ωv]′ − αΦ−α,ω[B(ω′′ − α(w′)2)Φα,ωv]′′

− 2α2ω′′Φ−α,ωBω′Φα,ωv′ − 2α2ω′{αω′Φ−α,ωBω′Φα,ωv′ + Φ−α,ω[Bω′Φα,ωv′]′}
− 2α2ω′Φ−α,ω[Bω′Φα,ωv′]′ − 2αΦ−α,ω[Bω′Φα,ωv′]′′

= αω′′{Φ−α,ωBΦα,ωu − αΦ−α,ωB(ω′′ − α(w′)2)Φα,ωv − 2αΦ−α,ωBω′Φα,ωv′}
+ α2(ω′)2Φ−α,ωBΦα,ωu + 2αω′Φ−α,ω[BΦα,ωu]′ + Φ−α,ωABΦα,ωu + u

− α3(ω′)2Φ−α,ωB(ω′′ − α(w′)2)Φα,ωv − 2α2ω′Φ−α,ω[B(ω′′ − α(w′)2)Φα,ωv]′

− αΦ−α,ωAB(ω′′ − α(w′)2)Φα,ωv − αΦ−α,ω(ω′′ − α(w′)2)Φα,ωv

− −2α3(ω′)2Φ−α,ωBω′Φα,ωv′4α2ω′Φ−α,ω[Bω′Φα,ωv′]′

− −2αΦ−α,ωABω′Φα,ωv′ − 2αΦ−α,ωω′Φα,ωv′
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= αω′′v + α2(ω′)2v + 2αω′Φ−α,ω[BΦα,ωu

− αB(ω′′−α(w′)2)Φα,ωv−2αBω′Φα,ωv′]′+Av+u −αω′′v + α2(ω′)2v − 2αω′v′

= Av + u + 2α2(ω′)2v − 2αω′v′ + 2αω′Φ−α,ω[Φα,ωv]′

= Av + u + 2α2(ω′)2v − 2αω′v′ + 2αω′Φ−α,ω[−αω′Φα,ωv + Φα,ωv′]

= Av + u + 2α2(ω′)2v − 2αω′v′ − 2α2(ω′)2v + 2αω′v′

= Av + u.

Thus AαBαu = u when u ∈ W 2,p
α,ω(R; D(A)). We have shown that (P2) is (W 2,p

α,ω,
W 1,p

α,ω)-mildly well-posed. This completes the proof.

Lemma 2.3. Let X be a Banach space and 1 ≤ p < ∞, then S(R; X) is dense
in Lp(R; X), W 1,p(R; X) and W 2,p(R; X). If A : D(A) → X is a densely defined
closed operator on X , then S(R; D(A)) is dense in Lp(R; X).

Proof. The proof is a modification of the proof of Lemma 3 of Bu [6]. We omit
it.

Now we are going to prove the following result which characterizes (W 2,p, W 1,p)-
mildly well-posedness in terms of operator-valued Lp-Fourier multipliers defined by
the resolvent of A.

Theorem 2.1. Let X be a Banach space, 1 ≤ p < ∞ and let A : D(A) → X be
a densely defined closed operator on X . Then the following assertions are equivalent.
(i) (P2) is (W 2,p, W 1,p)-mildly well-posed;
(ii) (−∞, 0] ⊂ ρ(A) and the functions m1, m2 defined on R by m1(x) = −(x2 +

A)−1 and m2(x) = −ix(x2 + A)−1 are Lp-Fourier multipliers.

Proof. (i)⇒ (ii): Suppose that (P2) is (W 2,p, W 1,p)-mildly well-posed, then
(P2) is (W 2,p

α,ω, W 1,p
α,ω)-mildly well posed when α > 0 is small enough by Lemma 2.2.

By the Closed Graph Theorem, there exists a constant C > 0 satisfying

(6) ‖Bαf‖W 1,p
α,ω

≤ C ‖f‖Lp
α,ω

when f ∈ Lp
α,ω(R; X). Firstly, we show that (−∞, 0] ⊂ ρ(A). Let ξ ∈ R and y ∈ X

be fixed. Then there exits yn ∈ D(A) such that yn → y when n → ∞ as D(A) is
dense inX by assumption. We define f(t) = eiξty and fn(t) = eiξtyn for t ∈ R. Then
f ∈ L

p
α,ω(R; X), fn ∈ W

2,p
α,ω(R; D(A)) and fn → f in L

p
α,ω(R; X) when n → ∞. Let

un := Bαfn, then un ∈ W 2,p
α,ω(R; D(A)) by the (W 2,p

α,ω, W 1,p
α,ω)-mild well-posedness of

(P2). We have
u′′

n(t) − Aun(t) = fn(t)
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a.e. on R by the equality AαBαu = u when u ∈ W 2,p
α,ω(R; D(A)).

