TAIWANESE JOURNAL OF MATHEMATICS

Vol. 17, No. 1, pp. 143-159, February 2013

DOI: 10.11650/tjm.17.2013.1710

This paper is available online at http://journal.taiwanmathsoc.org.tw

MILD WELL-POSEDNESS OF SECOND ORDER DIFFERENTIAL EQUATIONS ON THE REAL LINE

Shangquan Bu* and Gang Cai

Abstract. We study the $(W^{2,p}, W^{1,p})$ -mild well-posedness of the second order differential equation $(P_2): u'' = Au + f$ on the real line \mathbb{R} , where A is a densely defined closed operator on a Banach space X. We completely characterize the $(W^{2,p}, W^{1,p})$ -mild well-posedness of (P_2) by L^p -Fourier multipliers defined by the resolvent of A.

1. Introduction

Recently, Bu considered the $(W^{1,p},L^p)$ -mild well-posedness of the following problem:

$$(P_1): u'(t) = Au(t) + f(t)$$

on the real line \mathbb{R} , where A is a closed operator on a complex Banach space X and $1 \leq p < \infty$ [6]. He has shown that (P_1) is $(W^{1,p}, L^p)$ -mildly well-posed if and only if $i\mathbb{R} \subset \rho(A)$ and the function m given by $m(x) = (ix - A)^{-1}$ defines an L^p -Fourier multiplier, where $\rho(A)$ denotes the resolvent set of A. On the other hand, the corresponding mild well-posedness for the periodic problem:

$$(P_{1,per}): \begin{cases} u'(t) = Au(t) + f(t), & 0 \le t \le 2\pi, \\ u(0) = u(2\pi), \end{cases}$$

has been studied by Keyantuo and Lizama, where $f \in L^p(0,2\pi;X), 1 \leq p < \infty$ [8]. They have shown that $(P_{1,\mathrm{per}})$ is $(W^{1,p},L^p)$ -mild well-posed if and only if $i\mathbb{Z} \subset \rho(A)$ and $((in-A)^{-1})_{n\in\mathbb{Z}}$ is an L^p -Fourier multiplier. In the same paper, they also considered the second order inhomogeneous problem of the form:

$$(P_{2,per}): \begin{cases} u''(t) = Au(t) + f(t), & 0 \le t \le 2\pi, \\ u(0) = u(2\pi), \\ u'(0) = u'(2\pi), \end{cases}$$

Received February 22, 2012, accepted June 8, 2012

Communicated by Eiji Yanagida.

2010 Mathematics Subject Classification: 47D06, 47A50, 42A45, 34K30.

Key words and phrases: Second order differential equations, Mild well-posedness, L^p -Fourier multipliers. This work was supported by the NSF of China (No. 11171172).

*Corresponding author.

in the space $L^p(0,2\pi;X), 1 \leq p < \infty$. They introduced two notions of mild well-posedness for $(P_{2,per})$ and they completely characterized the mild well-posedness of $(P_{2,per})$ by L^p -Fourier multipliers. More precisely, they proved that $(P_{2,per})$ is $(W^{2,p},L^p)$ -mildly well-posed if and only if $\{-k^2: k \in \mathbb{Z}\} \subset \rho(A)$ and $((k^2+A)^{-1})_{k \in \mathbb{Z}}$ is an L^p -Fourier multiplier; $(P_{2,per})$ is $(W^{2,p},W^{1,p})$ -mildly well-posed if and only if $\{-k^2: k \in \mathbb{Z}\} \subset \rho(A)$ and $(ik(k^2+A)^{-1})_{k \in \mathbb{Z}}$ is an L^p -Fourier multiplier. We note that the mild well-posedness of $(P_{1,per})$ was initially studied by Staffans in the special case when X is a Hilbert space and p=2 [11].

In this paper, we study the $(W^{2,p},W^{1,p})$ -mild well-posedness of the following problem:

$$(P_2): u''(t) = Au(t) + f(t)$$

on the real line \mathbb{R} , where A is a closed operator in a complex Banach space X and $1 \leq p < \infty$. Our main result is a characterization of the $(W^{2,p},W^{1,p})$ -mild well-posedness for (P_2) : when A is densely defined, then (P_2) is $(W^{2,p},W^{1,p})$ -mild well-posed if and only if $(-\infty,0] \subset \rho(A)$ and the functions m_1, m_2 given by $m_1(x) = -(x^2+A)^{-1}$ and $m_2(x) = -ix(x^2+A)^{-1}$ define L^p -Fourier multipliers. We also introduce and study the $(W^{2,p},W^{1+\theta,p})$ -mild well-posedness for (P_2) when $0 \leq \theta \leq 1$. When $\theta=0$, we recover our main result.

We recall that the regularity of the problems (P_1) and (P_2) have been extensively studied in recent years. See e.g. [4-11] and references therein. Weis obtained a characterization of L^p -well-posedness for (P_1) using his operator-valued Fourier multiplier theorem on $L^p(\mathbb{R};X)$ when X is a UMD Banach space and $1 [12]. Arendt and Bu studied <math>L^p$ -well-posedness in interpolation spaces between X and D(A) and mild well-poseness for (P_1) using the method of sum of bisectorial operators [4]. Schweiker studied the L^p -mild well-posedness and the well-posedness in the space BUC($\mathbb{R};X$) of X-valued bounded and uniformly continuous functions for (P_1) and (P_2) [10]. Arendt, Batty and Bu obtained a characterization of the well-posedness of (P_1) in Hölder continuous function space [2] (see also [1] for a systematic study of (P_1) and (P_2)).

2. MILD-WELL-POSEDNESS AND L^p -Fourier Multipliers

Let X be a complex Banach space and $1 \le p < \infty$, we define as usual the first order Sobolev spaces by

(1)
$$W^{1,p}(\mathbb{R};X) := \{ f \in L^p(\mathbb{R};X) : f' \in L^p(\mathbb{R};X) \}$$

where f' is the distributional derivative of f, equipped with the norm

$$\|f\|_{W^{1,p}} := \|f\|_{L^p} + \left\|f'\right\|_{L^p}$$

and the second order Sobolev spaces by

(2)
$$W^{2,p}(\mathbb{R};X) := \{ f \in L^p(\mathbb{R};X) : f', f'' \in L^p(\mathbb{R};X) \}$$

equipped with the norm

$$||f||_{W^{2,p}} := ||f||_{L^p} + ||f'||_{L^p} + ||f''||_{L^p}.$$

It is well known that $W^{1,p}(\mathbb{R};X)$ and $W^{2,p}(\mathbb{R};X)$ are Banach spaces.

Let A be a densely defined closed operator on X, we will always consider D(A) as a Banach space equipped with its graph norm and we will consider the D(A)-valued Sobolev space $W^{2,p}(\mathbb{R};D(A))$ which is a dense subspace of $L^p(\mathbb{R};X)$ (see Lemma 2.3).

If $f \in L^p(\mathbb{R};X)$, $u \in W^{2,p}(\mathbb{R};X) \cap L^p(\mathbb{R};D(A))$ is called a strong L^p -solution of (P_2) , if the equation (P_2) is satisfied a.e. on \mathbb{R} . We say that (P_2) is L^p -well-posed if for each $f \in L^p(\mathbb{R};X)$, there exists a unique strong L^p -solution of (P_2) . When (P_2) is L^p -well-posed, we let $\mathcal{B}f := u$, then \mathcal{B} is linear and \mathcal{B} maps continuously $L^p(\mathbb{R};X)$ into $W^{2,p}(\mathbb{R};X)$ by the Closed Graph Theorem. Therefore the image of $L^p(\mathbb{R};X)$ by \mathcal{B} is contained in $W^{1,p}(\mathbb{R};X)$. On the other hand, it is easy to verify that $\mathcal{AB}u = \mathcal{BA}u = u$ when $u \in W^{2,p}(\mathbb{R};D(A))$ by the L^p -well-posedness of (P_2) , where \mathcal{A} is defined by $\mathcal{A}u = u'' - Au$ with domain $D(\mathcal{A}) := W^{2,p}(\mathbb{R};D(A))$.

For the characterization of the L^p -well-posedness of (P_2) , strong conditions on the geometry of the underlying Banach space X and the Rademacher boundedness of the resolvent of A are needed [5]. This is the reason we consider in this paper a mild well-posedness for (P_2) : besides other conditions on the closed operator A, we assume that there exists a strong L^p -solution of (P_2) only for f in a dense subspace (namely $W^{1,p}(\mathbb{R};D(A))$) of $L^p(\mathbb{R};X)$ (see [8] for a similar notion for $(P_{2,per})$).

