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COMPLEX POWERS OF C-SECTORIAL OPERATORS. PART I

Chuang Chen1, Marko Kostić2, Miao Li*,3 and Milica Žigić4

Abstract. The main theme of this paper is the construction of complex powers of
C-sectorial operators in the setting of sequentially complete locally convex spaces.
We consider the constructed powers as the integral generators of equicontinuous
analytic C-regularized resolvent families, and incorporate the obtained results in
the study of incomplete higher order Cauchy problems.

1. INTRODUCTION AND PRELIMINARIES

Since the study of fractional powers of operators has an extensive and long history,
it would be really difficult to mention here all relevant references on this subject.
For a fairly general information, the reader may consult [1, 8-13, 17, 21, 31-32, 34,
37] and [42]. On the other hand, considerable interest in the theory of fractional
differential equations has been stimulated by the applications in many fields of science
and technology, including physics and chemistry. The main purpose of this paper is
to develop the basic theory of complex powers of C-sectorial operators in sequentially
complete locally convex spaces, and to apply the obtained results to various types of
abstract fractional differential equations. In a series of our follow-up researches, we
will construct the complex powers of almost C-sectorial operators [32], and examine
the possibilites of applications to abstract parabolic problems [42].
This paper is organized as follows. In the first section we collect the notations and

material needed later on. In the second section we introduce various types of operators
of C-regularized type and clarify their basic structural properties (Proposition 2.4). The
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main objective in Lemma 2.5-Lemma 2.7 is to slightly generalize several well known
results from the theory of sectorial operators. In Theorem 2.8, we analyze the continuity
properties, additivity and spectral mapping theorem for introduced complex powers
with nonzero imaginary part. In the continuation of the second section, we consider
purely imaginary powers of C-sectorial operators. The main purpose of Remark 2.12
is to make a link to recent results concerning operators with polynomially bounded
resolvent ([21]) and to show that the notion of C-sectoriality is not essential in our
analysis. The remaining part of the second section is almost completely devoted to the
study of moment inequality (Theorem 2.16, Example 2.18). The third section of the
paper starts with the analysis of generation of equicontinuous analytic C-regularized
resolvent families by fractional powers (Theorem 3.1, Remark 3.2). The obtained
results are applied in Example 3.3 to a class of abstract space-time fractional PDEs in
ultradistribution spaces. In Theorem 3.5 and Theorem 3.7, we consider the incomplete
higher order Cauchy problems, in general with Liouville right-sided time-fractional
derivatives.
We use the standard notation. By E is denoted a Hausdorff sequentially complete

locally convex space, SCLCS for short; the abbreviation � stands for the fundamental
system of seminorms which defines the topology of E, and by L(E) is denoted the
space which consists of all continuous linear mappings from E into E. The domain
and resolvent set of a closed linear operator A on E are denoted by D(A) and ρ(A),
respectively. Suppose F is a linear subspace of E. Then the part of A in F, denoted
by A|F , is a linear operator defined by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F} and
A|F x := Ax, x ∈ D(A|F ). Let L(E) � C be injective. Then the C-resolvent set of A,

ρC(A) in short, is defined by ρC(A) := {λ ∈ C : λ−A is injective and (λ−A)−1C ∈
L(E)}. We assume that CA ⊆ AC. The space D∞(A) :=

⋂
n∈N

D(An), topologized
by the following system of seminorms pn(x) :=

∑n
j=0 p(Ajx) (p ∈ �, n ∈ N),

becomes a SCLCS. In the case that E is a Banach space, we denote by [D(A)] the
Banach space D(A) equipped with the graph norm.
Given s ∈ R in advance, set �s� := sup{l ∈ Z : s ≥ l} and 	s
 := inf{l ∈ Z : s ≤

l}. The Gamma function is denoted by Γ(·) and the principal branch is always used to
take the powers. Set 0α := 0, gα(t) := tα−1/Γ(α) (α > 0, t > 0) and Σ0 := (0,∞).
If δ ∈ (0, π] and d ∈ (0, 1], then we define Σδ := {λ ∈ C : λ 
= 0, | argλ| < δ},
Bd := {z ∈ C : |z| ≤ d} and Σ(δ, d) := Σδ ∪ Bd. Denote by L and L−1 the Laplace
transform and its inverse transform, respectively. We refer the reader to [31, pp. 99–
102] for the basic material concerning integration in SCLCSs.
The following definition is taken from [18, 19].

Definition 1.1.

(i) Let α > 0. A strongly continuous operator family (Sα(t))t≥0 is called a (gα, C)-
regularized resolvent family having A as a subgenerator iff the following holds:
(i.1) Sα(t)A ⊆ ASα(t), t ≥ 0 and Sα(0) = C,
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(i.2) Sα(t)C = CSα(t), t ≥ 0 and
(i.3) Sα(t)x = Cx +

∫ t
0 gα(t − s)ASα(s)x ds, t ≥ 0, x ∈ D(A);

(Sα(t))t≥0 is said to be locally equicontinuous if, for every t > 0, the family
{Sα(s) : s ∈ [0, t]} is equicontinuous. Furthermore, (Sα(t))t≥0 is said to be
exponentially equicontinuous (equicontinuous) if there exists ω ∈ R (ω = 0)
such that the family {e−ωtSα(t) : t ≥ 0} is equicontinuous.

(ii) Let α > 0, let β ∈ (0, π] and let (Sα(t))t≥0 be a (gα, C)-regularized resolvent
family. Then it is said that (Sα(t))t≥0 is an analytic (gα, C)-regularized resolvent
family of angle β, if there exists a function Sα : Σβ → L(E) satisfying that, for
every x ∈ E, the mapping z �→ Sα(z)x, z ∈ Σβ is analytic as well as that:
(ii.1) Sα(t) = Sα(t), t > 0 and
(ii.2) limz→0,z∈Σγ Sα(z)x = Cx for all γ ∈ (0, β) and x ∈ E.

It is said that (Sα(t))t≥0 is an exponentiallyequicontinuous, analytic (gα, C)-
regularized resolvent family, resp. equicontinuous analytic (gα, C)-regu-
larized resolvent family of angle β, if for every γ ∈ (0, β), there exists
ωγ ≥ 0, resp. ωγ = 0, such that the set {e−ωγ |z|Sα(z) : z ∈ Σγ} is
equicontinuous. Since there is no risk for confusion, we will identify in the
sequel Sα(·) and Sα(·).

The integral generator Â of (Sα(t))t≥0 is defined by setting

(1) Â :=
{
(x, y) ∈ E × E : Sα(t)x − Cx =

∫ t

0
gα(t − s)Sα(s)y ds, t ≥ 0

}
.

The integral generator Â of (Sα(t))t≥0 is a linear operator in E which extends any
subgenerator of (Sα(t))t≥0 and satisfies C−1ÂC = Â. The local equicontinuity of
(Sα(t))t≥0 guarantees that Â is a closed linear operator in E; if, additionally,

(2) A

t∫
0

gα(t − s)Sα(s)x ds = Sα(t)x − Cx, t ≥ 0, x ∈ E,

then Sα(t)Sα(s) = Sα(s)Sα(t) for all t, s ≥ 0 and Â = C−1AC is a subgenerator of
(Sα(t))t≥0. For more details on subgenerators of (gα, C)-regularized resolvent families,
the reader may consult [19]-[20].
It is also worth noting that the class of (a, k)-regularized C-resolvent families can

be introduced following the approach employed in [4].

Definition 1.2. Let α > 0. A strongly continuous operator family (Sα(t))t≥0 is
called a (gα, C)-regularized resolvent family iff the following conditions are fulfilled:
(i) Sα(0) = C, Sα(t)Sα(s) = Sα(s)Sα(t), t, s ≥ 0 and
(ii) the functional equality
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Sα(s)
(
gα ∗ Sα

)
(t)x − (

gα ∗ Sα

)
(s)Sα(t)x

=
(
gα ∗ Sα

)
(t)Cx − (

gα ∗ Sα

)
(s)Cx(3)

holds for any t, s ≥ 0 and x ∈ E.
The notions of (local, exponential) equicontinuity, analyticity and the integral gen-

erator Â of (Sα(t))t≥0 are understood in the sense of Definition 1.1.

In this paragraph, we would like to note some basic facts concerning the relationship
between Definition 1.1 and Definition 1.2. Suppose α > 0, A is a subgenerator of a
locally equicontinuous (gα, C)-regularized resolvent family (Sα(t))t≥0 and (2) holds
(cf. Definition 1.1). Then (Sα(t))t≥0 is a global (gα, C)-regularized resolvent family
in the sense of Definition 1.2 and the integral generator of (Sα(t))t≥0 is C−1AC.
Suppose, conversely, that Â is the integral generator of a locally equicontinuous (gα, C)-
regularized resolvent family (Sα(t))t≥0 in the sense of Definition 1.2. Then Â coincides
with the infinitesimal generator of (Sα(t))t≥0, R(C) ⊆ D(A) (cf. [4] for the notion
and further properties), Â is a subgenerator of a global (gα, C)-regularized resolvent
family (Sα(t))t≥0 in the sense of Definition 1.1 (Â = C−1ÂC is, in fact, the integral
generator of (Sα(t))t≥0), and (2) holds with A replaced by Â therein. Henceforth we
will always use Definition 1.1.
Let α > 0, let β ∈ R and let the Mittag-Leffler function Eα,β(z) be defined by

Eα,β(z) :=
∑∞

n=0 zn/Γ(αn+β), z ∈ C. In this place, we assume that 1/Γ(αn+β) = 0
if αn+β ∈ −N0. Set, for short, Eα(z) := Eα,1(z), z ∈ C. The Wright function Φγ(t)
is defined by Φγ(t) := L−1(Eγ(−λ))(t), t ≥ 0. As is well-known, for every α > 0,
there exists cα > 0 such that:

(4) Eα(t) ≤ cα exp
(
t1/α

)
, t ≥ 0.

Henceforth Dα
t denotes the Caputo fractional derivative of order α ([2]).

The asymptotic expansion of the entire function Eα,β(z) is given in the following
lemma (cf. [39, Theorem 1.1]):

Lemma 1.3. Let 0 < σ < 1
2π. Then, for every z ∈ C \ {0} and m ∈ N \ {1} :

Eα,β(z) =
1
α

∑
s

Z1−β
s eZs −

m−1∑
j=1

z−j

Γ(β − αj)
+ O(|z|−m), |z| → ∞,

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over all
those integers s satisfying | arg z + 2πs| < α(π

2 + σ).

For further information concerning Mittag-Leffler and Wright functions, we refer
the reader to [2, Section 1.3] and references cited there.



Complex Powers of C-sectorial Operators. Part I 469

2. COMPLEX POWERS OF OPERATORS OF C-REGULARIZED TYPE

Our intention in this section is to give, under the condition (H) stated below,
a simplified construction of complex powers of operators of C-regularized type in
SCLCSs (cf. also [10, 11]).

Definition 2.1. Let 0 ≤ ω < π. Then a closed linear operator A on E is called
C-sectorial of angle ω, in short A ∈ SectC(ω), if C \Σω ⊆ ρC(A) and the family

{
λ
(
λ − A

)−1
C : λ /∈ Σω′

}

is equicontinuous for every ω < ω′ < π; if this is the case, then the C-spectral angle
of A is defined by ωC(A) := inf{ω ∈ [0, π) : A ∈ SectC(ω)}.
In the following definition, we shall introduce a more general class of operators of

C-regularized type.