Since fn(s + t) = eiξsfn(t) when t ∈ R, both functions un(s + ·) and eiξsun in
W 2,p

α,ω(R; D(A)) are strong Lp-solutions of

u′′ − Au = eiξsfn.

We deduce that un(s + t) = eiξsun(t) when s, t ∈ R by Remark 2.1. Therefore there
exists xn ∈ D(A) such that un(t) = eiξtxn when t ∈ R. Thus

−ξ2eiξtxn − eiξtAxn = eiξtyn

when t ∈ R or equivalently

−ξ2xn − Axn = yn.(7)

Since fn → f in Lp
α,ω(R; X), it follows that un → Bαf in Lp

α,ω(R; X) when n → ∞.
Hence there exists x ∈ X such that (Bαf)(t) = eiξtx when t ∈ R and xn → x when
n → ∞. We conclude from (7) and the closedness of A that x ∈ D(A) and

−ξ2x − Ax = y,(8)

which implies that −ξ2 − A is surjective.
To show that −ξ2 − A is also injective, we assume that Ax0 = −ξ2x0 for some

x0 ∈ D(A). Then u0 ∈ W 2,p
α,ω(R; D(A)) defined by u0(t) = eiξtx0 solves the equation

u′′ −Au = 0. We deduce that x0 = 0 by Remark 2.1. Thus −ξ2 −A is injective. We
have shown that −ξ2 ∈ ρ(A) since A is closed. Since ξ ∈ R is arbitrary, we conclude
that (−∞, 0] ⊂ ρ(A).
It follows from (8) that x = (−ξ2 − A)−1y. We note that ‖f‖Lp

α,ω
= cα,ω,p ‖y‖ ,

‖Bαf‖L
p
α,ω

= cα,ω,p ‖x‖ and ‖(Bαf)′‖L
p
α,ω

= cα,ω,p ‖iξx‖ for some constant cα,ω,p >

0 depending only on α, ω and p. By (6), we have

‖x‖ ≤ C ‖y‖ , ‖iξx‖ ≤ C ‖y‖ ,

or equivalently ∥∥(−ξ2 − A)−1
∥∥ ≤ C,

∥∥iξ(−ξ2 − A)−1
∥∥ ≤ C

when ξ ∈ R.
We have shown that (−∞, 0] ⊂ ρ(A) and the functions m1, m2 defined on R by

m1(x) := (−x2 − A)−1 and m2(x) := ix(−x2 − A)−1 are uniformly bounded on R.
For fixed f ∈ Lp(R; X), there exists a sequence (fn)n≥1 ⊂ S(R; D(A)) such that
fn → f in Lp(R; X) when n → ∞ by Lemma 2.3. Let un := Bfn ∈ W 2,p(R; D(A)).
Then (un)′′ − Aun = fn and un → Bf in Lp(R; X) when n → ∞ since B maps
Lp(R; X) continuously into itself by assumption.
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On the other hand, the function gn given by gn(x) := (−x2 − A)−1Ffn(x) is in
S(R; D(A)). Here we have used the facts that for each n ∈ N, Ffn ∈ S(R; D(A)),
m1 is infinitely differentiable and m

(k)
1 (x) =

∑k+1
n=1 pn(x)m1(x)n for all k ∈ N,

where pn is a polynomial. Let vn := F−1gn, then vn ∈ S(R; D(A)) and thus vn ∈
W 2,p(R; D(A)). Now we can see easily that v′′n −Avn = fn. It follows from Remarks
2.1 that un = vn. This shows that m1 is an Lp-Fourier multiplier and the bounded
linear operator on Lp(R; X) defined by m1 is in fact B. In a similar way, we show
that m2 is also an Lp-Fourier multiplier. Therefore the implication (i) ⇒ (ii) is true.
(ii) ⇒ (i): We assume that (−∞, 0] ⊂ ρ(A) and the functions m1, m2 given by

m1(x) = −(x2 + A)−1 and m2(x) = −ix(x2 + A)−1 define Lp-Fourier multipliers.
Then m1 and m2 are uniformly bounded on R [12]. Let B and B1 be the bounded
linear operators on Lp(R; X) given by m1 and m2, respectively. Let C := ‖B‖ and
C1 := ‖B1‖. For f ∈ S(R; X), we have F (Bf)(x) = m1(x)Ff(x) and

F (B1f)(x) = m2(x)Ff(x) = ixm1(x)Ff(x) = ixF (Bf)(x).

