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Devaney’s Chaos for Maps on G-spaces

Ekta Shah

Abstract. We study the notion of sensitivity on G-spaces and through examples

observe that G-sensitivity neither implies nor is implied by sensitivity. Further, we

obtain necessary and sufficient conditions for a map to be G-sensitive. Next, we define

the notion of Devaney’s chaos on G-space and show that G-sensitivity is a redundant

condition in the definition.

1. Introduction

The occurrence of chaos in the several problems ranging from physics and chemistry

to ecology and economics has made the theory of chaotic dynamical system as one of

the challenging fields of dynamical systems. In last decade quite a few surveys have

appeared in the literature only in the topological aspect of chaos theory. For details

refer [1, 5, 12, 14, 15, 19, 21, 22]. We wish to note here that most of the contents in these

surveys are disjoint. Apart from topological aspect, chaos theory is being studied in

other settings also. For instance, recently chaos has been defined and studied for group

actions [8,24,28] or on hyperspace [3,16] or for non-autonomous dynamical systems [13,29].

The theory of chaos is hence now a very well-established branch of dynamical systems.

Conventionally, the term “chaos” means “a state of confusion with no order”. However

in the theory of chaotic dynamical systems, the term is defined in more precise form.

In 1975, Li and Yorke [20] are the first one to connect the term “chaos” with a map.

In past three decades, several alternative definitions of chaos have been proposed and

studied in detail. Though, there is still no definitive, universally accepted mathematical

definition of chaos. In fact, as per the authors of [19], it is impossible to accept one

such universal definition of chaos. Most accepted definition of chaos includes Li Yorke

chaos, distributional chaos, positive topological entropy and its variants, Devaney Chaos,

stronger forms of transitivity such as weakly mixing, mixing. The present paper studies

the Devaney’s definition of chaos for maps on G-spaces.
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The paper is organized in the following manner: In the next Section we give necessary

terminologies required throughout the paper. The notion of sensitive dependence on G-

spaces was defined in [10]. In Section 3, through examples we show G-sensitivity neither

implies nor is implied by sensitivity. Further, in the same section we obtain a necessary

and sufficient condition for a map to be G-sensitive. The notion of periodic points for

continuous self maps and transitivity on G-space were defined in [25]. In Section 4, we

give a characterization for PerG(f) to be dense in a G-space. Here PerG(f) is the set of G-

periodic points of map f . We also show that G-transitivity of map f implies transitivity

of the induced map f̂ . The notion G-chaos is defined in Section 5 and it is observed

that G-sensitvity is a redundant condition in the definition of G-chaos for compact metric

space. This is similar to the result proved by Banks, et al. in [4].

2. Preliminaries

By a dynamical system we mean a pair (X, f), where X is a metric space and f is a

continuous self map on X. Throughout the paper maps means self maps.

By a metric G-space, X, we mean a metric space X on which a topological group G

acts continuously by an action ϑ. For g ∈ G and x ∈ X we denote ϑ(g, x) by gx. The

G-orbit of a point x, denoted by G(x), is the set {gx : g ∈ G}. The set X/G of all G-orbits

in X with the quotient topology induced by the quotient map π : X → X/G defined by

π(x) = G(x), is called the orbit space of X and the map π is called the orbit map. Note

that the map π is an open continuous map. Map f is said to be pseudoequivariant if

f(G(x)) = G(f(x)) for all x ∈ X. For details on G-space one can refer to [7, 23, 27]. It is

known that if f is pseudoequivariant continuous map, then it induces a continuous map

f̂ : X/G→ X/G given by f̂(G(x)) = G(f(x)) [9].

Definition 2.1. Let X be a metric space and f : X → X be a continuous map. Map f is

said to be transitive if for any non empty open subsets U and V of X, there is an integer

n > 0 such that fn(U) ∩ V 6= ∅.

Definition 2.2. Let X be a metric space and f : X → X be a continuous map. Map f

is said to have sensitive dependence on initial conditions if there is a constant δ > 0 such

that for each x ∈ X and for every neighbourhood U of x, there is a point y ∈ U satisfying

d(fn(x), fn(y)) > δ, for some n > 0; δ is called sensitive constant for f . If f has sensitive

dependence on initial conditions, then we write f is sensitive.