Definition 2.2 A closed linear operator A on E is called C-nonnegative if
(−∞, 0) ⊆ ρC(A) and the family

{
λ
(
λ + A

)−1
C : λ > 0

}

is equicontinuous; moreover, a C-nonnegative operator A is called C-positive if, in
addition, 0 ∈ ρC(A).

Remark 2.3. It is evident that a C-sectorial operator A has to be C-nonnegative;
even in the case that E is a Fréchet space and that C = 1, (the identity operator
on E), the converse statement is not true, in general (cf. [31, Subsection 1.4.1]).
Notice also that a C-positive operator A on a Banach space E need not be C-sectorial
unless C = 1. In order to illustrate this, consider the operator A := ξΔ2 − i�Δ + ς

(ξ > 0, � ∈ R \ {0}, ς < 0), acting on E := L2(Rn) with its maximal distributional
domain. Then it is not difficult to prove that −A is A−1-positive and that −A is not
A−1-sectorial (cf. [20, Example 3.5.30(ii)]). The construction of fractional powers of
C-nonnegative operators that are not C-sectorial is outside the scope of this paper; it
is also worthwhile to mention here that the assumption on C-sectoriality, used in the
construction of fractional powers of operators established in this paper, can be slightly
weakened (cf. [20], [31, 32] and Remark 2.12 below for further information in this
direction).

Some preliminary properties of C-nonnegative operators are collected in the fol-
lowing proposition. The proof is standard and therefore omitted (see [31, Chapter 1]
for the case that C = 1 and [19, Remark 2.2]).
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Proposition 2.4.

(i) If 0 ∈ ρ(C), then A is C-nonnegative iff A is nonnegative.
(ii) If A is C-positive, then the family {(λ+ C)(λ + A)−1C : λ > 0} is equicontin-

uous. Conversely, if the last family is equicontinuous and
(ii.1) C is nonnegative, then A is C-nonnegative;
(ii.2) C is positive, then A is C-positive.

(iii) Let A be C-nonnegative. Then the following assertions hold.
(iii.1) The family {A(λ + A)−1C : λ > 0} is equicontinuous.
(iii.2) If A is injective, then λ(λ + A−1)−1C = A(λ−1 + A)−1C for all λ > 0.

Hence, A−1 is C-nonnegative.
(iii.3) limλ→∞ An(λ + A)−nCx = 0 ⇔ limλ→∞ λn(λ + A)−nCx = Cx.
(iii.4) limλ→0 λn(λ + A)−nCx = 0 ⇔ limλ→0 An(λ + A)−nCx = Cx.
(iii.5) Let E be barreled and let E∗, the dual space of E, be endowed with the

strong topology, i.e., the topology of uniform convergence on bounded sets
of E. Then the adjoint of A, denoted by A∗, is C∗-nonnegative in E∗,
provided additionally that D(A) and R(C) are dense in E.

Let 0 ≤ ω < ϕ ≤ π and 0 < d ≤ 1. In the remaining part of this section, we will
always assume that a closed linear operator A satisfies the following condition.

(H): A is C-sectorial of angle ω, Bd1 ⊆ ρC(−A) and the family {(z − A)−1C : z ∈
Bd1} is equicontinuous for all d1 ∈ (0, d), and the mapping z �→ (z − A)−1Cx
is continuous on Λω,d := ((C \ Σω) ∪ Bd)◦ for every x ∈ E.

Before proceeding further, we would like to note the following fact: If D(A) and
R(C) are dense in E, and the space E is barreled, then the operator A∗ satisfies the
condition (H) with C∗. For a closed linear operator A satisfying (H), one can introduce
the H∞-functional calculus f(A) for appropriate holomorphic functions f . Denote by
H(Σϕ) the space of all holomorphic functions on the sector Σϕ and by H∞(Σϕ) the
space which consists of those functions f ∈ H(Σϕ) such that

|f(z)| ≤ M |z|−s (z ∈ Σϕ)

for some constants M, s > 0. Notice that [19, Proposition 2.16(iii)] implies that the
mapping z �→ (z − A)−1Cx is analytic in Λω,d as well as that (z − A)−nC ∈ L(E)
and

(5)
dn−1

dzn−1

(
z − A

)−1
Cx

= (−1)n−1(n − 1)!
(
z − A

)−n
Cx, x ∈ E, z ∈ Λω,d, n ∈ N.
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Now we are in a position to define the H∞-functional calculus fC(A) for the operator
A as follows

fC(A)x :=
1

2πi

∫
Γω′ ,d′

f(z)
(
z − A

)−1
Cx dz, x ∈ E,(6)

where Γω′,d′ = ∂(Σω′ \Bd′), the boundary of Σω′ \Bd′ oriented in such a way that �z

increases along Γω,d, with ω′ ∈ (ω, ϕ) and d′ ∈ (0, d) arbitrary. Then an application
of Cauchy’s theorem shows that the above definition does not depend on the choice
of ω′ and d′. Furthermore, it is routine to show that the mapping f �→ fC(A) is a
homomorphism from H∞(Σϕ) into L(E) in the following sense:

fC(A)gC(A) =
(
fg

)
C
(A)C, f, g, fg ∈ H∞(Σϕ).(7)

It immediately follows from (7) that
(
z−b

)
C
(A)

(
1

λ + zb

)
C

(A) =
(

z−b

λ + zb

)
C

(A)C

=
1

2πi

∫
Γω′,d′

z−b

λ + zb

(
z − A

)−1
C2 dz,

(8)

provided 0 < b < π/ϕ and λ > 0. Given b ∈ C with �b > 0, set A−b
C := (z−b)C(A)

and A−0
C := C. Obviously, A−n

C = A−nC (n ∈ N), A−b
C C = CA−b

C (�b > 0), the
mapping b �→ A−b

C x, �b > 0 is analytic for every fixed x ∈ E, and the following
holds:

d

db
A−b

C x = − 1
2πi

∫
Γω′,d′

(ln z)z−b
(
z − A

)−1
Cx dz, x ∈ E, �b > 0.

Furthermore, the equality (7) implies

A−b1
C A−b2

C = A
−(b1+b2)
C C, �b1, �b2 > 0.(9)

Notice also that the mapping z �→ z−b, z ∈ Σπ is analytic, which implies that, for
every b ∈ C with 0 < �b < 1, we can take ω′ = π in the integration appearing in (6).
In such a way, we obtain that:

A−b
C x = lim

ε→0+

1
2πi

∫
Γπ,ε

z−b
(
z − A

)−1
Cx dz

= − sinπb

π

∫ ∞

0

λ−b
(
λ + A

)−1
Cx dλ, 0 < �b < 1, x ∈ E.

(10)

Now we will prove that the family {A−b
C : 0 < b < 1} is equicontinuous. Towards this

end, notice that the family {(1 + λ)(λ + A)−1C : λ > 0} is equicontinuous, i.e., for
every p ∈ �, there exist a seminorm qp ∈ � and a constant Mp > 0 such that:

p
(
(1 + λ)

(
λ + A

)−1
Cx

)
≤ Mpqp(x), λ > 0, x ∈ E.
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The last estimate in combination with (10) indicates that:

p
(
A−b

C x
) ≤

∣∣∣∣sinπb

π

∣∣∣∣
∫ ∞

0

λ−b

1 + λ
p
(
(1 + λ)

(
λ + A

)−1
Cx

)
dλ

=
∣∣∣∣sinπb

π

∣∣∣∣Mpqp(x)
(∫ 1

0
λ−b dλ +

∫ ∞

1
λ−b−1 dλ

)

=Mpqp(x)
(∣∣∣∣sinπ(1− b)

π(1− b)

∣∣∣∣ +
∣∣∣∣ sinπb

πb

∣∣∣∣
)

≤2Mpqp(x), 0 < b < 1, x ∈ E.

Lemma 2.5. The family {A−b
C : 0 < b < 1} is equicontinuous. Furthermore, if

D(A) and R(C) are dense in E, then we have:

lim
b→0

A−b
C x = Cx, x ∈ E.(11)

Proof. First of all, notice that Lemma 2.7 below implies that the set E0 :=⋃
n∈N

R((−n − A)−1C) is dense in E . By the equicontinuity of {A−b
C : 0 < b < 1},

it suffices to show that, for every n ∈ N and x ∈ E ,

lim
b→0

A−b
C

(−n − A
)−1

Cx =
(−n − A

)−1
C2x.

This is a direct consequence of the residue theorem and the dominated convergence
theorem. Indeed,

A−b
C

(−n − A
)−1

Cx =
1

2πi

∫
Γω′,d

z−b
(
z − A

)−1(−n − A
)−1

C2x dz

=
1

2πi

∫
Γω′,d

z−b

(−n − A
)−1 − (

z − A
)−1

z + n
C2x dz

=
(−1)
2πi

∫
Γω′ ,d

z−b

z + n

(
z − A

)−1
C2x dz

→(−1)
2πi

∫
Γω′ ,d

1
z + n

(
z − A

)−1
C2x dz =

(−n − A
)−1

C2x

as b → 0 (x ∈ E).

Lemma 2.6. The operator A−b
C is injective for every b ∈ C with �b > 0.

Proof. Suppose �b > 0 and A−b
C x = 0. Then we obtain from (9) that A−n

C Cx =
A−n+b

C A−b
C x = 0, provided n ∈ N and n > �b. Since A−n

C = A−nC is injective for
every n ∈ N, it follows that x = 0 and that the operator A−b

C is injective.
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Note that the semigroup property (9) and Lemma 2.5 together imply that (A−b
C )b≥0

is a C-regularized semigroup on E, provided that D(A) and R(C) are dense in E.
Define now the powers with negative imaginary part by

A−b := C−1A−b
C , �b > 0.(12)

In particular, A−n = C−1A−nC for every n ∈ N. It is evident that A−b is closed and
injective, provided that �b ≥ 0. Also, by Lemma 2.6 we can define the powers with
positive imaginary part by

Ab :=
(
A−b

)−1 =
(
A−b

C

)−1
C, �b > 0.(13)

Clearly, An = C−1AnC for every n ∈ N, and Ab is closed (injective) due to the
closedness (injectiveness) of A−b (�b > 0).

Lemma 2.7. Let k ∈ N. Then the families {λk(λ + A)−kC : λ ≥ 0} and
{Ak(λ + A)−kC : λ ≥ 0} are equicontinuous. If, additionally, D(A) and R(C) are
dense in E, then limλ→+∞ λk(λ + A)−kCx = Cx.

Proof. The equicontinuity of family {λk(λ + A)−kC : λ ≥ 0} is a consequence of
(5) and the Cauchy integral formula [19, (1)], while the equicontinuity of the family
{Ak(λ + A)−kC : λ ≥ 0} can be proved similarly. If D(A) and R(C) are dense in
E, then the equality limλ→+∞ λk(λ+ A)−kCx = Cx follows from the equicontinuity
of the family {λk(λ + A)−kC : λ ≥ 0}, along with the identity

λk
(
λ + A

)−k
Cx = Cx +

k∑
j=1

(−1)j

(
k

j

)(
λ + A

)−j
AjCx, x ∈ D(Ak),

and the denseness of D(Ak) in E (cf. also [10, Lemma 2.13] for the Banach space
case).

In the following theorem, we shall collect the most important properties of intro-
duced powers.

Theorem 2.8.