It follows from the assumption that m1, m2 define Lp-Fourier multipliers that Bf ∈
W 1,p(R; X) and [Bf ]′ = B1f . Furthermore we have ‖Bf‖W 1,p ≤ (C + C1)‖f‖Lp .
This implies that the image of Lp(R; X) by B is contained in W 1,p(R; X) by Lemma
2.3.
Let f ∈ S(R; D(A)). Then f, Af ∈ S(R; X), F (Bf)(x) = m1(x)Ff(x) and

F (ABf)(x) = m1(x)(Af)(x). It follows that B(Af) = ABf and ‖Bf‖Lp(R;D(A)) ≤
C‖f‖Lp(R;D(A)). On the other hand, we have [Bf ]′ = Bf ′, thus F ([Bf ]′)(x) =
ixF (Bf)(x) = m2(x)Ff(x) and F (A[Bf ]′)(x) = F (ABf ′)(x) = m2(x)(Af)(x).
We deduce that ‖[Bf ]′‖Lp(R;D(A)) ≤ C1‖f‖Lp(R;D(A)). It follows that

‖Bf‖W 1,p(R;D(A)) ≤ (C + C1)‖f‖Lp(R;D(A)).

Thus B maps boundedly Lp(R; D(A)) into W 1,p(R; D(A)) by Lemma 2.3. A similar
argument shows that B also maps boundedly W 1,p(R; D(A)) into W 2,p(R; D(A)).
This implies that B acts boundedly on W 2,p(R; D(A)) by the Closed Graph Theorem.
Let f ∈ S(R; D(A)). Then

F (Ai(Bf)(j)) = m1F (Aif (j))

when 0 ≤ i, j ≤ 2 as A is clearly commute withm1. It follows that ‖Bf‖W 2,p(R;D(A)) ≤
C‖f‖W 2,p(R;D(A)) by the assumption that m1 defines an Lp-Fourier multiplier. This
shows that B maps boundedly from W 2,p(R; D(A)) into itself by Lemma 2.3.
It remains to show that ABu = BAu = u when u ∈ W 2,p(R; D(A)). Let

f ∈ S(R; D(A)). Then it is clear that we have

F (BAf)(x) = m1(x)F (Af)(x) = m1(x)(−x2 − A)Ff(x) = Ff(x)
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F (ABf)(x) = −(x2 + A)F (Bf)(x) = (−x2 − A)m1(x)Ff(x) = Ff(x).

Thus
BAf = ABf = f.

This equality remains true when f ∈ W 2,p(R; D(A)) by the boundedness of A from
W 2,p(R; D(A)) intoLp(R; X), the boundedness of B on Lp(R; X) andW 2,p(R; D(A))
and Lemma 2.3. This shows that the implication (ii) ⇒ (i) is true. The proof is com-
plete.

Next we show that when X is a UMD Banach space and 1 < p < ∞, one can give
a simpler characterization of the (W 2,p, W 1,p)-mild well-posedness for (P2). For this
we need to use the operator-valued Fourier multiplier theorem on Lp(R, X) obtained
by Weis [12]. Weis’ result involves the Rademacher boundedness for sets of bounded
linear operators on Banach spaces. Let γj be the j-th Rademacher function on [0, 1]
given by γj(t) = sgn(sin(2jt)) when j ≥ 1. For x ∈ X , we denote by γj ⊗ x the
X-valued function t → rj(t)x on [0, 1].

Definition 2.3. Let X be a Banach space. A set T ⊂ L(X) is said to be
Rademacher bounded, if there exists C > 0 such that

∥∥∥ n∑
j=1

γj ⊗ Tjxj

∥∥∥
L1

≤ C
∥∥∥ n∑

j=1

γj ⊗ xj

∥∥∥
L1

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

Let S, T ⊂ L(X) be Rademacher bounded sets. Then it can be seen easily from the
definition that the product set ST := {ST : S ∈ S, T ∈ T}, the union set S∪T and the
sum set S+T := {S + T : S ∈ S, T ∈ T} are still Rademacher bounded. It was shown
by Weis that when X is a UMD Banach space and 1 < p < ∞, if m : R → L(X) is a
C1-function such that both sets {m(x) : x ∈ R} and {xm′(x) : x ∈ R} are Rademacher
bounded, then m is an Lp-Fourier multiplier [12, Theorem 3.4]. This result together
with Theorem 2.1 gives the following characterization of the (W 2,p, W 1,p)-mild well-
posedness (P2) when X is a UMD Banach space and 1 < p < ∞.
Corollary 2.2. Let X be a UMD Banach space, 1 < p < ∞ and let A : D(A) →