Definition 2.1. Let $1 \le p < \infty$ and let A be a densely defined closed operator on X with domain D(A). We say that (P_2) is $(W^{2,p},W^{1,p})$ -mildly well-posed, if there exists a bounded linear operator $\mathcal B$ that maps $L^p(\mathbb R;X)$ continuously into itself with range contained in $W^{1,p}(\mathbb R;X)$, $\mathcal B(W^{1,p}(\mathbb R;D(A))) \subset W^{2,p}(\mathbb R;D(A))$ and $\mathcal A\mathcal Bu = \mathcal B\mathcal Au = u$ when $u \in W^{2,p}(\mathbb R;D(A))$, where $\mathcal Au = u'' - Au$ when $u \in W^{2,p}(\mathbb R;D(A))$. We call $\mathcal B$ the solution operator of the problem (P_2) .

Remarks 2.1.

- 1. When (P_2) is $(W^{2,p},W^{1,p})$ -mildly well-posed, if \mathcal{B} is the solution operator, for each $u \in W^{2,p}(\mathbb{R};D(A))$, we have $(\mathcal{B}u)''-A(\mathcal{B}u)=u$ by assumption. Suppose that $v \in W^{2,p}(\mathbb{R};D(A))$ also satisfies v''-Av=u, i.e., $\mathcal{A}v=u$. Then $\mathcal{B}\mathcal{A}v=\mathcal{B}u=v$ by assumption. This shows that for each $u \in W^{2,p}(\mathbb{R};D(A))$, there exists a unique solution $v \in W^{2,p}(\mathbb{R};D(A))$ satisfying v''-Av=u and this solution is given by $\mathcal{B}u$.
- 2. When (P_2) is $(W^{2,p},W^{1,p})$ -mildly well-posed, if \mathcal{B} is the solution operator, then \mathcal{B} is a bounded linear operator from $L^p(\mathbb{R};X)$ into $W^{1,p}(\mathbb{R};X)$. Indeed, if $u_n,u\in L^p(\mathbb{R};X)$, $u_n\to u$ in $L^p(\mathbb{R};X)$ and $\mathcal{B}u_n\to v$ in $W^{1,p}(\mathbb{R};X)$, then $\mathcal{B}u_n\to v$ in $L^p(\mathbb{R};X)$ as $W^{1,p}(\mathbb{R};X)\subset L^p(\mathbb{R};X)$ and the inclusion is

obviously continuous, therefore $v=\mathcal{B}u$ by the boundedness of \mathcal{B} on $L^p(\mathbb{R};X)$. This implies that \mathcal{B} is a bounded linear operator from $L^p(\mathbb{R};X)$ into $W^{1,p}(\mathbb{R};X)$ by the Closed Graph Theorem. A similar argument shows that \mathcal{B} is a bounded linear operator from $W^{1,p}(\mathbb{R};D(A))$ into $W^{2,p}(\mathbb{R};D(A))$. This implies that \mathcal{B} acts also boundedly on $W^{2,p}(\mathbb{R};D(A))$ by the Closed Graph Theorem.

In this paper, we will show that (P_2) is $(W^{2,p},W^{1,p})$ -mild well-posed if and only if $(-\infty,0] \subset \rho(A)$ and the functions m_1 , m_2 given by $m_1(x) = -(x^2+A)^{-1}$ and $m_2(x) = -ix(x^2+A)^{-1}$ define L^p -Fourier multipliers. This may be considered as the parallel result for (P_2) of Keyantuo and Lizama's result obtained in [8] for the periodic problem $(P_{2,per})$.

In order to study the $(W^{2,p},W^{1,p})$ -mild well-posedness, we need to introduce the Fourier transform for vector-valued functions. Let X be a complex Banach space, we denote by $\mathcal{S}(\mathbb{R};X)$ the Schwartz class consisting of all X-valued rapidly decreasing smooth functions on \mathbb{R} , more precisely an X-valued function ϕ on \mathbb{R} is in $\mathcal{S}(\mathbb{R};X)$ if ϕ is infinitely differentiable and for all $m,n\in\mathbb{N}\cup\{0\}$, we have

$$\sup_{s \in \mathbb{R}} (1+|s|)^m \left\| \phi^{(n)}(s) \right\| < \infty.$$

It is well-known that the Fourier transform $\mathcal F$ defined on $L^1(\mathbb R;X)$ by

$$(\mathcal{F}\phi)(t) := \int_{\mathbb{R}} e^{-its}\phi(s)ds, \quad (t \in \mathbb{R})$$

is an isomorphism on $\mathcal{S}(\mathbb{R};X)$ and its inverse on $\mathcal{S}(\mathbb{R};X)$ is given by

$$(\mathcal{F}^{-1}\phi)(t) := \frac{1}{2\pi} \int_{\mathbb{R}} e^{its} \phi(s) ds, \quad (t \in \mathbb{R}).$$

It is well known that $\mathcal{S}(\mathbb{R};X)$ is dense in $L^p(\mathbb{R};X)$, $W^{1,p}(\mathbb{R};X)$ and $W^{2,p}(\mathbb{R};X)$ when $1 \leq p < \infty$ (see Lemma 2.3). Thus $W^{1,p}(\mathbb{R};X)$ (resp. $W^{2,p}(\mathbb{R};X)$) is the completion of $\mathcal{S}(\mathbb{R};X)$ under the norm $\|\cdot\|_{W^{1,p}}$ (resp. $\|\cdot\|_{W^{2,p}}$).

Let $m: \mathbb{R} \to \mathcal{L}(X)$ be a bounded measurable function and $1 \leq p < \infty$, where $\mathcal{L}(X)$ is the space of all bounded linear operators on X. We say that m defines an L^p -Fourier multiplier, if there exists a constant C > 0 such that

$$\|\mathcal{F}^{-1}(m\mathcal{F}f)\|_{L^p} \le C \|f\|_{L^p}$$

whenever $f \in \mathcal{S}(\mathbb{R};X)$ [1, 12]. We note that when $f \in \mathcal{S}(\mathbb{R};X)$, the function $m\mathcal{F}f$ is in $L^1(\mathbb{R};X)$, therefore the term $\mathcal{F}^{-1}(m\mathcal{F}f)$ in the left hand side makes sense. When m is an L^p -Fourier multiplier, there exists a unique bounded linear operator B on $L^p(\mathbb{R};X)$ satisfying $\mathcal{F}(Bf)=m\mathcal{F}f$ when $f \in \mathcal{S}(\mathbb{R};X)$. This follows easily from the density of $\mathcal{S}(\mathbb{R};X)$ in $L^p(\mathbb{R};X)$ [5].

Next we introduce the weighted L^p -spaces $L^p_{\alpha,\omega}(\mathbb{R};X)$, first order weighted Sobolev spaces $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ and second order weighted Sobolev spaces $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$. We let ω be a fixed C^2 -function on \mathbb{R} such that $\omega(t) \geq 1$ for $t \in \mathbb{R}$ and $\omega(t) = |t|$ when $|t| \geq 2$. For fixed $\alpha > 0$, we let $L^p_{\alpha,\omega}(\mathbb{R};X)$ be the space of all measurable functions $f:\mathbb{R} \to X$ such that

$$||f||_{L^p_{\alpha,\omega}} := \left(\int_{\mathbb{R}} e^{-p\alpha\omega(t)} ||f(t)||^p dt\right)^{1/p} < \infty.$$

 $L^p_{\alpha,\omega}(\mathbb{R};X)$ equipped with the norm $\|\cdot\|_{L^p_{\alpha,\omega}}$ becomes a Banach space. We define first weighted Sobolev spaces $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ as the space of all functions $f\in L^p_{\alpha,\omega}(\mathbb{R};X)$ such that $f'\in L^p_{\alpha,\omega}(\mathbb{R};X)$. Here f' is understood in the sense of distributions. $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ equipped with the norm

$$||f||_{W^{1,p}_{\alpha,\omega}} := ||f||_{L^p_{\alpha,\omega}} + ||f'||_{L^p_{\alpha,\omega}}$$

is a Banach space. In a similar way, we define the second order weighted Sobolev spaces $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ as the space of all functions $f\in L^p_{\alpha,\omega}(\mathbb{R};X)$ such that $f',f''\in L^p_{\alpha,\omega}(\mathbb{R};X)$, where f',f'' are also understood in the sense of distributions. $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ equipped with the norm

$$||f||_{W^{2,p}_{\alpha,\omega}} := ||f||_{L^p_{\alpha,\omega}} + ||f'||_{L^p_{\alpha,\omega}} + ||f''||_{L^p_{\alpha,\omega}}$$

is a Banach space. We need the following preparation.

Lemma 2.1. The mapping $f \mapsto \Phi(f) := e^{-\alpha \omega} f$ is an isomorphism from $L^p_{\alpha,\omega}(\mathbb{R};X)$ into $L^p(\mathbb{R};X)$, from $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ into $W^{1,p}(\mathbb{R};X)$ and from $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ into $W^{2,p}(\mathbb{R};X)$.