(i) Let �b > 0. Then A−b
C ∈ L(E) and C−1A−b

C C = A−b
C . Furthermore, the

operators A±b are closed, injective and C−1A±bC = A±b.
(ii) Suppose b1, b2 ∈ C, �b1 
= 0, �b2 
= 0, k ∈ N0 and:

(∗) k ≥ �b2, provided �b1 < 0 and �b2 > 0, and k > �b2, provided �b1 < 0
and �b2 ∈ N,

(∗∗) k ≥ �b1 + �b2, if �b1 + �b2 /∈ N and k > �b1 + �b2, otherwise.

Then the following holds:
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(14) Λk,ω,d := C
(
D

(
Ak

)) ∪
⋃

λ∈Λω,d

R
((

λ−A
)−k

C
) ⊆ D

(
Ab1Ab2

) ∩ D
(
Ab1+b2

)
,

(15) Ab1Ab2x = Ab1+b2x, x ∈ Λk,ω,d,

and

(16) Ab1+b2 =
((

λ − A
)−k

C
)−1

Ab1Ab2

(
λ − A

)−k
C, λ ∈ Λω,d.

Furthermore, Ab1Ab2 is closable and C−1Ab1Ab2C ⊆ Ab1+b2 , with the equality
in case that �b1 < 0 and �b2 < 0, or that D(A) and R(C) are dense in E.

(iii)(iii.1) Let �b > 0. Then limb′→b Ab′x = Abx for all x ∈ C(D(A1+	
b�)).

(iii.2) Let �b < 0 and θ ∈ (0, π
2 ). Then limb′→b Ab′x = Abx for all x ∈ R(C).

Moreover, limb′→0,b′∈−Σθ
Ab′x = x for all x ∈ R(C), provided that D(A)

and R(C) are dense in E.

(iv) Suppose 0 < b < π/ω. Then Ab satisfies (H) with ω and d replaced respectively
by bω and bd. Furthermore,

(17)
(
Ab

)
c
= Abc, c ∈ R.

Proof.

(i) We will only prove that C−1AbC = Ab. The assumption (x, y) ∈ Ab, i.e.,
(x, y) ∈ (A−b

C )−1C (cf. (13)) simply implies (A−b
C )−1Cx = y, Cy = C(A−b

C )−1Cx =
(A−b

C )−1CCx and (x, y) ∈ C−1[(A−b
C )−1C]C = C−1AbC. Suppose, conversely,

(x, y) ∈ C−1AbC = C−1[(A−b
C )−1C]C. Then C2x = A−b

C Cy = CA−b
C y,

Cx = A−b
C y and (x, y) ∈ (A−b

C )−1C = Ab.

(ii) It is clear that there exist four possible cases:

(ii.1) �b1 < 0 and �b2 < 0, (ii.2) �b1 < 0 and �b2 > 0,

(ii.3) �b1 > 0 and �b2 < 0, (ii.4) �b1 > 0 and �b2 > 0.

Consider first (ii.1). Then we easily infer from (9) that R(C) ⊆ D(Ab1Ab2) ∩
D(Ab1+b2) and that (15) holds. Suppose k ∈ N and x = (λ−A)−kCy for some
y ∈ E and λ ∈ Λω,d. Let ω′ ∈ (ω, π) and d′ ∈ (0, d) be such that λ lies on the
left of Γω′,d′ , and let Γω′′,d′′ lie on the left of Γω′,d′ . Then we obtain inductively
that, for every z ∈ ρC(A) \ {λ} :

(18)

(
z − A

)−1
C

(
λ − A

)−k
Cx

=
(−1)k

(z − λ)k

(
z − A

)−1
C2x +

k∑
i=1

(−1)k−i
(
λ − A

)−i
C2x(

z − λ
)k+1−i

,
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which implies with the help of the residue theorem and the Fubini theorem that:

Ab1+b2
C

(
λ − A

)−k
Cx

=
1

2πi

∫
Γω′ ,d′

zb1+b2
[ (−1)k

(z − λ)k

(
z − A

)−1
C2x

+
k∑

i=1

(−1)k−i(
z − λ

)k+1−i

(
λ − A

)−i
C2x

]
dz

=
(−1)k

2πi

∫
Γω′ ,d′

zb1+b2

(
z − A

)−1
C2x(

z − λ
)k

dz(19)

=
(−1)k

(2πi)2

∫
Γω′′ ,d′′

∫
Γω′ ,d′

μb1zb2

(
z − A

)−1
C2x − (

μ − A
)−1

C2x(
z − λ

)k(μ − z)
dz dμ

=
(−1)k

(2πi)2

∫
Γω′′ ,d′′

μb1
(
μ − A

)−1
C

∫
Γω′ ,d′

zb2

(
z − A

)−1
Cx(

z − λ
)k

dz dμ

= Ab1
C Ab2

(
λ − A

)−k
Cx,(20)

where (20) follows from the formula obtained in (19). This, in turn, implies (15).
Suppose now that (ii.4) holds and x = Cy for some y ∈ D(Ak). Observe that the
residue theorem in combination with (5) implies that, for every r ∈ C with �r ∈
(0,�b1 + �b2] :

C2y =
1

2πi

∫
Γω′ ,d′

(
z − A

)−1
C2A	
r+1�y

z	
r+1� dz.

Using this equality, it can be easily seen that, for such a number r, we have the
following:

(21) ArCy =
1

2πi

∫
Γω′ ,d′

zr−	
r�−1
(
z − A

)−1
CA	
r+1�y dz.

Notice also that, for every n ∈ N0, z ∈ ρC(A) \ {0} and x ∈ D(An+1) :

(22) z−(n+1)
(
z − A

)−1
CAn+1x =

(
z − A

)−1
Cx −

n∑
i=0

z−(i+1)AiCx.

Keeping in mind (21)-(22), the method used in the proof of [20, Proposition 1.4.4],
and the already given argumentation, one gets CAb2Cy = A−b1

c Ab1+b2Cy and (15).



476 Chuang Chen, Marko Kostić, Miao Li and Milica Žigić

Suppose now x = (λ − A)−kCy, where y ∈ E and λ ∈ Λω,d. Then Cx = C(λ −
A)−kCy ∈ C(D(Ak)) and, by the first part of assertion, Cx ∈ D(Ar) with ArCx =
1

2πi

∫
Γω′,d′

μr−	
r�−1(μ − A)−1CA	
r+1�(λ − A)−kCy dμ. In combination with (22)
and (18), the above implies:

ArCx =
1

2πi

∫
Γω′ ,d′

μr−	
r�−1

	
r�+1∑
j=0

(−1)jλ	
r+1−j�

×
(��r� + 1

j

)(
μ − A

)−1
C

(
λ − A

)j−k
Cy dμ

=
1

2πi

∫
Γω′ ,d′

μr−	
r�−1
{	
r�+1∑

j=0

(−1)jλ	
r+1−j�

×
(��r� + 1

j

)[ (−1)k−j(
μ − λ)k−j

(
μ − A

)−1
C2y

+
k−j∑
l=1

(−1)k−j−l(
μ − λ

)k−j−l+1

(
λ − A

)−l
C2y

]}
dμ

and x ∈ D(C−1ArC) = D(Ar). It is checked at once that:
(23) A−b

C Ar ⊆ ArA
−b
C , b > 0, r ∈ C, �r 
= 0.

Now we obtain from (9), (13) and (23) that CAb2x = A−b1
C Ab1+b2x and that (15) holds.

Now the proof of (16), and the proof of (15) in case that (ii.2) or (ii.3) holds, become
standard and therefore omitted. The remnant of proof of (ii) will be given provided
that �b1 > 0 and �b2 > 0. Suppose Ab1Ab2x = y. Then Ab1Ab2(λ − A)−kCx =
(λ−A)−kCy, (λ−A)−kCAb1Ab2x = (λ−A)−kCy and ((λ−A)−kC)−1Ab1Ab2(λ−
A)−kCx = y. By (16), one yields Ab1+b2x = y and Ab1Ab2 ⊆ Ab1+b2 , which implies
the closedness of Ab1Ab2 and

C−1Ab1Ab2C ⊆ C−1Ab1+b2C = Ab1+b2 .

Keeping in mind Lemma 2.7, the proof of inclusion Ab1+b2 ⊆ C−1Ab1Ab2C follows
similarly as in the proof of [10, Theorem 4.1(5)]. If �b /∈ N, then (iii.1) follows from
(21) and the dominated convergence theorem. Suppose now �b ∈ N. Then it is not
difficult to prove that limb′→b,
b′≥
b Ab′x = Abx. Using the equality

C2y =
1

2πi

∫
Γω′,d′

(
z − A

)−1
C2A
b+1y

z
b+1
dz,

we easily infer that, for every b′ ∈ C with �b′ ∈ (�b−ε,�b), ε > 0 sufficiently small:
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(24) Ab′Cy =
1

2πi

∫
Γω′,d′

zb′−
b−1
(
z − A

)−1
CA
b+1y dz, y ∈ D(A
b+1).

In combination with the dominated convergence theorem and the residue theorem,
the above implies limb′→b, 
b′<
b Ab′x = Abx. The equality limb′→b Ab′x = Abx,
x ∈ R(C), �b < 0 follows immediately from the definition of powers, while the second
assertion in (iii.2) is a consequence of Lemma 2.5 and the proof of [42, Theorem 2.21,
p. 93]. Now we will prove (iv). Put, for every λ ∈ Λbω,bd,

Rb(λ)x :=
1

2πi

∫
Γω′ ,d′

(
z − A

)−1
Cx

λ − zb
dz, x ∈ E,

where ω′ ∈ (ω, π) is chosen so that λ lies on the left of Γdω′,db. Then it can be simply
proved that, for every x ∈ E, the mapping λ �→ Rb(λ)x, λ ∈ Λbω,bd is analytic as
well as that the mapping λ �→ Rb(λ) ∈ L(E), λ ∈ Λbω,bd is a non-degenerate C-
pseudoresolvent in the sense of [26, Definition 3.1]. Also, the injectiveness of Rb(λ)
for λ ∈ Λbω,bd is trivially verified. By [26, Theorem 3.4(i)-(ii)], we get that there
exists a closed linear operator Bb on E such that the following holds: D(Bb) =
{x ∈ E : R(Rb(λ))} (D(Bb) is independent of λ ∈ Λbω,bd), Bbx = (λ−Rb(λ)−1C)x,
x ∈ D(Bb), λ−Bb is injective and Rb(λ)(λ−Bb) ⊆ (λ−Bb)Rb(λ) = C (λ ∈ Λbω,bd).
Plugging λ = 0, we obtain Bb ⊆ Ab. The assumption x ∈ D(Ab) implies by (13)
that Cx ∈ R(A−b

c ) = R(Rb(0)), so that Ab = Bb, Λbω,bd ⊆ ρC(Ab) and Rb(λ) =
(λ − Ab)−1C, λ ∈ Λbω,bd. Direct computation shows that the family {(λ − Ab)−1C :
λ ∈ Bbd1} is equicontinuous for all d1 ∈ (0, d). It remains to be proved that, for
every d1 ∈ (0, d) and ω1 ∈ (ω, π), the family {Rb(λ) : λ ∈ C \ Σbω1, |λ| ≥ bd1}
is equicontinuous and that (17) holds. If b ∈ (0, 1), then the first assertion follows
from an insignificant modification of the proof of [42, Theorem 2.23, pp. 95–97],
while the proof of (17) may be left to the reader as an easy exercise. Suppose now
1 < b < π/ω, n ∈ N, b = b1n for some 0 < b1 < 1, and b1nω1 > nω′ > b1ω.Without
loss of generality, we may assume that b < π/ω1. Denote, for every λ ∈ C \Σbω1 with
|λ| ≥ b1nd1, by λ1, · · ·, λn the n-th roots of λ. Then λj ∈ Λω′,d1

(1 ≤ j ≤ n) and, by
the foregoing, we have that:

(
λ − Ab1n

)−1
Cx =

(
λ−(

Ab1

)
n

)−1
Cx =

(−1)
2πi

∫
Γω′ ,d′

(
z − Ab1

)−1
Cx

λ − zn
dz

=
(−1)
2πi

∫
Γω′,d′

[ 1(
λ1 − λ2

) · · · (λ1 − λn−1

)(
z − λ1

)

+ · · · + 1(
λn − λ1

) · · · (λn − λn−1

)(
z − λn

)](
z − Ab1

)−1
Cx dz

=

(
λ1 − Ab1

)−1
Cx(

λ1 − λ2

) · · · (λ1 − λn−1

) + · · ·+
(
λn − Ab1

)−1
Cx(

λn − λ1

) · · · (λn − λn−1

) ,
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which completes the proof by a routine argument.