X be a densely defined closed operator on X . Then the following assertions are
equivalent.
(i) (P2) is (W 2,p, W 1,p)-mildly well-posed;
(ii) (−∞, 0] ⊂ ρ(A) and the function m given by m(x) = −ix(x2 + A)−1 is an

Lp-Fourier multiplier.

Proof. The implication (i)⇒ (ii) is clearly true by Theorem 2.1, we only need to
show that the implication (ii) ⇒ (i) is true. We assume that (−∞, 0] ⊂ ρ(A) and m
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given bym(x) = ixη(x) defines an Lp-Fourier multiplier, where η(x) = −(x2 +A)−1

when x ∈ R. By Theorem 2.1, it will suffice to show that the function η defines
an Lp-Fourier multiplier. By [12, Theorem 3.4], we only need to show that both
sets {η(x) : x ∈ R} and {xη′(x) : x ∈ R} are Rademacher bounded as X is a
UMD Banach space and 1 < p < ∞. Since η is analytic, we deduce that the set
{η(x) : |x| ≤ 1} is Rademacher bounded [12, Proposition 2.6]. The assumption that
m defines an Lp-Fourier multiplier implies that the set {ixη(x) :∈ R} is Rademacher
bounded [7], we deduce that the set {η(x) : |x| ≥ 1} is Rademacher bounded. Here
we have used the fact that the set { IX

ix : |x| ≥ 1} is Rademacher bounded and the
easy fact that the product set of two Rademacher bounded sets is still Rademacher
bounded [12], where IX denotes the identity operator on X . We have shown that the
set {η(x) : x ∈ R} is Rademacher bounded as the union of two Rademacher bounded
sets is still Rademacher bounded [3, 7, 12].
On the other hand η′(x) = 2xη(x)2, thus xη′(x) = 2x2η(x)2 = −2m(x)2. The

function 2m(x)2 is analytic, therefore the set {xη′(x) : |x| ≤ 1} is Rademacher
bounded [12, Proposition 2.6]. We deduce from the assumption that m defines an
Lp-Fourier multiplier that the set {xη′(x) : |x| ≥ 1} is also Rademacher bounded
[7]. It follows that the set {xη′(x) : x ∈ R} is Rademacher bounded. The proof is
complete.

The next result gives a sufficient condition involved Rademacher boundedness of
the resolvent of A for the problem (P2) to be (W 2,p, W 1,p)-mildly well-posed when
X is a UMD Banach space and 1 < p < ∞.

Corollary 2.3. Let X be a UMD Banach space, 1 < p < ∞ and let A : D(A) →
X be a densely defined closed operator on X . We assume that (−∞, 0] ⊂ ρ(A) and
the set {x3/4(x+A)−1 : x ≥ 0} is Rademacher bounded. Then (P2) is (W 2,p, W 1,p)-
mildly well-posed.

Proof. Let m(x) = −ix(x2 + A)−1 when x ∈ R. It will suffice to show
that both sets {m(x) : x ∈ R} and {xm′(x) : x ∈ R} are Rademacher bounded
by Corollary 2.2 and [12, Theorem 3.4]. The set {m(x) : |x| ≤ 1} is Rademacher
bounded as m is analytic [12, Proposition 2.6]. The set {m(x) : |x| > 1} is also
Rademacher bounded as {|x|3/2(x2 + A)−1 : |x| > 1} is Rademacher bounded by
assumption. Here we have used the fact that the set { IX√

|x| : |x| > 1} is Rademacher
bounded and the easy fact that the product set of two Rademacher bounded sets is
still Rademacher bounded [12]. Thus {m(x) : x ∈ R} is Rademacher bounded as the
union of two Rademacher bounded sets is still Rademacher bounded [3, 7, 12]. We
have xm′(x) = m(x) + 2sgn(x)i[|x|3/2(x2 + A)−1]2. Therefore {xm′(x) : x ∈ R}
is Rademacher bounded by assumption as the product set of two Rademacher bounded
sets is still Rademacher bounded [12]. The proof is complete.
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Let 0 ≤ θ ≤ 1 be fixed, we define the fractional Sobolev space W 1+θ,p(R; X) of
order 1 + θ as the completion of S(R; X) under the norm