Proof. Follows the same lines as the proof in Bu [6], we have that the mapping $f\mapsto \Phi(f)$ is an isomorphism from $L^p_{\alpha,\omega}(\mathbb{R};X)$ into $L^p(\mathbb{R};X)$ and from $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ into $W^{1,p}(\mathbb{R};X)$. Next we prove that the mapping $f\mapsto \Phi(f)$ is also an isomorphism from $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ into $W^{2,p}(\mathbb{R};X)$. Indeed, we note that when $f\in W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$,

$$(e^{-\alpha\omega}f)' = -\alpha w'e^{-\alpha\omega}f + e^{-\alpha\omega}f',$$

and

$$(e^{-\alpha\omega}f)'' = -\alpha\omega''e^{-\alpha\omega}f - \alpha\omega'(-\alpha\omega'e^{-\alpha\omega}f + e^{-\alpha\omega}f') - \alpha\omega'e^{-\alpha\omega}f' + e^{-\alpha\omega}f''$$
$$= (-\alpha\omega'' + \alpha^2(\omega')^2)e^{-\alpha\omega}f - 2\alpha\omega'e^{-\alpha\omega}f' + e^{-\alpha\omega}f''.$$

observe that ω', ω'' are bounded on \mathbb{R} . Thus $\Phi(f) \in W^{2,p}(\mathbb{R};X)$ whenever $f \in W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ and $\|\Phi(f)\|_{W^{2,p}} \leq C \|f\|_{W^{2,p}_{\alpha,\omega}}$ for some constant $C \geq 0$ depending only

on α, ω and p. The map Φ is clearly injective from $W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ into $W^{2,p}(\mathbb{R};X)$, it remains to show that Φ is surjective. To this end we let $g \in W^{2,p}(\mathbb{R};X)$ and $f = e^{\alpha \omega}g$. We observe that

$$f' = \alpha w' e^{\alpha \omega} g + e^{\alpha \omega} g',$$

and

$$f'' = \alpha \omega'' e^{\alpha \omega} g + \alpha w' (\alpha w' e^{\alpha \omega} g + e^{\alpha \omega} g') + \alpha \omega' e^{\alpha \omega} g' + e^{\alpha \omega} g''$$
$$= (\alpha \omega'' + \alpha^2 (\omega')^2) e^{\alpha \omega} g + 2\alpha \omega' e^{\alpha \omega} g' + e^{\alpha \omega} g'',$$

which implies that $f \in W^{2,p}_{\alpha,\omega}(\mathbb{R};X)$ and $\Phi(f)=g$. Here we have also used the fact that ω',ω'' are bounded on \mathbb{R} . This completes the proof.

We will transform the $(W^{2,p},W^{1,p})$ -mild well-posedness of (P_2) into a similar mild well-posedness in weighted function spaces. This idea was firstly used by Mielke in the study of L^p -well-posedness for (P_1) [9] (see also [6] and [10]).

Definition 2.2. Let X be a Banach space, $1 \leq p < \infty$, $\alpha > 0$ and let $A: D(A) \to X$ be a densely defined closed operator on X. We say that (P_2) is $(W^{2,p}_{\alpha,\omega},W^{1,p}_{\alpha,\omega})$ -mildly well-posed, if there exists a bounded linear operator \mathcal{B}_{α} that maps boundedly from $L^p_{\alpha,\omega}(\mathbb{R};X)$ into $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$, $\mathcal{B}_{\alpha}(W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))) \subset W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$, \mathcal{B}_{α} also satisfies $\mathcal{B}_{\alpha}\mathcal{A}_{\alpha}u = \mathcal{A}_{\alpha}\mathcal{B}_{\alpha}u = u$ when $u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$, where $\mathcal{A}_{\alpha} = u'' - Au$ when $u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$.

Remark 2.1. When (P_2) is $(W^{2,p}_{\alpha,\omega},W^{1,p}_{\alpha,\omega})$ -mildly well-posed, for each $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$, we have $(\mathcal{B}_{\alpha}u)''-A(\mathcal{B}_{\alpha}u)=u$ by assumption. Suppose that $v\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ also satisfies v''-Av=u, i.e., $\mathcal{A}_{\alpha}v=u$. Then $\mathcal{B}_{\alpha}\mathcal{A}_{\alpha}v=\mathcal{B}_{\alpha}u=v$ by assumption. This shows that for each $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$, there exists a unique solution $v\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ satisfying v''-Av=u and this solution is given by $\mathcal{B}_{\alpha}u$.

The following lemma will be useful for proving the main results of this paper.

Lemma 2.2. Let X be a Banach space, $1 \le p < \infty$ and let $A : D(A) \to X$ be a densely defined closed operator on X. We assume that (P_2) is $(W^{2,p}, W^{1,p})$ -mildly well-posed. Then it is $(W^{2,p}_{\alpha,\omega}, W^{1,p}_{\alpha,\omega})$ -mildly well-posed when $\alpha > 0$ is small enough.

Proof. Let $\Phi_{\alpha,\omega}(t)=e^{-\alpha\omega(t)}$ and $\Phi_{-\alpha,\omega}(t)=e^{\alpha\omega(t)}$ when $t\in\mathbb{R}$. Since (P_2) is $(W^{2,p},W^{1,p})$ -mildly well-posed, there exists a bounded linear operator $\mathcal B$ that maps $L^p(\mathbb R;X)$ continuously into itself with range in $W^{1,p}(\mathbb R;X)$, $\mathcal B(W^{1,p}(\mathbb R;D(A)))\subset W^{2,p}(\mathbb R;D(A))$ and $\mathcal A\mathcal Bu=\mathcal B\mathcal Au=u$ when $u\in W^{2,p}(\mathbb R;D(A))$. Let $u\in W^{2,p}_{\alpha,\omega}(\mathbb R;D(A))$ and let $u_1=\Phi_{\alpha,\omega}u$. It follows from Lemma 2.1 that $u_1\in W^{2,p}(\mathbb R;D(A))$. We have $u_1''-Au_1\in L^p(\mathbb R;X)$ and $\mathcal B(u_1''-Au_1)=u_1$ by assumption and Remarks 2.1. We observe that

$$u_1' = -\alpha \omega' \Phi_{\alpha,\omega} u + \Phi_{\alpha,\omega} u',$$

and

$$u_1'' = -\alpha \omega'' \Phi_{\alpha,\omega} u - \alpha \omega' (-\alpha \omega' \Phi_{\alpha,\omega} u + \Phi_{\alpha,\omega} u') - \alpha \omega' \Phi_{\alpha,\omega} u' + \Phi_{\alpha,\omega} u''$$
$$= (-\alpha \omega'' + \alpha^2 (w')^2) \Phi_{\alpha,\omega} u - 2\alpha \omega' \Phi_{\alpha,\omega} u' + \Phi_{\alpha,\omega} u''.$$

It follows that

$$\mathcal{B}(u_1''-Au_1) = -\alpha \mathcal{B}[(\omega''-\alpha(w')^2)\Phi_{\alpha,\omega}u + 2\omega'\Phi_{\alpha,\omega}u'] + \mathcal{B}\Phi_{\alpha,\omega}u'' - \mathcal{B}A\Phi_{\alpha,\omega}u = \Phi_{\alpha,\omega}u,$$
 which implies

(3)
$$\mathcal{B}\Phi_{\alpha,\omega}(u'' - Au) = \Phi_{\alpha,\omega}u + \alpha\mathcal{B}[(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}u + 2\omega'\Phi_{\alpha,\omega}u'].$$

For $u \in W^{1,p}(\mathbb{R};X)$, we define

$$Du := \mathcal{B}[(\omega'' + \alpha(w')^2)u + 2\omega'u'].$$

By Remarks 2.1, \mathcal{B} is a bounded linear operator from $W^{1,p}(\mathbb{R};D(A))$ into $W^{2,p}(\mathbb{R};D(A))$, it follows that D is bounded and linear on $W^{2,p}(\mathbb{R};D(A))$. Since \mathcal{B} maps boundedly $L^p(\mathbb{R};X)$ into $W^{1,p}(\mathbb{R};X)$ by assumption, D is also bounded and linear on $W^{1,p}(\mathbb{R};X)$. By (3), we have

$$\mathcal{B}\Phi_{\alpha,\omega}(u'' - Au) = (I + \alpha D)\Phi_{\alpha,\omega}u$$

when $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. We note that the bounded linear operator $I+\alpha D$ is invertible on $W^{1,p}(\mathbb{R};X)$ and $W^{2,p}(\mathbb{R};D(A))$ when $\alpha>0$ is small enough. For such α , we obtain

(4)
$$\Phi_{-\alpha,\omega}(I+\alpha D)^{-1}\mathcal{B}\Phi_{\alpha,\omega}(u''-Au)=u,$$

whenever $u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. Let

$$\mathcal{B}_{\alpha} := \Phi_{-\alpha,\omega} (I + \alpha D)^{-1} \mathcal{B} \Phi_{\alpha,\omega}.$$

If $u \in L^p_{\alpha,\omega}(\mathbb{R};X)$, then $\mathcal{B}\Phi_{\alpha,\omega}u \in W^{1,p}(\mathbb{R};X)$ by assumption and Lemma 2.1, it follows that $\mathcal{B}_{\alpha}u \in W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$ as we have shown that $1 + \alpha D$ is invertible on $W^{1,p}(\mathbb{R};X)$. Thus \mathcal{B}_{α} is bounded and linear from $L^p_{\alpha,\omega}(\mathbb{R};X)$ into $W^{1,p}_{\alpha,\omega}(\mathbb{R};X)$.