Before proceeding further, we would like to observe the following fact. Suppose
b1, b2 ∈ R, k ∈ N0 and:
(∗′) k ≥ b2, provided b1 ≤ 0 and b2 ≥ 0,

(∗′∗′) k ≥ b1 + b2, otherwise.

Then (14)-(16) continue to hold.
Following [31, Definition 7.1.2], we introduce the purely imaginary powers of A

as follows.

Definition 2.9. Let τ ∈ R \ {0}. Then the power Aiτ is defined by

(25) Aiτ := C−2
(
A + 1

)
2
A−1A1+iτ

(
A + 1

)
−2

C2.

It is clear from the definition that Aiτ is a linear operator. Now we will prove that
Aiτ is closed. Taking into account the equalities (18), (21) and the residue theorem,
one gets that (A + 1)A−1A1+iτ (A + 1)−2C

2 ∈ L(E) and that, for every x ∈ E,

(26) (A + 1)A−1A1+iτ

(
A + 1

)
−2

C2x =
1

2πi

∫
Γω′,d′

z−1+iτ z

z + 1
(
z − A

)−1
C2x dz.

Keeping in mind that C−1(A + 1)1C = (A + 1)1 = C−1(A + 1)C, it readily follows
that x ∈ D(Aiτ ) iff 1

2πi

∫
Γω′ ,d′

z−1+iτ z
z+1 (z−A)−1Cx dz ∈ D(C−2(A+1)C). If this

is the case, then we have the following equality:

(27) Aiτx = C−2(A + 1)C
1

2πi

∫
Γω′ ,d′

z−1+iτ z

z + 1
(
z − A

)−1
Cx dz.

The closedness of Aiτ now follows from (27), along with the closedness of the operator
A + 1 and the dominated convergence theorem. Notice that the operator Aiτ can be
introduced equivalently by

Aiτ = C−j
(
A + λ

)
q
A−pAp+iτ

(
A + λ

)
−q

Cj ,

where p, q, j ∈ N, q > p and λ > 0.

Theorem 2.10. Let τ, τ1, τ2 ∈ R and k ∈ N. Then the following holds:
(i) C(D(Ak)) ∪ ⋃

λ∈∧
ω,d

R((λ − A)−kC) ⊆ D(Aiτ ).

(ii) C−1AiτC = Aiτ .

(iii) Aiτ is injective and Aiτ = (A−iτ )−1.



Complex Powers of C-sectorial Operators. Part I 479

(iv) Aiτ1Aiτ2 ⊆ Ai(τ1+τ2), C(D(Ak)) ∪ ⋃
λ∈∧

ω,d
R((λ−A)−kC) ⊆ D(Aiτ1Aiτ2),

(28) Ai(τ1+τ2) =
((

λ − A
)−k

C
)−1

Aiτ1Aiτ2

(
λ − A

)−k
C,

Aiτ1Aiτ2 is closable, C−1Aiτ1Aiτ2C ⊆ Ai(τ1+τ2), with the equality in the case
that D(A) and R(C) are dense in E.

(v) Let �b < 0 and τ ∈ R. Then the following holds:

(29) AiτAb ⊆ Ab+iτ ,

(30) AiτAb ⊆ Aiτ+b,

(31) Ab+iτ =
((

λ − A
)−k

C)
)−1

AbAiτ

(
λ − A

)−k
C, k ∈ N, λ ∈ ∧ω,d,

(32) Ab+iτ =
((

λ − A
)−k

C)
)−1

AiτAb

(
λ − A

)−k
C, k ∈ N, λ ∈ ∧ω,d,

the operators AiτAb and AbAiτ are closable, C−1AiτAbC ⊆ Ab+iτ and
C−1AbAiτC ⊆ Ab+iτ . If D(A) and R(C) are dense in E, then we also have
the converse inclusions.

(vi) Let �b > 0 and τ ∈ R. Then (29)-(30) hold. In the case that k ≥ 	�b
,
we have (31)-(32). Furthermore, the operators AiτAb and AbAiτ are closable,
C−1AiτAbC ⊆ Ab+iτ and C−1AbAiτC ⊆ Ab+iτ . If D(A) and R(C) are dense
in E, then we also have the converse inclusions.

(vii) Suppose τ ∈ R, x ∈ E and λ ∈ ∧ω,d. Then the following equality holds:
limb→iτ,
b≥0 Ab(λ − A)−1Cx = Aiτ (λ − A)−1Cx and limb→iτ,
b<0 Ab

C(λ −
A)−1Cx = Aiτ (λ − A)−1C2x.

Proof. The assertion (ii) is an immediate consequence of the equalities (27) and
C−2(A + 1)C2 = C−1(A + 1)C. Suppose now x ∈ C(D(A)) and x = Cy for some
y ∈ D(A). Then (27) immediately implies

Aiτx =
1

2πi

∫
Γω′ ,d′

z−1+iτ z

z + 1
(
z − A

)−1
C(A + 1)y dz.

Using this equality, the assertion (ii) and the proof of Theorem 2.8, we easily infer that
C(D(Ak)) ∪ ⋃

λ∈∧
ω,d

R((λ−A)−kC) ⊆ D(Aiτ ). This proves (i). The injectivity of
Aiτ follows from the injectivity of each single operator appearing in the representation
(25). Let x ∈ D(Aiτ ) be fixed. To complete the proof of (iii), it is enough to show
that A−iτAiτx = x. Using Definition 2.9, the above is equivalent with

(33) C−2
(
A + 1

)
2
A−1A1−iτA−1A1+iτ

(
A + 1

)
−2

C2x = x.
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Since C(D(A)2) ⊆ D(A1+iτ ) and L(E) � A−1C commutes with A1+iτ , we have the
equivalence of (33) with the following equality

C−2
(
A + 1

)
2
A−1A1−iτA1+iτA−1

(
A + 1

)
−2

C2x = x,

which follows from the semigroup property A1−iτA1+iτy = A2y, y ∈ C(D(A3)) and
a straightforward computation. The inclusion Aiτ1Aiτ2 ⊆ Ai(τ1+τ2) can be proved
in almost the same way, which implies that the operator Aiτ1Aiτ2 is closed as well
as C−1Aiτ1Aiτ2C ⊆ Ai(τ1+τ2). Further on, the inclusion C(D(A)) ⊆ D(Aiτ1Aiτ2)
simply follows from the semigroup property for the powers and the fact that, for every
y ∈ D(A), one has Ai(τ1+τ2)(A+1)−2C

3y ∈ D(C−2(A+1)2). Using now the equality
(18), the proof of Theorem 2.8 and C(D(Ak)) ⊆ D(Aiτ1Aiτ2), it is checked at once
that

⋃
λ∈∧ω,d

R((λ − A)−kC) ⊆ D(Aiτ1Aiτ2). The proof of equality (28) is standard
and as such will not be given. In the case that D(A) and R(C) are dense in E,

the equality C−1Aiτ1Aiτ2C = Ai(τ1+τ2) follows from the commutation of Aiτ with
the bounded linear operator (λ − A)−kC (λ ∈ ∧ω,d), and the corresponding proof of
[10, Theorem 4.1(5)]. This completes the proof of (iv). Suppose now �b < 0 and
τ ∈ R \ {0}. By (27) and an elementary argumentation, we get that
(34) Ab

CAiτx = Ab+iτ
C x, x ∈ D(Aiτ ).

Then it is not difficult to show that (29)-(30) holds. It is also simple to prove that
AiτA

b
C ∈ L(E) and that (31)-(32) hold. Hence, the operators AiτAb and AbAiτ are

closable, C−1AiτAbC ⊆ Ab+iτ and C−1AbAiτC ⊆ Ab+iτ . The proof of [10, Theorem
4.1(5)] implies that the converse inclusions hold in the last two equalities, provided
that D(A) and R(C) are dense in E. Let �b > 0 and τ ∈ R\{0}. Then A−b

C A−iτx =
A−b−iτ

C x, x ∈ D(A−iτ ). Therefore, A−iτCx = (A−b
C )−1CA−b−iτ

C x, x ∈ D(A−iτ )
and AbA

−b−iτ
C x = A−iτ Cx, x ∈ D(A−iτ ). For any x ∈ D(Ab) ∩ D(A−iτ ), the

above implies A−b−iτ
C Abx = CA−iτ x and Abx = Ab+iτ A−iτx. Plugging y = A−iτx

for such an element x ∈ E, we get that AbAiτy = Ab+iτy and that (29) holds. One
obtains similarly that A−b−iτ

C [AiτAbx] = A−b
C Abx = Cx, x ∈ D(AiτAb) and that (30)

holds. The equality (31) can be shown as before and, for the remaining part of the
proof, we will only prove the equality

AiτAb

(
λ − A

)−k
Cx = Ab+iτ

(
λ − A

)−k
Cx,

for k ≥ 	�b
, λ ∈ ∧ω,d and x ∈ E given in advance (cf. (32)). By the definition of
the power Aiτ and the semigroup property established in Theorem 2.8, we easily infer
that Ab

(
λ − A

)−k
Cx ∈ D(Aiτ ) and

AiτAb

(
λ − A

)−k
Cx

= C−2
(
A + 1

)
2
A−1A1+iτ

(
A + 1

)
−2

C2Ab

(
λ − A

)−k
Cx
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= C−2
(
A + 1

)
2
A−1A1+b+iτ

(
A + 1

)
−2

C2
(
λ − A

)−k
Cx

= C−2
(
A + 1

)
2
Ab+iτ

(
A + 1

)
−2

C2
(
λ − A

)−k
Cx

= C−2
(
A + 1

)
2

(
A + 1

)
−2

C2Ab+iτ

(
λ − A

)−k
Cx

= Ab+iτ

(
λ − A

)−k
Cx.

Finally, we will prove (vii). By the foregoing arguments, it can be simply justified that

(35) Aiτ

(
λ − A

)−1
Cx =

(−1)
2πi

∫
Γω′ ,d′

ziτ

z − λ

(
z − A

)−1
Cx dz,

where λ lies on the left of the contour Γω′,d′ . The dominated convergence theorem yields
limτ ′→τ Aiτ ′(λ− A)−1Cx = Aiτ (λ− A)−1Cx. Suppose now b ∈ C and �b ∈ (0, 1).
Then we have the following obvious equalities

AbCx =
1

2πi

∫
Γω′ ,d′

z−1+ib z

z + 1
(
z − A

)−1
Cx dz

and

(36) Ab

(
λ − A

)−1
Cx =

(−1)
2πi

∫
Γω′,d′

zb

z − λ

(
z − A

)−1
Cx dz.