‖f‖W 1+θ,p := ‖f‖Lp + ‖f ′‖Lp + ‖F−1ξFf‖Lp ,

where

ξ(x) := (ix)1+θ =

{
|x|1+θe

(1+θ)iπ
2 , x ≥ 0,

|x|1+θe
−(1+θ)iπ

2 , x < 0.
(9)

Here f ′ is understood in the sense of distributions. It is clear that when θ = 1,
ξ(x) = −x2, this implies that when θ = 1, the above definition coincides with the
definition (2) of W 2,p(R; X). It is also clear that when θ = 0, the above definition
coincides with the definition (1) ofW 1,p(R; X). It is also clear from the definition that
W 1+θ,p(R; X) ⊂ W 1,p(R; X) and the embedding is continuous. Now we are ready to
introduce a mild well-posedness for (P2) which will generalize the (W 2,p, W 1,p)-mild
well-posedness for (P2).

Definition 2.4. Let 1 ≤ p < ∞, 0 ≤ θ ≤ 1 and let A be a densely defined closed
operator on a Banach spaceX with domainD(A). We say that (P2) is (W 2,p, W 1+θ,p)-
mildly well-posed, if there exists a bounded linear operator B that maps Lp(R; X)
continuously into itself with range contained in W 1+θ,p(R; X), B(W 1,p(R; D(A))) ⊂
W 2,p(R; D(A))) and ABu = BAu = u when u ∈ W 2,p(R; D(A)), where Au =
u′′ − Au when u ∈ W 2,p(R; D(A)). We call B the solution operator of the problem
(P2).

It is clear from the definition that when (P2) is (W 2,p, W 1+θ,p)-mildly well-posed,
then it is (W 2,p, W 1,p)-mildly well-posed. It is also clear that the (W 2,p, W 1+θ,p)-mild
well-posedness of (P2) coincides with the (W 2,p, W 1,p)-mild well-posednees of (P2)
when θ = 0. We have actually the following characterization of the (W 2,p, W 1+θ,p)-
mild well-posedness of (P2) which may be considered as a generalization of Theorem
2.1.

Theorem 2.4. Let X be a Banach space, 1 ≤ p < ∞, 0 ≤ θ ≤ 1 and let
A : D(A) → X be a densely defined closed operator on X . Then the following
assertions are equivalent.
(i) (P2) is (W 2,p, W 1+θ,p)-mildly well-posed;
(ii) (−∞, 0] ⊂ ρ(A) and the functions m1, m2 and m3 defined on R by m1(x) =

−(x2 + A)−1, m2(x) = −ix(x2 + A)−1 and m3(x) = −(ix)1+θ(x2 + A)−1 define
Lp-Fourier multipliers.

Proof. (i)⇒ (ii): Assume that (P2) is (W 2,p, W 1+θ,p)-mildly well-posed and let
B be the solution operator. Then it is (W 2,p, W 1,p)-mildlywell-posed. Thus (−∞, 0] ⊂
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ρ(A) and the functions m1 and m2 defined on R given by m1(x) = −(x2 + A)−1,
m2(x) = −ix(x2 + A)−1 define Lp-Fourier multipliers by Theorem 2.1, moreover the
bounded linear operator defined by the Lp-Fourier multiplier m1 is B by the proof of
Theorem 2.1. Since B is bounded and linear from Lp(R; X) into itself with range
contained in W 1+θ,p(R; X) by assumption, it follows easily from the Closed Graph
Theorem that B is a bounded linear operator from Lp(R; X) intoW 1+θ,p(R; X). Here
we have used the fact that the embeddingW 1+θ,p(R; X) ⊂ W 1,p(R; X) is continuous.
This implies clearly that m3 defined by m3(x) = −(ix)1+θ(x2 + A)−1 defines an
Lp-Fourier multiplier.
(ii) ⇒ (i): Assume that (−∞, 0] ⊂ ρ(A) and the functions m1, m2 and m3 de-

fined on R given by m1(x) = −(x2 + A)−1, m2(x) = −ix(x2 + A)−1 and m3(x) =
−(ix)1+θ(x2 +A)−1 define Lp-Fourier multipliers. Then (P2) is (W 2,p, W 1,p)-mildly
well-posed by Theorem 2.1. This means that there exists a bounded linear operator
B that maps Lp(R; X) continuously into itself with range contained in W 1,p(R; X),
B(W 1,p(R; D(A))) ⊂ W 2,p(R; D(A)) andABu = BAu = u when u ∈ W 2,p(R; D(A)).
The bounded linear operator defined by the Lp-Fourier multiplierm1 is B by the proof
of Theorem 2.1. Since m3 defines an Lp-Fourier multiplier, we deduce that the image
of Lp(R; X) by B is contained in W 1+θ,p(R; X). The proof is complete.