We notice that when $u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$, we have $\mathcal{B}\Phi_{\alpha,\omega}u \in W^{2,p}(\mathbb{R};D(A))$ by assumption and Lemma 2.1. Since $(I+\alpha D)^{-1}$ is bounded on $W^{2,p}(\mathbb{R};D(A))$, it follows that $\mathcal{B}_{\alpha}u = \Phi_{-\alpha,\omega}(I+\alpha D)^{-1}\mathcal{B}\Phi_{\alpha,\omega}u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ by Lemma 2.1. We have shown that $\mathcal{B}_{\alpha}(W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))) \subset W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. It is clear from the definition of \mathcal{B}_{α} and (4) that $\mathcal{B}_{\alpha}\mathcal{A}_{\alpha}u = u$ when $u \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$.

Next we show that $\mathcal{A}_{\alpha}\mathcal{B}_{\alpha}u=u$ when $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. Let $v=\mathcal{B}_{\alpha}u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. We claim that v''=Av+u. In fact, from the definition of v, we see that

$$\Phi_{\alpha,\omega}v + \alpha D\Phi_{\alpha,\omega}v = \mathcal{B}\Phi_{\alpha,\omega}u,$$

which implies

$$\begin{split} \Phi_{\alpha,\omega} v &= \mathcal{B} \Phi_{\alpha,\omega} u - \alpha D \Phi_{\alpha,\omega} v \\ &= \mathcal{B} \Phi_{\alpha,\omega} u - \alpha \mathcal{B} (\omega'' - \alpha (w')^2) \Phi_{\alpha,\omega} v - 2\alpha \mathcal{B} \omega' \Phi_{\alpha,\omega} v'. \end{split}$$

Thus we obtain

(5)
$$v = \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u - \alpha \Phi_{-\alpha,\omega} \mathcal{B} (\omega'' - \alpha (w')^2) \Phi_{\alpha,\omega} v - 2\alpha \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v'.$$

Since $\Phi_{\alpha,\omega}u$, $(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v \in W^{2,p}(\mathbb{R};D(A))$, it follows that $\Phi_{-\alpha,\omega}\mathcal{B}\Phi_{\alpha,\omega}u$ and $\Phi_{-\alpha,\omega}\mathcal{B}(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v$ belong to $W^{2,p}_{\alpha,w}(\mathbb{R};D(A))$ by Lemma 2.1. This implies that $\Phi_{-\alpha,\omega}\mathcal{B}\omega'\Phi_{\alpha,\omega}v' \in W^{2,p}_{\alpha,w}(\mathbb{R};D(A))$ by (5) as $v \in W^{2,p}_{\alpha,w}(\mathbb{R};D(A))$. Thus $\mathcal{B}\omega'\Phi_{\alpha,\omega}v' \in W^{2,p}(\mathbb{R};D(A))$ by Lemma 2.1. It is clear that $\mathcal{B}\Phi_{\alpha,\omega}u$ and $\mathcal{B}(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v$ belong to $W^{2,p}(\mathbb{R};D(A))$ by assumption and Lemma 2.1. Therefore

$$[\mathcal{B}\Phi_{\alpha,\omega}u]'' = A\mathcal{B}\Phi_{\alpha,\omega}u + \Phi_{\alpha,\omega}u,$$

$$[\mathcal{B}(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v]'' = A\mathcal{B}(\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v + (\omega'' - \alpha(w')^2)\Phi_{\alpha,\omega}v,$$

and

$$[\mathcal{B}\omega'\Phi_{\alpha,\omega}v']'' = A\mathcal{B}\omega'\Phi_{\alpha,\omega}v' + \omega'\Phi_{\alpha,\omega}v'.$$

by the assumption that $\mathcal{AB}u = u$ when $u \in W^{2,p}(\mathbb{R}; D(A))$. By (5), we have that

$$v' = \alpha \omega' \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u + \Phi_{-\alpha,\omega} [\mathcal{B} \Phi_{\alpha,\omega} u]' - \alpha^2 \omega' \Phi_{-\alpha,\omega} \mathcal{B} (\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v$$
$$- \alpha \Phi_{-\alpha,\omega} [\mathcal{B} (\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v]' - 2\alpha^2 \omega' \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v'$$
$$- 2\alpha \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']',$$

which implies

$$v'' = \alpha \omega'' \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u + \alpha \omega' \{ \alpha \omega' \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u + \Phi_{-\alpha,\omega} [\mathcal{B} \Phi_{\alpha,\omega} u]' \}$$

$$+ \alpha \omega' \Phi_{-\alpha,\omega} [\mathcal{B} \Phi_{\alpha,\omega} u]' + \Phi_{-\alpha,\omega} [\mathcal{B} \Phi_{\alpha,\omega} u]'' - \alpha^2 \omega'' \Phi_{-\alpha,\omega} \mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v$$

$$+ -\alpha^2 \omega' \{ \alpha \omega' \Phi_{-\alpha,\omega} \mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v \Phi_{-\alpha,\omega} [\mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v]' \}$$

$$- \alpha^2 \omega' \Phi_{-\alpha,\omega} [\mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v]' - \alpha \Phi_{-\alpha,\omega} [\mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v]''$$

$$- 2\alpha^2 \omega'' \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' - 2\alpha^2 \omega' \{ \alpha \omega' \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' + \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']' \}$$

$$- 2\alpha^2 \omega' \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']' - 2\alpha \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']''$$

$$= \alpha \omega'' \{ \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u - \alpha \Phi_{-\alpha,\omega} \mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v - 2\alpha \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' \}$$

$$+ \alpha^2 (\omega')^2 \Phi_{-\alpha,\omega} \mathcal{B} \Phi_{\alpha,\omega} u + 2\alpha \omega' \Phi_{-\alpha,\omega} [\mathcal{B} \Phi_{\alpha,\omega} u]' + \Phi_{-\alpha,\omega} \mathcal{A} \mathcal{B} \Phi_{\alpha,\omega} u + u$$

$$- \alpha^3 (\omega')^2 \Phi_{-\alpha,\omega} \mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v - 2\alpha^2 \omega' \Phi_{-\alpha,\omega} [\mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v]'$$

$$- \alpha \Phi_{-\alpha,\omega} \mathcal{A} \mathcal{B}(\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v - \alpha \Phi_{-\alpha,\omega} (\omega'' - \alpha(w')^2) \Phi_{\alpha,\omega} v$$

$$- -2\alpha^3 (\omega')^2 \Phi_{-\alpha,\omega} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' 4\alpha^2 \omega' \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']'$$

$$- -2\alpha \Phi_{-\alpha,\omega} \mathcal{A} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' 4\alpha^2 \omega' \Phi_{-\alpha,\omega} [\mathcal{B} \omega' \Phi_{\alpha,\omega} v']'$$

$$- -2\alpha \Phi_{-\alpha,\omega} \mathcal{A} \mathcal{B} \omega' \Phi_{\alpha,\omega} v' - 2\alpha \Phi_{-\alpha,\omega} \omega' \Phi_{\alpha,\omega} v'$$

$$= \alpha \omega'' v + \alpha^{2} (\omega')^{2} v + 2\alpha \omega' \Phi_{-\alpha,\omega} [\mathcal{B}\Phi_{\alpha,\omega} u \\ - \alpha \mathcal{B}(\omega'' - \alpha(w')^{2}) \Phi_{\alpha,\omega} v - 2\alpha \mathcal{B}\omega' \Phi_{\alpha,\omega} v']' + Av + u - \alpha \omega'' v + \alpha^{2} (\omega')^{2} v - 2\alpha \omega' v' \\ = Av + u + 2\alpha^{2} (\omega')^{2} v - 2\alpha \omega' v' + 2\alpha \omega' \Phi_{-\alpha,\omega} [\Phi_{\alpha,\omega} v]' \\ = Av + u + 2\alpha^{2} (\omega')^{2} v - 2\alpha \omega' v' + 2\alpha \omega' \Phi_{-\alpha,\omega} [-\alpha \omega' \Phi_{\alpha,\omega} v + \Phi_{\alpha,\omega} v'] \\ = Av + u + 2\alpha^{2} (\omega')^{2} v - 2\alpha \omega' v' - 2\alpha^{2} (\omega')^{2} v + 2\alpha \omega' v' \\ = Av + u.$$

Thus $\mathcal{A}_{\alpha}\mathcal{B}_{\alpha}u=u$ when $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$. We have shown that (P_2) is $(W^{2,p}_{\alpha,\omega},W^{1,p}_{\alpha,\omega})$ -mildly well-posed. This completes the proof.