By (36) and the dominated convergence theorem, we get

lim
b→iτ, 
b>0

Ab(λ − A)−1Cx = Aiτ (λ − A)−1Cx.

Further on, the proof of Lemma 2.5 implies

lim
b→iτ, 
b<0

Ab
C(λ − A)−1Cx =

(−1)
2πi

∫
Γω′ ,d′

ziτ

z − λ

(
z − A

)−1
C2x dz.

We have also the following equality

Aiτ (λ − A)−1Cx =
(−1)
2πi

∫
Γω′,d′

ziτ

z − λ

(
z − A

)−1
Cx dz,

which thereby completes the proof of theorem.

Remark 2.11. Suppose α, β ∈ C. Keeping in mind Theorem 2.8(ii) and Theorem
2.10(iv)-(vi), we obtain the additivity property of powers AαAβ ⊆ Aα+β. Using the
equalities (16) and (31), it can be also simply proved that D(Aβ) ∩ D(Aα+β) ⊆
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D(AαAβ) with AαAβx = Aα+βx, x ∈ D(Aβ) ∩ D(Aα+β). If D(A) and R(C) are
dense in E, then the following holds C−1AαAβC = Aα+β, α, β ∈ C (cf. also [31,
Theorem 7.1.1]).

It would take too long to consider some other properties and applications of purely
imaginary powers of C-sectorial operators. For further information in this direction, the
reader may consult, among many other papers and monographs, [31, Sections 7-10],
[42, pp. 105-116] and the references cited there.

Remark 2.12.

(i) Given β ≥ −1, ε ∈ (0, 1] and c ∈ (0, 1), put Pβ,ε,c := {ξ + iη : ξ ≥ ε, η ∈
R, |η| ≤ c(1 + ξ)−β}. Assume (E, || · ||) is a Banach space, α ≥ −1 and A is
a closed linear operator on E with the following property:

(0,∞) ⊆ ρ(A) and sup
λ>0

(
1 + |λ|)−α∥∥(

λ − A
)−1∥∥ < ∞.

By the usual series argument, we have that there exist d ∈ (0, 1], c ∈ (0, 1) and
ε ∈ (0, 1] such that (ε, c(1 + ε)−α) ∈ ∂Bd,

Pα,ε,c ∪ Bd ⊆ ρ(A) and sup
λ∈Pα,ε,c∪Bd

(
1 + |λ|)−α∥∥(

λ − A
)−1∥∥ < ∞.

Put nα := �α� + 2 if α /∈ Z, and nα := α + 1, otherwise. Denote by (−A)b

(b ∈ C) the complex power defined in [20, Section 1.4]. We would like to
notice here that the method developed in this paper, with C = (−A)−nα , gives
the definition of power (−A)b. It is not difficult to prove that (−A)b ⊆ (−A)b

for all b ∈ C. Moreover, the set appearing in [21, Remark 4.1, p. 61, l. -7],
resp. [21, Remark 4.1, p. 61, l. -6], coincides with D((−Aω+σ)α+ε), resp.
D((−Aσ)α+ε), and the equality (−A)b = (−A)k+nα(−A)b(−A)−(k+nα) holds
provided that �b ≥ 0 and k ∈ N.

(ii) It is also worth noting that the method described above can be employed in a
more general situation. Let α ≥ −1, ε ∈ (0, 1], c ∈ (0, 1), d ∈ (0, 1] and nα be
as in the previous part of this remark, and let Ωα,ε,c,d be an open neighborhood
of the region Pα,ε,c ∪ Bd. Suppose that the following condition holds:

(H1): Ωα,ε,c,d ⊆ ρC(−A), the family {(1 + |z|)−α(z + A)−1C : z ∈ Ωα,ε,c,d}
is equicontinuous, and the mapping z �→ (z + A)−1Cx, z ∈ Ωα,ε,c,d is
continuous for every x ∈ E.

Then there exists a sufficiently small number κ > 0 such that the operator
C := (d + κ − A)−nαC ∈ L(E) is injective and commutes with A (cf. (5)).
Making use of (18) and the inclusion R(C) ⊆ R((z+A)n), n ∈ N, z ∈ Ωα,ε,c,d,
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it can be easily seen that, for every z ∈ Pα,ε,c ∪ Bd,

(
z + A

)−1Cx =

(
z + A

)−1
Cx(

d + κ + z
)nα

+
nα∑
i=1

(
d + κ − A

)−i
Cx(

d + κ + z
)nα+1−i

,

and that the family {z(z + A)−1C : z ∈ Pα,ε,c ∪ Bd} is equicontinuous.
Therefore, we are in a position to construct the power Ab (b ∈ C). Notice that
such a construction does not depend on the choice of numbers α, ε, c, d, κ
and nα, and that the assertion of Theorem 3.1 below can be reformulated in
the context of this remark (with some obvious additional difficulties in the case
α /∈ Z). The analysis of existence and growth of mild solutions of the abstract
Cauchy problems governed by fractionally integrated C-semigroups and cosine
functions in locally convex spaces falls out from the framework of this paper (cf.
[14, 33, 21] for further information in this direction).

Now we focus our attention towards proving the well-known moment inequality
for fractional powers.

Lemma 2.13. Let α, γ ∈ C, let −∞ < �α < �γ < +∞ and x ∈ D(Aγ). Then
Cx ∈ D(Aα) and AαCx = Aα−γ

C Aγx.

Proof. We will prove the assertion of lemma only in the case �γ = 0 and α = iτ
for some τ ∈ R\{0}. The proof in other cases is simple and as such will not be given.
Notice that the equality (27), the definition of A

iτ−γ
C and the standard argumentation

shows that A−iτAiτ−γ
C Aγx = Cx. Since Aiτ = (A−iτ )−1, the above implies Cx ∈

D(Aiτ ) and AiτCx = Aiτ−γ
C Aγx.

Lemma 2.14. Let n ∈ N0, let b ∈ C and let �b ∈ (0, n + 1) \ N. Then, for every
x ∈ E,

(37) A−b
C x =

(−1)nn!
(1− b)(2− b) · · · (n − b)

sinπ(n − b)
π

∞∫
0

tn−b
(
t + A

)−(n+1)
Cx dt,

where (1− b)(2− b) · · · (n − b) := 1 for n = 0.

Proof. This lemma can be proved following the lines of the proof of [12, Theorem
5.27, p. 138]. As a matter of fact, the proof of cited theorem combined with (5) implies
that, for every x ∈ E,

CnA−b
C x =

(−1)nn!
(1 − b)(2− b) · · · (n − b)

sinπ(n − b)
π

∞∫
0

tn−b
(
t + A

)−(n+1)
Cn+1x dt.

This completes the proof by applying the operator C−n on both sides of the above
equality.
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Lemma 2.15. Suppose α0, β0 ∈ C, �α0 > �β0 > 0, n ∈ N0 and �α0 ∈
(n, n + 1]. Then, for every p ∈ �, there exist cp,α0,β0 > 0 and qp ∈ � such that:

(38) p
(
CA−β0

C x
) ≤ cp,α0,β0qp

(
A−α0

C x
)�β0

�α0 qp

(
Cx

)�α0−�β0
�β0 , x ∈ E,

and

(39) p
(
A−β0

C x
) ≤ cp,α0,β0qp

(
A−α0x

)�β0
�α0 qp

(
x
)�α0−�β0

�β0 , x ∈ D(A−α0).

Proof. Without loss of generality, we may assume that �β0 /∈ N. Our intention is
to prove that, for every p ∈ �, there exist c′p > 0 and q′p ∈ � such that:

(40) p
(
sn+1−α0C

(
s + A

)−(n+1)
Cx

) ≤ c′pq
′
p

(
A−α0

C x
)
, s > 0, x ∈ E.

Suppose first �α0 ∈ (n, n + 1). Due to (15), we have Aα0C
−1A−α0

C Cx = Cx,
x ∈ E, which clearly implies C2x = CAα0A

−α0
C x, x ∈ E. Fix, for the time being,

a number s > 0 and an element x ∈ E. Making use of (14) and the inclusion ((t +
A)−(n+1)C)Aα0 ⊆ Aα0((t + A)−(n+1)C), t > 0, we get that:

sn+1−α0C
(
s + A

)−(n+1)
Cx = sn+1−α0Aα0

(
s + A

)−(n+1)
C

(
A−α0

C x
)
.

Let ω′ ∈ (ω, π) and d′ ∈ (0, d). Taking into account the short computation preceding
the formula (23), the above equality implies that:

sn+1−α0C
(
s + A

)−(n+1)
Cx

=
n+1∑
j=0

(−1
)n+1−j

(
n + 1

j

) ∫
Γω′,d′

zα0−(n+1)s2n+2−j−α0

2πi
(
z + s

)n+1−j

(
z + A

)−1
C

(
A−α0

C x
)
dz.

By the binomial formula, we obtain that:

(41)

sn+1−α0C
(
s + A

)−(n+1)
Cx

=
1

2πi

∫
Γω′ ,d′

zα0−1sn+1−α0(
z + s

)n+1
z
(
z + A

)−1
C

(
A−α0

C x
)
dz.

It is checked at once that the p-value of the above integral, taken over the curve
{d′eiθ : θ ∈ [−ω′, ω′]}, can be majorized by c′pq′p(A

−α0
C x), for some c′p > 0 and

q′p ∈ �, independent of s > 0 and x ∈ E. The same conclusion holds for the above
integral along the curves Γω′,d′,± := {re±iω′

: r ≥ d′}, and we will prove this provided
s ≥ 2d′. If this is the case, then the integral

∞∫
d′

sn+1−α0
(
reiω′)α0−1

(
reiω′ + s

)n+1
reiω′(

reiω′
+ A

)−1
C

(
A−α0

C x
)
dr
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can be written as the sum of corresponding integrals taken over the intervals [d′, 2s] and
[2s,∞), and for the estimation of the first (second) of these integrals, the inequality
sups>0,z∈Γω′ ,d′ ,± |s/(z + s)| < ∞ ((r/r − s)α0−1 ≤ 2α0−1, r ≥ 2s) can be employed.
Therefore, we have proved (40). Arguing similarly, we obtain that for each p ∈ �
there exist c′′p > 0 and q′′p ∈ � such that:

p
(
sn+1−α0

(
s + A

)−(n+1)
Cx

) ≤ c′′pq
′′
p

(
A−α0x

)
, s > 0, x ∈ D

(
A−α0

)
.

Further on, Lemma 2.7 implies that, for every p ∈ �, there exist c′′′p > 0 and q′′′p ∈ �
such that:

p
(
sn−β0

(
s + A

)−(n+1)
Cx

) ≤ c′′′p s−
β0−1q′′′p (x), s > 0, x ∈ E.

Let cp ≥ max(c′p, c′′p, c′′′p ) and let qp ∈ � satisfy qp ≥ max(q′p, q′′p , q′′′p ). Put cp,α0,β0 :=
cp/(α0−β0)+cp/β0 and notice that the equality qp(A−α0

C x)qp(Cx) = 0 (qp(A−α0x)qp

(x) = 0) for some x ∈ E (x ∈ D(A−α0)) implies p(C(s + A)−(n+1)Cx) = 0,

s > 0 (p((s + A)−(n+1)Cx) = 0, s > 0), and by Lemma 2.14, p(CA−β0
C x) = 0

(p(A−β0
C x) = 0). The remaining part of the proof in the case �α0 < n + 1 follows

from a slight modification of the corresponding parts of the proof of [12, Theorem
5.34, pp. 141-142]. In the case �α0 = n + 1, then the whole procedure still works
by replacing the number n with n + 1; for example, in the estimation of the term
p(A−β0

C x), appearing in the proof of cited theorem, one has to start from the formula
(37) with n replaced by n + 1 therein.