Proposition 2.1. Let X be a Banach space, 1 ≤ p < ∞ and let A : D(A) → X

be a densely defined closed operator on X . If (P2) is (W 2,p, W 2,p)-mildly well-posed,
then it is Lp-well-posed.

Proof. We assume that (P2) is (W 2,p, W 2,p)-mildly well-posed and B is the
solution operator. Then B maps Lp(R; X) continuously into itself with range contained
in W 2,p(R; X), B(W 1,p(R; D(A))) ⊂ W 2,p(R; D(A))) and ABu = BAu = u when
u ∈ W 2,p(R; D(A)). It follows from the boundedness of B on Lp(R; X) and the Closed
Graph Theorem that B is a bounded linear operator from Lp(R; X) into W 2,p(R; X).
Let f ∈ Lp(R; X), then there exists fn ∈ W 2,p(R; D(A)) such that fn → f

in Lp(R; X) by Lemma 2.3. We deduce that Bfn → Bf in W 2,p(R; X). Since
(Bfn)′′ → (Bf)′′ and Bfn → Bf in Lp(R; X), there exists a subsequence fnk

of
fn such that (Bfnk

)′′ → (Bf)′′ and Bfnk
→ Bf a.e. on R. Using the equality

(Bfnk
)′′ = ABfnk

+Bfnk
and the closedness of A, we deduce that Bf(t) ∈ D(A) and

(Bf)′′(t) = ABf(t)+Bf(t) for almost all t ∈ R. This implies that Bf ∈ Lp(R; D(A))
and (Bf)′′ = ABf + Bf . Thus Bf ∈ W 2,p(R; X) ∩ Lp(R; D(A)) is a strong Lp-
solution of (P2).
To show the uniqueness of the strong Lp-solution of (P2), we let u ∈ W 2,p(R; X)∩

Lp(R; D(A)) be such that u′′ = Au. Then there exist un ∈ W 2,p(R; D(A)) such that
un → u in W 2,p(R; X) as well as in Lp(R; D(A)) by the density of D(A) in X . We
have BAun = un by assumption. Letting n → ∞, we obtain that B(u′′ − Au) = u,
here we have used the boundedness of B on Lp(R; X). It follows that u = 0 as
u′′ − Au = 0. We have shown that (P2) is Lp-well-posed. The proof is complete.
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Remark 2.2. We do not know whether the inverse implication of Proposition 2.1
remains true: when (P2) is Lp-well-posed, if B is the solution operator, then B maps
Lp(R; X) continuously into itself with range contained in W 2,p(R; X), and ABu =
BAu = u when u ∈ W 2,p(R; D(A)), but we do not know whether the inclusion
B(W 1,p(R; D(A))) ⊂ W 2,p(R; D(A))) is true. Meanwhile, Theorem 2.4 gives a
sufficient condition for the Lp-well-posedness of (P2): if (−∞, 0] ⊂ ρ(A) and the
functions m1, m2 and m3 defined on R given by m1(x) = −(x2 + A)−1, m2(x) =
−ix(x2 + A)−1 and m3(x) = x2(x2 + A)−1 define Lp-Fourier multipliers, then (P2)
is Lp-well-posed.

When X is a UMD Banach space, we have the following characterization of the
(W 2,p, W 1+θ,p)-mild well-posedness when 1 < p < ∞. The proof is similar to the
proof of Corollary 2.2, we omit it.

Corollary 2.5. Let X be a UMD Banach space, 1 < p < ∞, 1
2 ≤ θ ≤ 1 and

let A : D(A) → X be a densely defined closed operator on X . Then the following
assertions are equivalent.
(i) (P2) is (W 2,p, W 1+θ,p)-mildly well-posed;
(ii) (−∞, 0] ⊂ ρ(A) and the function m given by m(x) = −(ix)1+θ(x2 + A)−1

is an Lp-Fourier multiplier, where (ix)1+θ is defined by (9).
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