Lemma 2.3. Let X be a Banach space and $1 \le p < \infty$, then $\mathcal{S}(\mathbb{R}; X)$ is dense in $L^p(\mathbb{R}; X)$, $W^{1,p}(\mathbb{R}; X)$ and $W^{2,p}(\mathbb{R}; X)$. If $A : D(A) \to X$ is a densely defined closed operator on X, then $\mathcal{S}(\mathbb{R}; D(A))$ is dense in $L^p(\mathbb{R}; X)$.

Proof. The proof is a modification of the proof of Lemma 3 of Bu [6]. We omit it.

Now we are going to prove the following result which characterizes $(W^{2,p}, W^{1,p})$ -mildly well-posedness in terms of operator-valued L^p -Fourier multipliers defined by the resolvent of A.

Theorem 2.1. Let X be a Banach space, $1 \le p < \infty$ and let $A : D(A) \to X$ be a densely defined closed operator on X. Then the following assertions are equivalent.

- (i) (P_2) is $(W^{2,p}, W^{1,p})$ -mildly well-posed;
- (ii) $(-\infty, 0] \subset \rho(A)$ and the functions m_1 , m_2 defined on \mathbb{R} by $m_1(x) = -(x^2 + A)^{-1}$ and $m_2(x) = -ix(x^2 + A)^{-1}$ are L^p -Fourier multipliers.

Proof. (i) \Rightarrow (ii): Suppose that (P_2) is $(W^{2,p},W^{1,p})$ -mildly well-posed, then (P_2) is $(W^{2,p}_{\alpha,\omega},W^{1,p}_{\alpha,\omega})$ -mildly well posed when $\alpha>0$ is small enough by Lemma 2.2. By the Closed Graph Theorem, there exists a constant C>0 satisfying

(6)
$$\|\mathcal{B}_{\alpha}f\|_{W^{1,p}_{\alpha,\omega}} \le C \|f\|_{L^{p}_{\alpha,\omega}}$$

when $f \in L^p_{\alpha,\omega}(\mathbb{R};X)$. Firstly, we show that $(-\infty,0] \subset \rho(A)$. Let $\xi \in \mathbb{R}$ and $y \in X$ be fixed. Then there exits $y_n \in D(A)$ such that $y_n \to y$ when $n \to \infty$ as D(A) is dense in X by assumption. We define $f(t) = e^{i\xi t}y$ and $f_n(t) = e^{i\xi t}y_n$ for $t \in \mathbb{R}$. Then $f \in L^p_{\alpha,\omega}(\mathbb{R};X), f_n \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ and $f_n \to f$ in $L^p_{\alpha,\omega}(\mathbb{R};X)$ when $n \to \infty$. Let $u_n := \mathcal{B}_{\alpha}f_n$, then $u_n \in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ by the $(W^{2,p}_{\alpha,\omega},W^{1,p}_{\alpha,\omega})$ -mild well-posedness of (P_2) . We have

$$u_n''(t) - Au_n(t) = f_n(t)$$

a.e. on \mathbb{R} by the equality $\mathcal{A}_{\alpha}\mathcal{B}_{\alpha}u=u$ when $u\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$.

Since $f_n(s+t)=e^{i\xi s}f_n(t)$ when $t\in\mathbb{R}$, both functions $u_n(s+\cdot)$ and $e^{i\xi s}u_n$ in $W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ are strong L^p -solutions of

$$u'' - Au = e^{i\xi s} f_n.$$

We deduce that $u_n(s+t)=e^{i\xi s}u_n(t)$ when $s,t\in\mathbb{R}$ by Remark 2.1. Therefore there exists $x_n\in D(A)$ such that $u_n(t)=e^{i\xi t}x_n$ when $t\in\mathbb{R}$. Thus

$$-\xi^2 e^{i\xi t} x_n - e^{i\xi t} A x_n = e^{i\xi t} y_n$$

when $t \in \mathbb{R}$ or equivalently

$$-\xi^2 x_n - A x_n = y_n.$$

Since $f_n \to f$ in $L^p_{\alpha,\omega}(\mathbb{R};X)$, it follows that $u_n \to \mathcal{B}_{\alpha}f$ in $L^p_{\alpha,\omega}(\mathbb{R};X)$ when $n \to \infty$. Hence there exists $x \in X$ such that $(\mathcal{B}_{\alpha}f)(t) = e^{i\xi t}x$ when $t \in \mathbb{R}$ and $x_n \to x$ when $n \to \infty$. We conclude from (7) and the closedness of A that $x \in D(A)$ and

$$-\xi^2 x - Ax = y,$$

which implies that $-\xi^2 - A$ is surjective.

To show that $-\xi^2-A$ is also injective, we assume that $Ax_0=-\xi^2x_0$ for some $x_0\in D(A)$. Then $u_0\in W^{2,p}_{\alpha,\omega}(\mathbb{R};D(A))$ defined by $u_0(t)=e^{i\xi t}x_0$ solves the equation u''-Au=0. We deduce that $x_0=0$ by Remark 2.1. Thus $-\xi^2-A$ is injective. We have shown that $-\xi^2\in\rho(A)$ since A is closed. Since $\xi\in\mathbb{R}$ is arbitrary, we conclude that $(-\infty,0]\subset\rho(A)$.

It follows from (8) that $x=(-\xi^2-A)^{-1}y$. We note that $\|f\|_{L^p_{\alpha,\omega}}=c_{\alpha,\omega,p}\|y\|$, $\|\mathcal{B}_{\alpha}f\|_{L^p_{\alpha,\omega}}=c_{\alpha,\omega,p}\|x\|$ and $\|(\mathcal{B}_{\alpha}f)'\|_{L^p_{\alpha,\omega}}=c_{\alpha,\omega,p}\|i\xi x\|$ for some constant $c_{\alpha,\omega,p}>0$ depending only on α,ω and p. By (6), we have

$$||x|| \le C ||y||, \quad ||i\xi x|| \le C ||y||,$$

or equivalently

$$\|(-\xi^2 - A)^{-1}\| \le C, \quad \|i\xi(-\xi^2 - A)^{-1}\| \le C$$

when $\xi \in \mathbb{R}$.

We have shown that $(-\infty,0] \subset \rho(A)$ and the functions m_1, m_2 defined on \mathbb{R} by $m_1(x) := (-x^2 - A)^{-1}$ and $m_2(x) := ix(-x^2 - A)^{-1}$ are uniformly bounded on \mathbb{R} . For fixed $f \in L^p(\mathbb{R};X)$, there exists a sequence $(f_n)_{n \geq 1} \subset \mathcal{S}(\mathbb{R};D(A))$ such that $f_n \to f$ in $L^p(\mathbb{R};X)$ when $n \to \infty$ by Lemma 2.3. Let $u_n := \mathcal{B}f_n \in W^{2,p}(\mathbb{R};D(A))$. Then $(u_n)'' - Au_n = f_n$ and $u_n \to \mathcal{B}f$ in $L^p(\mathbb{R};X)$ when $n \to \infty$ since \mathcal{B} maps $L^p(\mathbb{R};X)$ continuously into itself by assumption.

On the other hand, the function g_n given by $g_n(x) := (-x^2 - A)^{-1} \mathcal{F} f_n(x)$ is in $\mathcal{S}(\mathbb{R}; D(A))$. Here we have used the facts that for each $n \in \mathbb{N}$, $\mathcal{F} f_n \in \mathcal{S}(\mathbb{R}; D(A))$, m_1 is infinitely differentiable and $m_1^{(k)}(x) = \sum_{n=1}^{k+1} p_n(x) m_1(x)^n$ for all $k \in \mathbb{N}$, where p_n is a polynomial. Let $v_n := \mathcal{F}^{-1} g_n$, then $v_n \in \mathcal{S}(\mathbb{R}; D(A))$ and thus $v_n \in W^{2,p}(\mathbb{R}; D(A))$. Now we can see easily that $v_n'' - Av_n = f_n$. It follows from Remarks 2.1 that $u_n = v_n$. This shows that m_1 is an L^p -Fourier multiplier and the bounded linear operator on $L^p(\mathbb{R}; X)$ defined by m_1 is in fact \mathcal{B} . In a similar way, we show that m_2 is also an L^p -Fourier multiplier. Therefore the implication (i) \Rightarrow (ii) is true.