Now we are able to prove the moment inequality for C-sectorial operators.

Theorem 2.16. Suppose α, β, γ ∈ C, −∞ < �α < �β < �γ < +∞. Then, for
every p ∈ �, there exist cp,α,β,γ > 0 and qp ∈ � such that:

(42) p
(
CAβCx

) ≤ cp,α,β,γqp

(
AαCx

)�γ−�β
�γ−�α qp

(
AγCx

)�β−�α
�γ−�α , x ∈ D(Aγ),

and

(43) p
(
AβCx

) ≤ cp,α,β,γqp

(
Aαx

)�γ−�β
�γ−�α qp

(
Aγx

)�β−�α
�γ−�α , x ∈ D(Aα−γAγ).

Proof. Keeping in mind Lemma 2.13 and the obvious equality Aα−γAγx = Aαx

(x ∈ D(Aα−γAγ)), the result immediately follows by plugging α0 = γ − α and
β0 = γ − β in Lemma 2.15.

The following lemma of independent interest has not been used in the proof of
moment inequality (cf. also [12, Theorem 5.34, pp. 141-142] for the case C = 1).

Lemma 2.17. Suppose b ∈ (0, 1). Then the family {C−1λbA−b
C A(λ + A)−1C :

λ > 0} is equicontinuous in L(E).
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Proof. Let ε ∈ (0, 1) be arbitrarily chosen. Then it is not difficult to prove, with
the help of (10), that the following equality holds:

C−1λbA−b
C A(λ + A)−1Cx

= −sin bπ

π

∞∫
0

s−b
[λ

(
λ + A

)−1
Cx

1 − s
− sλ

(
sλ + A

)−1
Cx

1 − s

]
ds, x ∈ E.(44)

Since the family {λ(λ + A)−1C : λ > 0} is equicontinuous in L(E), we immediately
obtain that, for every p ∈ �, there exist cp > 0 and qp ∈ � such that, for every x ∈ E :

(45)
(∫ 1−ε

0
+

∫ ∞

1+ε

)
s−b

[λ
(
λ + A

)−1
Cx

1 − s
− sλ

(
sλ + A

)−1
Cx

1 − s

]
ds ≤ cpqp(x).

Using the obvious equality

λ
(
λ+A

)−1
Cx−sλ

(
sλ+A

)−1
Cx =

sλ∫
λ

[(
ξ+A

)−1
Cx−ξ

(
ξ+A

)−2
Cx

]
dξ, x ∈ E,

the inequality of the same type holds for the integral appearing in (45), taken over the
interval [1 − ε, 1 + ε]. This completes the proof of lemma.

The following application of moment inequality is for illustration purposes only.

Example 2.18. Let E be one of the spaces Lp(Rn) (1 ≤ p ≤ ∞), C0(Rn),
Cb(Rn), BUC(Rn) and let 0 ≤ l ≤ n. Put Nl

0 := {α ∈ Nn
0 : αl+1 = · · · = αn = 0}

and recall that the space El (0 ≤ l ≤ n) is defined by El := {f ∈ E : f (α) ∈
E for all α ∈ Nl

0}. The calibration (qα(f) := ||f (α)||E, f ∈ El; α ∈ Nl
0) induces

a Fréchet topology on El. Let Tl(·) and Cr,l possess the same meaning as in [41],
let m ∈ N, aα ∈ C, 0 ≤ |α| ≤ m, and let P (D)f =

∑
|α|≤m aαf (α) act with its

maximal distributional domain. Set P (x) :=
∑

|α|≤m aαi|α|xα, x ∈ Rn, and assume
that supx∈Rn �P (x) < 0. Suppose −∞ < ς < τ < υ < +∞. By [41, Theorem
2.2], the operator −P (D) is Cr,l-sectorial and, since the condition (H) holds, we can
construct the powers of −P (D). Then the moment inequality and the arguments used
in its proof show that, for every α ∈ Nl

0, there exists a constant Mα < ∞ such that
the following differential inequality holds for each f ∈ D((−P (D))ς−υ(−P (D))υ):

qα

((−P (D)
)
τ
Cr,lf

) ≤ Mαqα

((−P (D)
)
ς
f
) υ−τ

υ−ς qα

((−P (D)
)
υ
f
) τ−ς

υ−ς .

In (13) we define Ab in an indirect way. We finally give an explicit formula for
Abx to end this section.
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Proposition 2.19. Let n ∈ N, let b ∈ C and let n − 1 < �b < n. Then the
following holds:

(46) Abx = (−1)n sinπb

π
C−1

∫ ∞

0
λb−nAn

(
λ + A

)−1
Cx dλ, x ∈ C

(
D

(
An

))
.

Proof. Suppose first 0 < �b < 1 and x ∈ C(D(A)). Then we immediately obtain
from (10) and (13) that

Ab−1x = −sin πb

π
C−1

∫ ∞

0
λb−1

(
λ + A

)−1
Cx dλ.

Therefore, the fact that Abx = Ab−1Ax and the closedness of Ab together imply

Abx = −sin πb

π
C−1

∫ ∞

0
λb−1A

(
λ + A

)−1
Cx dλ.(47)

In the general case n − 1 < �b < n, note that 0 < �b − n + 1 < 1 and that
Theorem 2.8(ii) yields Abx = Ab−n+1An−1x = Ab−n+1A

n−1x, x ∈ C(D(An)). By
the closedness of Ab, we obtain (46) from (47), immediately.

Since C(D(An)) ⊆ R((λ − A)−nC), λ ∈ ∧ω,d, the following representation for-
mula can be also proved, for any λ ∈ ∧ω,d and x ∈ R((λ − A)−nC) :

Abx = (−1)n sin πb

π

((
λ − A

)−n
C

)−1
C−1

×
∫ ∞

0
λb−nAn

(
λ + A

)−1
C

(
λ − A

)−n
Cx dλ.

3. FRACTIONAL POWERS AS GENERATORS OF C-REGULARIZED FRACTIONAL
RESOLVENT FAMILIES

We start this section by stating the following result which shows that the operators
−Ab generate equicontinuous C-regularized fractional resolvent families for suitable
indices b. To do this, we follow the approach similar to that established in [29, Theorem
3.1(b)/(c)].

Theorem 3.1.
(i) Suppose D(A) and R(C) are dense in E, 0 < α < 2, d ∈ (0, 1], Σ(απ/2, d) ⊆

ρC(−A), 0 < γ < 2, b ∈ (0, (2−γ)/(2−α)) and ω ∈ (π−(απ)/2, min(π, (π−
(πγ)/2)/b)]. Let Γω,d = ∂(Σω\Bd) be oriented in such a way that �λ increases
along Γω,d and let the family {(1 + |λ|)(λ + A)−1C : λ ⊆ Σ(α′π/2, d)} be
equicontinuous for every α′ ∈ (0, α). Put Sb

γ(0) := C and

(48) Sb
γ(t)x :=

1
2πi

∫
Γω,d

Eγ

(−λbtγ
)(

λ − A
)−1

Cx dλ, t > 0, x ∈ E.
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Then−Ab is the densely defined generator of an equicontinuous analytic (gγ, C)-
regularized resolvent family (Sb

γ(t))t≥0 of angle θ := min(π, (π(1− b)/γ) +
π((αb/γ)− 1)/2).

(ii) Suppose D(A) and R(C) are dense in E, 0 < α < 2, 0 < γ < 2, b ∈
(0, (2−γ)/(2−α)), ω ∈ (π−(πα)/2, min(π, (π−(πγ)/2)/b)], and−A is a sub-
generator of an equicontinuous (gα, C)-regularized resolvent family (Sα(t))t≥0.
Define

(49) f b
γ,α(t, s) :=

1
2πi

∫
Γω

Eγ

(−λbtγ
)(−λ

) 1
α
−1

e−(−λ)
1
α s dλ,

where the contour Γω is oriented in such a way that �λ increases along Γω.
Put

(50) Sb
γ(t)x :=

∞∫
0

f b
γ,α(t, s)Sα(s)x ds, t > 0, x ∈ E and Sb

γ(0) := C.

Assume, additionally, that there exists d ∈ (0, 1] such that Bd ⊆ ρC(−A) and
that the family {(λ + A)−1C : λ ∈ Bd} is equicontinuous. Then −Ab is
the densely defined generator of the equicontinuous analytic (gγ , C)-regularized
resolvent family (Sb

γ(t))t≥0 of angle θ.

Proof. (i): Suppose ω1 ∈ (π − (πα)/2, min(π, (π − (πγ)/2)/b)], ω1 < ω, d1 ∈
(0, 1] and Γ(ω, d) lies on the right of Γ(ω1, d1). Using Lemma 1.3, [19, Proposition
2.16(i)] and the Cauchy theorem (cf. also [2, (1.28)]), it is checked at once that one
can interchange the path of integration Γ(ω, d), appearing in (48), with Γ(ω1, d1). The
equicontinuity of operator family (Sb

γ(t))t≥0 ⊆ L(E) is a consequence of Lemma 1.3
and the choice of ω, whereas the strong continuity of (Sb

γ(t))t≥0 at t = 0 can be proved
as follows. By Lemma 2.7 and the equicontinuity of (Sb

γ(t))t≥0, it suffices to show
that, for every n ∈ N and x ∈ E, limt→0+ Sb

γ(t)(−n − A)−1Cx = (−n − A)−1C2x.
Towards this end, notice that the residue theorem and the dominated convergence
theorem, in combination with Lemma 1.3, imply the following:

Sb
γ(t)

(−n − A
)−1

Cx − (−n − A
)−1

C2x =
1

2πi

∫
Γ(ω,d)

Eγ

(−λbtγ
)(

λ − A
)−1

C
(−n − A

)−1
Cx dλ − (−n − A

)−1
C2x

=
1

2πi

∫
Γ(ω,d)

Eγ

(−λbtγ
)(−n − A

)−1
C2x − (

λ − A
)−1

C2x

λ + n
dλ − (−n − A

)−1
C2x

=
(−1)
2πi

∫
Γ(ω,d)

Eγ

(−λbtγ
)(

λ − A
)−1

C2x

λ + n
dλ − (−n − A

)−1
C2x
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→ (−1)
2πi

∫
Γ(ω,d)

(
λ − A

)−1
C2x

λ + n
dλ − (−n − A

)−1
C2x = 0, t → 0 + .

Now we will prove that:

(51) L(λ, x) :=
∫ ∞

0
e−λtSb

γ(t)x dt = λγ−1
(
λγ + Ab

)−1
Cx, λ > 0, x ∈ E.

The above equality follows from the use of Laplace transform and Fubini’s theorem.
Indeed, observe that:

A−b
C =

1
2πi

∫
Γω′ ,d

z−b
(
z − A

)−1
C dz

=
1

2πi

∫
Γω′ ,d

λγz−b + 1
λγ + zb

(
z − A

)−1
C dz

=λγ

(
z−b

λγ + zb

)
C

(A) +
(

1
λγ + zb

)
C

(A), λ > 0,

and that (cf. [2, (1.26), (1.28)] and (4)), for every z ∈ Γ(ω′, d), one has:

∞∫
0

e−λtEγ

(−zbtγ
)
dt =

λγ−1

λγ + zb
, λ > 0.