(ii) \Rightarrow (i): We assume that $(-\infty,0] \subset \rho(A)$ and the functions m_1, m_2 given by $m_1(x) = -(x^2 + A)^{-1}$ and $m_2(x) = -ix(x^2 + A)^{-1}$ define L^p -Fourier multipliers. Then m_1 and m_2 are uniformly bounded on \mathbb{R} [12]. Let \mathcal{B} and \mathcal{B}_1 be the bounded linear operators on $L^p(\mathbb{R}; X)$ given by m_1 and m_2 , respectively. Let $C := \|\mathcal{B}\|$ and $C_1 := \|\mathcal{B}_1\|$. For $f \in \mathcal{S}(\mathbb{R}; X)$, we have $\mathcal{F}(\mathcal{B}f)(x) = m_1(x)\mathcal{F}f(x)$ and

$$\mathcal{F}(\mathcal{B}_1 f)(x) = m_2(x) \mathcal{F} f(x) = ix m_1(x) \mathcal{F} f(x) = ix \mathcal{F}(\mathcal{B} f)(x).$$

It follows from the assumption that m_1 , m_2 define L^p -Fourier multipliers that $\mathcal{B}f \in W^{1,p}(\mathbb{R};X)$ and $[\mathcal{B}f]' = \mathcal{B}_1f$. Furthermore we have $\|\mathcal{B}f\|_{W^{1,p}} \leq (C+C_1)\|f\|_{L^p}$. This implies that the image of $L^p(\mathbb{R};X)$ by \mathcal{B} is contained in $W^{1,p}(\mathbb{R};X)$ by Lemma 2.3

Let $f \in \mathcal{S}(\mathbb{R}; D(A))$. Then $f, Af \in \mathcal{S}(\mathbb{R}; X), \mathcal{F}(\mathcal{B}f)(x) = m_1(x)\mathcal{F}f(x)$ and $\mathcal{F}(A\mathcal{B}f)(x) = m_1(x)(Af)(x)$. It follows that $\mathcal{B}(Af) = A\mathcal{B}f$ and $\|\mathcal{B}f\|_{L^p(\mathbb{R};D(A))} \leq C\|f\|_{L^p(\mathbb{R};D(A))}$. On the other hand, we have $[\mathcal{B}f]' = \mathcal{B}f'$, thus $\mathcal{F}([\mathcal{B}f]')(x) = ix\mathcal{F}(\mathcal{B}f)(x) = m_2(x)\mathcal{F}f(x)$ and $\mathcal{F}(A[\mathcal{B}f]')(x) = \mathcal{F}(A\mathcal{B}f')(x) = m_2(x)(Af)(x)$. We deduce that $\|[\mathcal{B}f]'\|_{L^p(\mathbb{R};D(A))} \leq C_1\|f\|_{L^p(\mathbb{R};D(A))}$. It follows that

$$\|\mathcal{B}f\|_{W^{1,p}(\mathbb{R};D(A))} \le (C+C_1)\|f\|_{L^p(\mathbb{R};D(A))}.$$

Thus $\mathcal B$ maps boundedly $L^p(\mathbb R;D(A))$ into $W^{1,p}(\mathbb R;D(A))$ by Lemma 2.3. A similar argument shows that $\mathcal B$ also maps boundedly $W^{1,p}(\mathbb R;D(A))$ into $W^{2,p}(\mathbb R;D(A))$. This implies that $\mathcal B$ acts boundedly on $W^{2,p}(\mathbb R;D(A))$ by the Closed Graph Theorem. Let $f\in\mathcal S(\mathbb R;D(A))$. Then

$$\mathcal{F}(A^{i}(\mathcal{B}f)^{(j)}) = m_1 \mathcal{F}(A^{i}f^{(j)})$$

when $0 \le i, j \le 2$ as A is clearly commute with m_1 . It follows that $\|\mathcal{B}f\|_{W^{2,p}(\mathbb{R};D(A))} \le C\|f\|_{W^{2,p}(\mathbb{R};D(A))}$ by the assumption that m_1 defines an L^p -Fourier multiplier. This shows that \mathcal{B} maps boundedly from $W^{2,p}(\mathbb{R};D(A))$ into itself by Lemma 2.3.

It remains to show that $\mathcal{AB}u = \mathcal{BA}u = u$ when $u \in W^{2,p}(\mathbb{R}; D(A))$. Let $f \in \mathcal{S}(\mathbb{R}; D(A))$. Then it is clear that we have

$$\mathcal{F}(\mathcal{B}\mathcal{A}f)(x) = m_1(x)\mathcal{F}(\mathcal{A}f)(x) = m_1(x)(-x^2 - A)\mathcal{F}f(x) = \mathcal{F}f(x)$$

$$\mathcal{F}(\mathcal{AB}f)(x) = -(x^2 + A)\mathcal{F}(\mathcal{B}f)(x) = (-x^2 - A)m_1(x)\mathcal{F}f(x) = \mathcal{F}f(x).$$

Thus

$$\mathcal{B}\mathcal{A}f = \mathcal{A}\mathcal{B}f = f.$$

This equality remains true when $f \in W^{2,p}(\mathbb{R};D(A))$ by the boundedness of \mathcal{A} from $W^{2,p}(\mathbb{R};D(A))$ into $L^p(\mathbb{R};X)$, the boundedness of \mathcal{B} on $L^p(\mathbb{R};X)$ and $W^{2,p}(\mathbb{R};D(A))$ and Lemma 2.3. This shows that the implication (ii) \Rightarrow (i) is true. The proof is complete.

Next we show that when X is a UMD Banach space and $1 , one can give a simpler characterization of the <math>(W^{2,p},W^{1,p})$ -mild well-posedness for (P_2) . For this we need to use the operator-valued Fourier multiplier theorem on $L^p(\mathbb{R},X)$ obtained by Weis [12]. Weis' result involves the Rademacher boundedness for sets of bounded linear operators on Banach spaces. Let γ_j be the j-th Rademacher function on [0,1] given by $\gamma_j(t) = sgn(\sin(2^jt))$ when $j \geq 1$. For $x \in X$, we denote by $\gamma_j \otimes x$ the X-valued function $t \to r_j(t)x$ on [0,1].

Definition 2.3. Let X be a Banach space. A set $\mathbf{T} \subset \mathcal{L}(X)$ is said to be Rademacher bounded, if there exists C > 0 such that

$$\left\| \sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j} \right\|_{L^{1}} \leq C \left\| \sum_{j=1}^{n} \gamma_{j} \otimes x_{j} \right\|_{L^{1}}$$

for all $T_1, \ldots, T_n \in \mathbf{T}, x_1, \ldots, x_n \in X$ and $n \in \mathbb{N}$.

Let $\mathbf{S}, \mathbf{T} \subset \mathcal{L}(X)$ be Rademacher bounded sets. Then it can be seen easily from the definition that the product set $\mathbf{ST} := \{ST : S \in \mathbf{S}, T \in \mathbf{T}\}$, the union set $\mathbf{S} \cup \mathbf{T}$ and the sum set $\mathbf{S} + \mathbf{T} := \{S + T : S \in \mathbf{S}, T \in \mathbf{T}\}$ are still Rademacher bounded. It was shown by Weis that when X is a UMD Banach space and $1 , if <math>m : \mathbb{R} \to \mathcal{L}(X)$ is a C^1 -function such that both sets $\{m(x) : x \in \mathbb{R}\}$ and $\{xm'(x) : x \in \mathbb{R}\}$ are Rademacher bounded, then m is an L^p -Fourier multiplier [12, Theorem 3.4]. This result together with Theorem 2.1 gives the following characterization of the $(W^{2,p}, W^{1,p})$ -mild well-posedness (P_2) when X is a UMD Banach space and 1 .

Corollary 2.2. Let X be a UMD Banach space, $1 and let <math>A : D(A) \rightarrow X$ be a densely defined closed operator on X. Then the following assertions are equivalent.

- (i) (P_2) is $(W^{2,p}, W^{1,p})$ -mildly well-posed;
- (ii) $(-\infty, 0] \subset \rho(A)$ and the function m given by $m(x) = -ix(x^2 + A)^{-1}$ is an L^p -Fourier multiplier.