By this equality and (8), we have further that:

CL(λ, x) =
C

2πi

∫
Γω′,d

λγ−1

λγ + zb

(
z − A

)−1
C dz = C

(
λγ−1

λγ + zb

)
C

(A)

=λγ−1CA−b
C − λγ

(
λγ−1

λγ + zb
z−b

)
C

(A)C

=λγ−1CA−b
C − λγ

(
λγ−1

λγ + zb

)
C

(A)
(
z−b

)
C
(A)

=λγ−1CA−b
C − λγL(λ)A−b

C .

Now it readily follows that (0,∞) ⊆ ρC(−Ab) and that (51) holds, which implies
together with the equality C−1AbC = Ab that −Ab is the integral generator of the
equicontinuous (gγ , C)-regularized resolvent family (Sb

γ(t))t≥0 (cf. also [19, Theorem
2.7]). Clearly, Theorem 2.8(ii) implies that Ab is densely defined in E. Using the
inequality b < (2 − γ)/(2 − α), Theorem 2.8(iv) and its proof, we have that Ab

is C-sectorial of angle bπ(1 − (α/2)) and that the mapping λ �→ (λ + Ab)−1Cx,

λ ∈ Σπ−bπ(1−(α/2)) is analytic for all x ∈ E. By [19, Theorem 3.7], we obtain that,
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for every b′ ∈ (0, b), the operator −Ab′ is the integral generator of an equicontinuous
analytic (g2(1−b′(1−(α/2))), C)-regularized resolvent family of angle π−b′(π−απ

2
)

2(1−b′(1−(α/2))) −
π
2 . Take now b′ ∈ (0, b) such that 2(1 − b′(1 − (α/2))) > γ. Then an application
of [19, Theorem 3.9(ii)] shows that the operator −Ab′ is the integral generator of
the equicontinuous analytic (gγ , C)-regularized resolvent family (Sb′

γ (t))t≥0 of angle
min(π, (π(1−b′)/γ)+π((αb′/γ)−1)/2). This completes the proof by letting b′ → b−.
The proof of (ii) follows immediately from the proof of [29, Theorem 3.1(c)] and the
first part of theorem.

Remark 3.2.
(i) In the case that there exists d ∈ (0, 1] such that the family {(λ − A)−1C : λ ∈

Bd} is equicontinuous, Theorem 3.1 extends the assertion of [29, Theorem 3.1].
Suppose now that D(A) and R(C) are not densely defined in E as well as
that all remaining assumptions quoted in the formulation of Theorem 3.1 hold.
Then it can be proved that, for every σ > 0, the operator −Ab is the integral
generator of an analytic (gγ , gσ+1)-regularized C-resolvent family of angle θ and
of subexponential growth (cf. [19] for the notion).

(ii) In the previous version of the paper, we have also considered the case 0 /∈ ρC(A).
If D(A) and R(C) are dense in E, 0 < b ≤ 2/(α+2) and γ = αb, then the asser-
tion of Theorem 3.1 can be proved without the use of spectral mapping theorem
(the integral generator in this case is the operator C−1s − limε→0+ −(A + ε)bC,

defined usually). The method used in the proof relies upon the recent results on
generalized subordination kernels ([5]), whose value in the existing theory has
not been analyzed very well so far, and an elementary argumentation from the
real analysis. This method will not be employed in our follow-up researches and,
because of that, we will omit details in the interest of brevity.

The following example illustrates an application of Theorem 3.1.

Example 3.3. Suppose (Mp)p∈N0 is a sequence of positive numbers which satisfies
M0 = 1, (M.1), (M.2) and (M.3’) (cf. [20, Sections 1.3 and 3.5-3.6] for definitions
and additional information). Put

E :=
{
f ∈ C∞[0, 1] ; ‖f‖ := sup

p∈N0

‖f (p)‖∞
Mp

< ∞
}

,

A := −d/ds, D(A) =: {f ∈ E : f ′ ∈ E, f(0) = 0} and E(Mp)(A) := {f ∈
D∞(A) : supp∈N0

hp‖f (p)‖∞
Mp

< ∞ for all h > 0}. Then A generates a non-dense
ultradistribution semigroup of (Mp)-class, ρ(A) = C and there exists an injective
operator C ∈ L(E) such that E(Mp)(A) ⊆ C(D∞(A)),

(52) C
(
gβ ∗ f

)
= gβ ∗ Cf, β > 0, f ∈ E,
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and that A generates a bounded C-regularized semigroup (S(t))t≥0 on E (cf. [20,
Example 3.5.15, (316), Theorem 3.6.4, Lemma 3.6.5]). Therefore, we are in a position
to construct the fractional powers of −A. Using (10), (16) and (52), it readily follows
that (f, g) ∈ (−A)b iff f(t) =

∫ t
0 gb(t − s)g(s) ds, t ∈ [0, 1] (b > 0). Suppose

now 1 < γ < 2, 1 < b < 2 − γ and f0, f1 ∈ E(Mp)(A). By Remark 3.2(i),
we obtain that for each σ > 0 the operator −(−A)b is the integral generator of an
analytic (gγ , gσ+1)-regularized C-resolvent family (Sb

γ,σ(t))t≥0 of angle θ, with θ being
defined in the formulation of Theorem 3.1 with α = 1. Furthermore, Sb

γ,σ(t)f =∫ t
0 gσ(t−s)Sb

γ(s)f ds, t ≥ 0, f ∈ E and the mapping t �→ Sb
γ(t)f, t ≥ 0 is continuous

for any f ∈ D(A) (cf. (48)). Now it is not difficult to prove that there exists a unique
function u ∈ C([0,∞) : [D((−A)b)]) ∩ C1([0,∞) : E) which solves the problem:

(53)
u(t, x) +

x∫
0

gb(x − s)Dγ
t u(t, s) ds = 0,

u(0, x) = f0(x) and
∂

∂t
u(0, x) = f1(x), t ≥ 0, x ∈ [0, 1].

Moreover, the solution u(t) is given by

u(t, ·) = Sb
γ(t)C−1f0 +

∫ t

0
Sb

γ(s)C−1f1 ds, t ≥ 0,

and can be analytically extended to the sector Σθ (cf. also [24, Proposition 3.4] for
some inhomogeneous fractional equations). It is worth noting that the problem (53) is
a sort of backwards diffusion equation with space-time fractional derivatives (cf. [3]
and [15] for some applications in describing the mechanism of anomalous diffusion in
transport processes).
From the previous analysis, it is clear that the results obtained in this paper can

be applied to a class of abstract differential equations considered in ultradistribution
spaces. For example, it is not difficult to prove, with the help of Theorem 2.8(iv) and
[19, Theorem 3.15], that there exists an injective operator C1 ∈ L(E) such that the
operator (−A)1/2, resp. −A, generates a global C1-regularized group, resp. a global
C1-regularized cosine function.

In the remaining part of the paper, we consider the constructed powers as the
integral generators of C-regularized semigroups of growth order r > 0 (cf. [8, 35, 38]
and [20]-[21]).

Definition 3.4.

(i) An operator family (T (t))t>0 ⊆ L(E) is said to be a C-regularized semigroup
of growth order r > 0 iff the following holds:
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(a) T (t + s)C = T (t)T (s), t, s > 0,
(b) for every x ∈ E , the mapping t �→ T (t)x, t > 0 is continuous,
(c) the family {trT (t) : t ∈ (0, 1]} is equicontinuous, and
(d) T (t)x = 0 for all t > 0 implies x = 0.

(ii) Suppose γ ∈ (0, π
2 ], (T (t))t>0 is a C-regularized semigroup of growth order

r > 0, and the mapping t �→ T (t)x, t > 0 has an analytic extension to the
sector Σγ , denoted by the same symbol. If there exists ω ∈ R such that, for
every δ ∈ (0, γ), the family {zre−ω
zT (z) : z ∈ Σδ} is equicontinuous, then
(T (t))t∈Σγ is said to be an analytic C-regularized semigroup of growth order r.

The integral generator Ĝ, resp. the infinitesimal generator G, of (T (t))t>0 (cf.
[21] and [25]), is defined by

Ĝ :=
{
(x, y) ∈ E × E : T (t)x − T (s)x =

∫ t

s
T (r)y dr for all t, s > 0 with t ≥ s

}
,

resp,,

G :=
{
(x, y) ∈ E × E : lim

t→0+

T (t)x− Cx

t
= Cy

}
.

The integral generator Ĝ is a closed linear operator which satisfies C−1ĜC = Ĝ.

Moreover, G ⊆ Ĝ and G is a closable linear operator. The closure of G, denoted by
G, is said to be the complete infinitesimal generator, in short, the c.i.g. of (T (t))t>0.

The integral generator Ĝ contains the c.i.g. G and satisfies Ĝ = {(x, y) ∈ E × E :
(T (s)x, T (s)y) ∈ G for all s > 0}. The set {x ∈ E : limt→0+ T (t)x = Cx}, resp.
{x ∈ E : limz→0,z∈Σγ′ Tb(z)x = Cx for all γ ′ ∈ (0, γ)} is said to be the continuity
set of (T (t))t>0, resp. (T (z))z∈Σγ .

The subsequent assertions correspond to [21, Theorem 3.1/3.2].

Theorem 3.5. Suppose b ∈ (0, 1/2) and a closed linear operator A satisfies (H1)
with α > −1. Denote by Γ the frontier of the region −(Pα,ε,d ∪Bd), oriented in such
a way that �λ increases along the curve {z ∈ C : |z| = d, z ∈ ∂(−(Pα,ε,d ∪ Bd))}.
Set γ := arctan(cos(πb)) and

(54) Tb(z)x :=
1

2πi

∫
Γ

e−zλb(
λ − A

)−1
Cx dλ, x ∈ E, z ∈ Σγ .

(i) Then (Tb(z))z∈Σγ is an analytic C-regularized semigroup of growth order (α +
1)/b, and the integral generator of (Tb(z))z∈Σγ is the operator Ĝ = −Ab. De-
note by Ωb(A), resp. Ωb,θ(A), the continuity set of (Tb(z))z∈Σγ , resp.
(Tb(teiθ))t>0. Then the following holds:
(a) For every δ ∈ (0, γ), the family {z(α+1)/bTb(z) : z ∈ Σδ} is equicontinu-

ous.
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(b) The mapping z �→ Tb(z)x, z ∈ Σγ is analytic for every x ∈ E,
⋃

z∈Σγ

R(Tb(z)) ⊆ D∞(A), and for every n ∈ N, x ∈ E and z ∈ Σγ , the
following holds:

(55)
dn

dzn
Tb(z)x =

(−1)n

2πi

∫
Γ

λnbe−zλb(
λ − A

)−1
Cx dλ

and

(56) AnTb(z)x =
1

2πi

∫
Γ

e−zλb
λn

(
λ − A

)−1
Cx dλ.

(b’) Let β > 0, and let |θ| < γ . Then

(57) Dβ
−Tb

(
teiθ

)
x =

1
2πi

∫
Γ

(
eiθλb

)β
e−teiθλb(

λ − A
)−1

Cx dλ

holds for all t > 0 and x ∈ E , where D
β
− denotes the Liouville right-sided

fractional derivative of order β (see [16, (2.3.4)]); and

(58) AbβTb

(
teiθ

)
x =

1
2πi

∫
Γ

λbβe−teiθλb(
λ − A

)−1
Cx dλ

for all t > 0 and x ∈ R(C).
(c) We have D(A	b+α�+1) ⊆ Ωb(A), provided �b + α� ≥ 0.

(d) If �b + α� ≥ 0, x ∈ D(A	b+α�+2) and γ ′ ∈ (0, γ), then

(59) lim
z→0,z∈Σγ′

Tb(z)x− Cx

z
=

(−1)
2πi

∫
Γ

(−λ)b−1
(
λ − A

)−1
CAx dλ.

(e) For every z ∈ Σγ , Tb(z) is an injective operator.

(ii) Suppose n ∈ N \ {1, 2}, |θ| < arctan(cos(π/n)) and x ∈ Ω1/n,θ(A). Then the
function u : (0,∞) → E, defined by u(t) := T1/n(teiθ)x, t > 0, is a solution
of the abstract Cauchy problem

(Pn) :

⎧⎨
⎩

u ∈ C((0,∞) : D∞(A)) ∩ C∞((0,∞) : E),
dn

dtn u(t) = (−1)neinθAu(t), t > 0,

limt→0+ u(t) = Cx, and the set {u(t) : t > 0} is bounded.

Moreover, u(·) can be analytically extended to the sector Σarctan(cos(π/n))−|θ|
and, for every δ ∈ (0, arctan(cos(π/n))−|θ|) and j ∈ N0, we have that the set
{zj+nα+nu(j)(z) : z ∈ Σδ} is bounded. The previous conclusions hold in the
case (1/n) + α ≥ 0 and x ∈ D(A	(1/n)+α�+1).
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(ii’) Suppose β > 0, |θ| < γ and x ∈ Ωb,θ(A) ∩ R(C). Then the function u :
(0,∞) → E, defined by u(t) := Tb(teiθ)x, t > 0, is a solution of the fractional
abstract Cauchy problem

(Pβ) :

⎧⎪⎪⎨
⎪⎪⎩

u ∈ C((0,∞) : D∞(A)) ∩ C∞((0,∞) : E),

Dβ
−u(t) = eiθβAbβu(t), t > 0,

limt→0+ u(t) = Cx, and the set {u(t) : t > 0} is bounded.
Moreover, u(·) can be analytically extended to the sector Σarctan(cos(bπ))−|θ|
and, for every δ ∈ (0, arctan(cos(bπ))− |θ|) and j ∈ N0, we have that the set
{zj+(1+α)/bu(j)(z) : z ∈ Σδ} is bounded. The previous conclusions hold in the
case b + α ≥ 0 and x ∈ D(A	b+α�+1) ∩ R(C).

Outline of the proof. We will only prove the first part of theorem. In almost the
same way as in the proof of [21, Theorem 3.2] (cf. also [19, Theorem 3.15/3.16], [20,
Theorem 1.4.15] and [37, Section 2]), one can prove that (Tb(z))z∈Σγ is an analytic
C-regularized semigroup of growth order (α + 1)/b as well as that (c), (e) and (55)-
(59) hold. Now we will prove that the operator −Ab (cf. Remark 2.12(ii) for the
definition and notation used below) is the integral generator of (Tb(z))z∈Σγ . Define
Sb(z) := 1

2πi

∫
Γ e−zλb

(λ − A)−1Cx dλ, x ∈ E, z ∈ Σγ and Sb,1(z) :=
∫ z
0 Sb(σ)x dσ,

x ∈ E, z ∈ Σγ . By the proof of Theorem 3.1, we easily infer that (Sb,1(t))t≥0 is a
once integrated C-semigroup which do have the operator −Ab as the integral generator.
Since Tb(z)(d+κ−A)−nαC = Sb(z)C, z ∈ Σγ , we immediately obtain that (x, y) ∈ Ĝ

iff

(60) Sb(t)x − Sb(s)x =
∫ t

s
Sb(r)y dr for any t > s > 0 with t ≥ s.

Using the fact that lims→0+ Sb(s)(−n − A)−1Cx = C(−n − A)−1Cx, x ∈ E, n ∈ N,

and an elementary argumentation, one gets that (60) is equivalent with
∫ t

0
Sb(σ)x dσ − tCx =

∫ t

0

(∫ r

0
Sb(σ)y dσ

)
dr, t ≥ 0,

which holds since the integral generator of (Sb,1(t))t≥0 is −Ab. Now we will prove the
assertion (b’) in the non-trivial case β ∈ (0,∞)\N. Since 0 < x+arctan(cosx) < π/2,

provided 0 < x < π/2, we have |b argλ + θ| < bπ + arctan(cos(bπ)) < π/2, λ ∈ Γ,
which implies that �(eiθλb) = |λ|b cos(b argλ + θ) > 0, λ ∈ Γ and

∫ ∞

t
gβ−�β�(s − t)e−seiθλb

ds =
( ∫ ∞

0
gβ−�β�(v)e−veiθλb

dv
)
e−teiθλb

=
(
eiθλb

)β−�β�
e−teiθλb

,
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for any λ ∈ Γ. By definitions of Dβ
− and Tb(·), we obtain

Dβ
−Tb

(
teiθ

)
x

=
(
− d

dt

)�β� ∫ ∞

t
g�β�−β(s − t)

(
1

2πi

∫
Γ

e−seiθλb(
λ − A

)−1
Cx dλ

)
ds

=
(
− d

dt

)�β� 1
2πi

∫
Γ

(∫ ∞

t
g�β�−β(s − t)e−seiθλb

ds

)(
λ − A

)−1
Cx dλ

=
(
− d

dt

)�β� 1
2πi

∫
Γ

(
eiθλb

)β−�β�
e−teiθλb(

λ − A
)−1

Cx dλ

=
(−1

)�β� 1
2πi

∫
Γ

(
eiθλb

)β−�β�(−1
)�β�(

eiθλb
)�β�

e−teiθλb(
λ − A

)−1
Cx dλ

=
1

2πi

∫
Γ

(
eiθλb

)β
e−teiθλb(

λ − A
)−1

Cx dλ, t > 0, x ∈ E.

Suppose now bβ /∈ N. Keeping in mind that
⋃

z∈Σγ
R(Tb(z)) ⊆ D∞(A), it is routine

to show that, with a suitable choice of the contour Γ′,

AbβTb

(
teiθ

)
x = Abβ−�bβ�A�bβ�Tb

(
teiθ

)
x

=Abβ−�bβ�
1

2πi

∫
Γ

e−teiθλb
λ�bβ�(λ − A

)−1
Cx dλ

=C−1 1
2πi

∫
Γ′

μbβ−�bβ�(μ − A
)−1

C

(
1

2πi

∫
Γ

e−teiθλb
λ�bβ�(λ − A

)−1
Cx dλ

)
dμ

=
1

2πi

∫
Γ

e−teiθλb
λbβ

(
λ − A

)−1
Cx dλ, x ∈ R(C).

This proves (57)-(58).

Remark 3.6. Recall that Dn− = (−1)nDn for n ∈ N, where Dn denotes the usual
derivative operator of order n ([16, (2.3.5)]).

Theorem 3.7. Suppose d ∈ (0, 1], γ ∈ (0, π/2), α > −1 and b ∈ (0, π/(2(π−γ))).
Set ϕ := arctan(cos(b(π−γ))) and assume thatΣ(γ, d) ⊆ ρC(−A) and that the family
{(1 + |λ|)−α(λ + A)−1C : λ ∈ Σ(γ, d)} is equicontinuous.
(i) Denote by Γ the frontier of the region −Σ(γ, d), oriented counterclockwise.
Then (Tb(z))z∈Σϕ (cf. (54)) is an analytic C-regularized semigroup of growth
order (α + 1)/b, and the integral generator of (Tb(z))z∈Σϕ is the operator
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Ĝ = −Ab. Denote by Ωb(A), resp. Ωb,θ(A), the continuity set of (Tb(z))z∈Σϕ,

resp. (Tb(teiθ))t>0. Then the following holds:
(a) For every δ ∈ (0, ϕ), the family {z(α+1)/bTb(z) : z ∈ Σδ} is equicontinu-

ous.
(b) The mapping z �→ Tb(z)x, z ∈ Σϕ is analytic for every x ∈ E,

⋃
z∈Σϕ

R(Tb(z)) ⊆ D∞(A), and (55)-(58) hold with γ replaced by ϕ therein.
(c) We have D(A	b+α�+1) ⊆ Ωb(A), provided �b + α� ≥ 0.

(d) If �b + α� ≥ 0, x ∈ D(A	b+α�+2) and ϕ′ ∈ (0, ϕ), then (59) holds.

(ii) Suppose n ∈ N\{1}, |θ| < arctan(cos((π−γ)/n)) and x ∈ Ω1/n,θ(A). Then the
function u : (0,∞) → E, defined by u(t) := T1/n(teiθ)x, t > 0, is a solution
of the abstract Cauchy problem (Pn). Put an,θ := arctan(cos((π−γ)/n))−|θ|.
Then the solution u(·) can be analytically extended to the sector Σan,θ

and, for
every δ ∈ (0, an,θ) and i ∈ N0, we have that the set {zi+nα+nu(i)(z) : z ∈ Σδ}
is bounded. The previous conclusions hold in the case (1/n) + α ≥ 0 and
x ∈ D(A	(1/n)+α�+1).

(ii’) Suppose β > 0, |θ| < ϕ and x ∈ Ωb,θ(A) ∩ R(C). Then the function u :
(0,∞) → E, defined by u(t) := Tb(teiθ)x, t > 0, is a solution of the abstract
Cauchy problem (Pβ). Put ab,θ := arctan(cos((π−γ)b))−|θ|. Then the solution
u(·) can be analytically extended to the sector Σab,θ

and, for every δ ∈ (0, ab,θ)
and i ∈ N0, we have that the set {zi+(α+1)/bu(i)(z) : z ∈ Σδ} is bounded. The
previous conclusions hold in the case b+α ≥ 0 and x ∈ D(A	b+α�+1) ∩ R(C).

The assertions of Theorem 3.5 and Theorem 3.7 can be reformulated, with some
obvious modifications, in the case α = −1. We would also like to mention that the
uniqueness of solutions of the problem (Pβ) can be proved provided that β = 2,

n(A) ≤ 1, C = I and that E is a Banach space ([21]). We leave to the interested
reader problems of:
(i) finding general conditions under which the problem (Pβ) has a unique solution
(in this context, we also refer the reader to [35, Proposition 2, Theorem 3] for
the case β = 2),

(ii) describing the c.i.g. of the semigroup (Tb(t))t>0 appearing in Theorem 3.5 and
Theorem 3.7.
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19. M. Kostić, Abstract Volterra equations in locally convex spaces, Science China Math.,
55(9) (2012), 1797-1825.
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21. M. Kostić, Complex powers of nondensely defined operators, Publ. Inst. Math., Nouv.
Sér., 90(104) (2011), 47-64.



498 Chuang Chen, Marko Kostić, Miao Li and Milica Žigić
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32. C. Mart ínez, M. Sanz and A. Redondo, Fractional powers of almost non-negative oper-
ators, Fract. Calculus Appl. Anal., 8(2) 2005, 201-230.

33. J. M. A. M. van Neerven and B. Straub, On the existence and growth of mild solutions of
the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston
J. Math., 24(1) (1998), 137-171.

34. F. Periago and B. Straub, A functional calculus for almost sectorial operators and appli-
cations to abstract evolution equations, J. Evol. Equ., 2(1) (2002), 41-68.

35. F. Periago and B. Straub, On the existence and uniqueness of solutions for an incomplete
second-order abstract Cauchy problem, Studia Math., 155(2) (2003), 183-193.

36. J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag, Basel,
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