Proof. The implication (i) \Rightarrow (ii) is clearly true by Theorem 2.1, we only need to show that the implication (ii) \Rightarrow (i) is true. We assume that $(-\infty, 0] \subset \rho(A)$ and m

given by $m(x)=ix\eta(x)$ defines an L^p -Fourier multiplier, where $\eta(x)=-(x^2+A)^{-1}$ when $x\in\mathbb{R}$. By Theorem 2.1, it will suffice to show that the function η defines an L^p -Fourier multiplier. By [12, Theorem 3.4], we only need to show that both sets $\{\eta(x):x\in\mathbb{R}\}$ and $\{x\eta'(x):x\in\mathbb{R}\}$ are Rademacher bounded as X is a UMD Banach space and $1< p<\infty$. Since η is analytic, we deduce that the set $\{\eta(x):|x|\leq 1\}$ is Rademacher bounded [12, Proposition 2.6]. The assumption that m defines an L^p -Fourier multiplier implies that the set $\{ix\eta(x):\in\mathbb{R}\}$ is Rademacher bounded [7], we deduce that the set $\{\eta(x):|x|\geq 1\}$ is Rademacher bounded. Here we have used the fact that the set $\{\frac{I_X}{ix}:|x|\geq 1\}$ is Rademacher bounded and the easy fact that the product set of two Rademacher bounded sets is still Rademacher bounded [12], where I_X denotes the identity operator on X. We have shown that the set $\{\eta(x):x\in\mathbb{R}\}$ is Rademacher bounded as the union of two Rademacher bounded sets is still Rademacher bounded [3, 7, 12].

On the other hand $\eta'(x)=2x\eta(x)^2$, thus $x\eta'(x)=2x^2\eta(x)^2=-2m(x)^2$. The function $2m(x)^2$ is analytic, therefore the set $\{x\eta'(x):|x|\leq 1\}$ is Rademacher bounded [12, Proposition 2.6]. We deduce from the assumption that m defines an L^p -Fourier multiplier that the set $\{x\eta'(x):|x|\geq 1\}$ is also Rademacher bounded [7]. It follows that the set $\{x\eta'(x):x\in\mathbb{R}\}$ is Rademacher bounded. The proof is complete.

The next result gives a sufficient condition involved Rademacher boundedness of the resolvent of A for the problem (P_2) to be $(W^{2,p},W^{1,p})$ -mildly well-posed when X is a UMD Banach space and 1 .

Corollary 2.3. Let X be a UMD Banach space, $1 and let <math>A : D(A) \to X$ be a densely defined closed operator on X. We assume that $(-\infty, 0] \subset \rho(A)$ and the set $\{x^{3/4}(x+A)^{-1} : x \geq 0\}$ is Rademacher bounded. Then (P_2) is $(W^{2,p}, W^{1,p})$ -mildly well-posed.

Proof. Let $m(x) = -ix(x^2 + A)^{-1}$ when $x \in \mathbb{R}$. It will suffice to show that both sets $\{m(x): x \in \mathbb{R}\}$ and $\{xm'(x): x \in \mathbb{R}\}$ are Rademacher bounded by Corollary 2.2 and [12, Theorem 3.4]. The set $\{m(x): |x| \leq 1\}$ is Rademacher bounded as m is analytic [12, Proposition 2.6]. The set $\{m(x): |x| > 1\}$ is also Rademacher bounded as $\{|x|^{3/2}(x^2 + A)^{-1}: |x| > 1\}$ is Rademacher bounded by assumption. Here we have used the fact that the set $\{\frac{J_X}{\sqrt{|x|}}: |x| > 1\}$ is Rademacher bounded and the easy fact that the product set of two Rademacher bounded sets is still Rademacher bounded [12]. Thus $\{m(x): x \in \mathbb{R}\}$ is Rademacher bounded as the union of two Rademacher bounded sets is still Rademacher bounded [3, 7, 12]. We have $xm'(x) = m(x) + 2sgn(x)i[|x|^{3/2}(x^2 + A)^{-1}]^2$. Therefore $\{xm'(x): x \in \mathbb{R}\}$ is Rademacher bounded by assumption as the product set of two Rademacher bounded sets is still Rademacher bounded [12]. The proof is complete.

Let $0 \le \theta \le 1$ be fixed, we define the fractional Sobolev space $W^{1+\theta,p}(\mathbb{R};X)$ of order $1+\theta$ as the completion of $\mathcal{S}(\mathbb{R};X)$ under the norm

$$||f||_{W^{1+\theta,p}} := ||f||_{L^p} + ||f'||_{L^p} + ||\mathcal{F}^{-1}\xi\mathcal{F}f||_{L^p},$$

where

(9)
$$\xi(x) := (ix)^{1+\theta} = \begin{cases} |x|^{1+\theta} e^{\frac{(1+\theta)i\pi}{2}}, & x \ge 0, \\ |x|^{1+\theta} e^{\frac{-(1+\theta)i\pi}{2}}, & x < 0. \end{cases}$$

Here f' is understood in the sense of distributions. It is clear that when $\theta=1$, $\xi(x)=-x^2$, this implies that when $\theta=1$, the above definition coincides with the definition (2) of $W^{2,p}(\mathbb{R};X)$. It is also clear that when $\theta=0$, the above definition coincides with the definition (1) of $W^{1,p}(\mathbb{R};X)$. It is also clear from the definition that $W^{1+\theta,p}(\mathbb{R};X)\subset W^{1,p}(\mathbb{R};X)$ and the embedding is continuous. Now we are ready to introduce a mild well-posedness for (P_2) which will generalize the $(W^{2,p},W^{1,p})$ -mild well-posedness for (P_2) .

Definition 2.4. Let $1 \le p < \infty$, $0 \le \theta \le 1$ and let A be a densely defined closed operator on a Banach space X with domain D(A). We say that (P_2) is $(W^{2,p}, W^{1+\theta,p})$ -mildly well-posed, if there exists a bounded linear operator $\mathcal B$ that maps $L^p(\mathbb R;X)$ continuously into itself with range contained in $W^{1+\theta,p}(\mathbb R;X)$, $\mathcal B(W^{1,p}(\mathbb R;D(A))) \subset W^{2,p}(\mathbb R;D(A))$ and $\mathcal A\mathcal Bu = \mathcal B\mathcal Au = u$ when $u \in W^{2,p}(\mathbb R;D(A))$, where $\mathcal Au = u'' - Au$ when $u \in W^{2,p}(\mathbb R;D(A))$. We call $\mathcal B$ the solution operator of the problem (P_2) .

It is clear from the definition that when (P_2) is $(W^{2,p},W^{1+\theta,p})$ -mildly well-posed, then it is $(W^{2,p},W^{1,p})$ -mildly well-posed. It is also clear that the $(W^{2,p},W^{1+\theta,p})$ -mild well-posedness of (P_2) coincides with the $(W^{2,p},W^{1,p})$ -mild well-posedness of (P_2) when $\theta=0$. We have actually the following characterization of the $(W^{2,p},W^{1+\theta,p})$ -mild well-posedness of (P_2) which may be considered as a generalization of Theorem 2.1.

Theorem 2.4. Let X be a Banach space, $1 \le p < \infty$, $0 \le \theta \le 1$ and let $A:D(A) \to X$ be a densely defined closed operator on X. Then the following assertions are equivalent.

- (i) (P_2) is $(W^{2,p}, W^{1+\theta,p})$ -mildly well-posed;
- (ii) $(-\infty, 0] \subset \rho(A)$ and the functions m_1 , m_2 and m_3 defined on \mathbb{R} by $m_1(x) = -(x^2 + A)^{-1}$, $m_2(x) = -ix(x^2 + A)^{-1}$ and $m_3(x) = -(ix)^{1+\theta}(x^2 + A)^{-1}$ define L^p -Fourier multipliers.

Proof. (i) \Rightarrow (ii): Assume that (P_2) is $(W^{2,p}, W^{1+\theta,p})$ -mildly well-posed and let \mathcal{B} be the solution operator. Then it is $(W^{2,p}, W^{1,p})$ -mildly well-posed. Thus $(-\infty, 0] \subset$

ho(A) and the functions m_1 and m_2 defined on $\mathbb R$ given by $m_1(x) = -(x^2 + A)^{-1}$, $m_2(x) = -ix(x^2 + A)^{-1}$ define L^p -Fourier multipliers by Theorem 2.1, moreover the bounded linear operator defined by the L^p -Fourier multiplier m_1 is $\mathcal B$ by the proof of Theorem 2.1. Since $\mathcal B$ is bounded and linear from $L^p(\mathbb R;X)$ into itself with range contained in $W^{1+\theta,p}(\mathbb R;X)$ by assumption, it follows easily from the Closed Graph Theorem that $\mathcal B$ is a bounded linear operator from $L^p(\mathbb R;X)$ into $W^{1+\theta,p}(\mathbb R;X)$. Here we have used the fact that the embedding $W^{1+\theta,p}(\mathbb R;X) \subset W^{1,p}(\mathbb R;X)$ is continuous. This implies clearly that m_3 defined by $m_3(x) = -(ix)^{1+\theta}(x^2 + A)^{-1}$ defines an L^p -Fourier multiplier.

(ii) \Rightarrow (i): Assume that $(-\infty,0] \subset \rho(A)$ and the functions m_1, m_2 and m_3 defined on $\mathbb R$ given by $m_1(x) = -(x^2+A)^{-1}, m_2(x) = -ix(x^2+A)^{-1}$ and $m_3(x) = -(ix)^{1+\theta}(x^2+A)^{-1}$ define L^p -Fourier multipliers. Then (P_2) is $(W^{2,p}, W^{1,p})$ -mildly well-posed by Theorem 2.1. This means that there exists a bounded linear operator $\mathcal B$ that maps $L^p(\mathbb R;X)$ continuously into itself with range contained in $W^{1,p}(\mathbb R;X)$, $\mathcal B(W^{1,p}(\mathbb R;D(A))) \subset W^{2,p}(\mathbb R;D(A))$ and $\mathcal A\mathcal Bu = \mathcal B\mathcal Au = u$ when $u \in W^{2,p}(\mathbb R;D(A))$. The bounded linear operator defined by the L^p -Fourier multiplier m_1 is $\mathcal B$ by the proof of Theorem 2.1. Since m_3 defines an L^p -Fourier multiplier, we deduce that the image of $L^p(\mathbb R;X)$ by $\mathcal B$ is contained in $W^{1+\theta,p}(\mathbb R;X)$. The proof is complete.

Proposition 2.1. Let X be a Banach space, $1 \le p < \infty$ and let $A : D(A) \to X$ be a densely defined closed operator on X. If (P_2) is $(W^{2,p}, W^{2,p})$ -mildly well-posed, then it is L^p -well-posed.

Proof. We assume that (P_2) is $(W^{2,p},W^{2,p})$ -mildly well-posed and \mathcal{B} is the solution operator. Then \mathcal{B} maps $L^p(\mathbb{R};X)$ continuously into itself with range contained in $W^{2,p}(\mathbb{R};X)$, $\mathcal{B}(W^{1,p}(\mathbb{R};D(A)))\subset W^{2,p}(\mathbb{R};D(A))$) and $\mathcal{AB}u=\mathcal{BA}u=u$ when $u\in W^{2,p}(\mathbb{R};D(A))$. It follows from the boundedness of \mathcal{B} on $L^p(\mathbb{R};X)$ and the Closed Graph Theorem that \mathcal{B} is a bounded linear operator from $L^p(\mathbb{R};X)$ into $W^{2,p}(\mathbb{R};X)$. Let $f\in L^p(\mathbb{R};X)$, then there exists $f_n\in W^{2,p}(\mathbb{R};D(A))$ such that $f_n\to f$ in $L^p(\mathbb{R};X)$ by Lemma 2.3. We deduce that $\mathcal{B}f_n\to\mathcal{B}f$ in $W^{2,p}(\mathbb{R};X)$. Since $(\mathcal{B}f_n)''\to (\mathcal{B}f)''$ and $\mathcal{B}f_n\to\mathcal{B}f$ in $L^p(\mathbb{R};X)$, there exists a subsequence f_{n_k} of f_n such that $(\mathcal{B}f_{n_k})''\to (\mathcal{B}f)''$ and $\mathcal{B}f_{n_k}\to\mathcal{B}f$ a.e. on \mathbb{R} . Using the equality $(\mathcal{B}f_{n_k})''=A\mathcal{B}f_{n_k}+\mathcal{B}f_{n_k}$ and the closedness of A, we deduce that $\mathcal{B}f(t)\in D(A)$ and $(\mathcal{B}f)''(t)=A\mathcal{B}f(t)+\mathcal{B}f(t)$ for almost all $t\in\mathbb{R}$. This implies that $\mathcal{B}f\in L^p(\mathbb{R};D(A))$ and $(\mathcal{B}f)''=A\mathcal{B}f+\mathcal{B}f$. Thus $\mathcal{B}f\in W^{2,p}(\mathbb{R};X)\cap L^p(\mathbb{R};D(A))$ is a strong L^p -

To show the uniqueness of the strong L^p -solution of (P_2) , we let $u \in W^{2,p}(\mathbb{R}; X) \cap L^p(\mathbb{R}; D(A))$ be such that u'' = Au. Then there exist $u_n \in W^{2,p}(\mathbb{R}; D(A))$ such that $u_n \to u$ in $W^{2,p}(\mathbb{R}; X)$ as well as in $L^p(\mathbb{R}; D(A))$ by the density of D(A) in X. We have $\mathcal{B}\mathcal{A}u_n = u_n$ by assumption. Letting $n \to \infty$, we obtain that $\mathcal{B}(u'' - Au) = u$, here we have used the boundedness of \mathcal{B} on $L^p(\mathbb{R}; X)$. It follows that u = 0 as u'' - Au = 0. We have shown that (P_2) is L^p -well-posed. The proof is complete.

solution of (P_2) .

Remark 2.2. We do not know whether the inverse implication of Proposition 2.1 remains true: when (P_2) is L^p -well-posed, if \mathcal{B} is the solution operator, then \mathcal{B} maps $L^p(\mathbb{R};X)$ continuously into itself with range contained in $W^{2,p}(\mathbb{R};X)$, and $\mathcal{AB}u=\mathcal{BA}u=u$ when $u\in W^{2,p}(\mathbb{R};D(A))$, but we do not know whether the inclusion $\mathcal{B}(W^{1,p}(\mathbb{R};D(A)))\subset W^{2,p}(\mathbb{R};D(A))$ is true. Meanwhile, Theorem 2.4 gives a sufficient condition for the L^p -well-posedness of (P_2) : if $(-\infty,0]\subset \rho(A)$ and the functions m_1,m_2 and m_3 defined on \mathbb{R} given by $m_1(x)=-(x^2+A)^{-1},m_2(x)=-ix(x^2+A)^{-1}$ and $m_3(x)=x^2(x^2+A)^{-1}$ define L^p -Fourier multipliers, then (P_2) is L^p -well-posed.

When X is a UMD Banach space, we have the following characterization of the $(W^{2,p},W^{1+\theta,p})$ -mild well-posedness when $1< p<\infty$. The proof is similar to the proof of Corollary 2.2, we omit it.

Corollary 2.5. Let X be a UMD Banach space, $1 , <math>\frac{1}{2} \le \theta \le 1$ and let $A : D(A) \to X$ be a densely defined closed operator on X. Then the following assertions are equivalent.

- (i) (P_2) is $(W^{2,p}, W^{1+\theta,p})$ -mildly well-posed;
- (ii) $(-\infty, 0] \subset \rho(A)$ and the function m given by $m(x) = -(ix)^{1+\theta}(x^2 + A)^{-1}$ is an L^p -Fourier multiplier, where $(ix)^{1+\theta}$ is defined by (9).

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for carefully reading the manuscript and for providing valuable comments and suggestions.

REFERENCES

- 1. H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser, Basel, 1995.
- 2. W. Arendt, C. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, *Studia Math.*, **160** (2004), 23-51.
- 3. W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, *Math. Z.*, **240** (2002), 311-343.
- 4. W. Arendt and S. Bu, Sums of bisectorial operators and applications, *Integr. Equ. Oper. Theory*, **52** (2005), 299-321.
- 5. W. Arendt and M. Duelli, Maximal L^p -regularity for parabolic and elliptic equations on the line, *J. Evol. Equ.*, **6** (2006), 773-790.
- 6. S. Bu, Mild well-posedness of vector-valued problems on the real line, *Arch. Math.*, **95** (2010), 63-73.
- 7. Ph. Clément, B. de Pagter, F. A. Sukochev and M. Witvliet, Schauder decomposition and multiplier theorems, *Studia Math.*, **138** (2000), 135-163.

- 8. V. Keyantuo and C. Lizama, *Mild well-posedness of abstract differential equations*, in: Functional Analysis and Evolution Equations, The Günter Lumer Volume, (H. Amann et al. eds.), 2008, pp. 371-387.
- 9. A. Mielke, Über maximale L^p -regularität für differentialgleichungen in Banach-und Hilbert-Räumen, *Math. Ann.*, **277** (1987), 121-133.
- 10. S. Schweiker, Asymptotic regularity and well-posedness of first- and second-order differential equations on the line, Ph.D. Thesis, Ulm, 2000.
- 11. O. Staffans, Periodic L^2 -solutions of an integro-differential equation in Hilbert space, *Proc. Amer. Math. Soc.*, **117** (1993), 745-751.
- 12. L. Weis, Operator-valued Fourier multipliers and maximal L^p -regularity, *Math. Ann.*, **319** (2001), 735-758.

Shangquan Bu and Gang Cai Department of Mathematical Sciences Tsinghua University Beijing 100084 P. R. China E-mail: caig10@mails.tsinghua.edu.cn

E-mail: caig10@mails.tsinghua.edu.cr sbu@math.tsinghua.edu.cn