The notion of chaos in the sense of Devaney was first introduced by Devaney in [11].

Definition 2.3. Let X be a metric space and f : X → X be a continuous map then f is

called chaotic in the sense of Devaney or Devaney chaotic if
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(1) f is transitive,

(2) Per(f) is dense in X and

(3) f is sensitive.

Since its inception the notion of Devaney’s chaos have been extensively studied. Its

relation with other notions of chaos have also been studied. Certain references in this

direction are [6,15,17,18]. In 2007, the notion of P -chaos is defined in [2] and it is shown

there that P -chaos implies Devaney’s chaos on continuums.

Banks, et al. in [4] observed that the condition of sensitivity in the definition of De-

vaney’s chaos is redundant if the space is a compact metric space. We recall the theorem.

Lemma 2.4. Let X be a compact metric space. If f : X → X is transitive and has dense

set of periodic points then f has sensitive dependence on initial conditions.

It was further observed in [26], transivity is equivalent to chaos on the compact interval

I. We recall the theorem due to Vellekoop and Berglund.

Lemma 2.5. Let I be a compact interval and let f : I → I be a continuous map. If f is

transitive, then Per(f) is dense in I and also f is sensitive.

3. G-sensitive dependence on initial conditions

We recall the definition of sensitivity on G-space.

Definition 3.1. Let X be a metric G-space and f : X → X be a continuous map. Then

f is said to have G-sensitive dependence on initial conditions if there is a constant δ > 0

such that for each x ∈ X and for every neighbourhood U of x, there is a point y ∈ U

with G(x) 6= G(y) satisfying for some n > 0, d(fn(u), fn(v)) > δ, for all u ∈ G(x) and all

v ∈ G(y); δ is called G-sensitive constant for f . If f has G-sensitive dependence on initial

conditions, then we write f is G-sensitive.

Note that the G-sensitivity of f depends on the action of G. In Example 3.2, f is

G-sensitive with respect to one group action but is not G-sensitive with respect to other

group action. Also, f is not sensitive. In Example 3.3, f is sensitive but is not G-sensitive

for some group action. Thus, we have that G-sensitivity neither implies not is implied by

sensitivity. Hence, the notion of G-sensivity depends on the action of group on the space.

Further, if the action of G is trivial on X, then the notion of G-sensitivity and sensitivity

are equivalent.
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Example 3.2. For each n ∈ N, let Xn denote the (m−1) sphere centered at origin and of

radius 1/n. Let G = SO(m) act on the subspace X =
⋃∞
n=1Xn ∪ {0} of Rm by the usual

action of matrix multiplication, where 0 is the origin of Rm. Consider the map f : X → X

defined by

f(z) =

z if z = 0 or z ∈ X1,

z′ if z ∈ Xn, n 6= 1,

where z′ is the point of intersection of the sphere Xn−1 and the line joining z and origin.

Then f is SO(m)-sensitive. But if Z2 acts on X by the action 1x = x and −1x = −x for

all x ∈ X, then f is not Z2-sensitive. Also note that f is not sensitive as it is the identity

map on X1.

Example 3.3. Consider the subspace X = {± 1
n ,±(1 − 1

n) : n ∈ N} of R with the usual

metric of R and the homeomorphism h : X → X defined by

h(x) =


x if x ∈ {−1, 0, 1},

−x+ if 0 < x < 1, where x+ is the element of X immediately right to x,

−x− if −1 < x < 0, where x− is the element of X immediately left to x.

Suppose the group G = {hn : n ∈ Z} acts on X by the usual action. If f is the left shift

fixing −1, 0 and 1, then f is sensitive but not G-sensitive.

In the following theorem we obtain a necessary and sufficient condition for a map f to

be G-sensitivity.

Theorem 3.4. Let X be a compact metric G-space, with G compact. Suppose f : X → X

is a continuous pseudoequivariant onto map. Then f is G-sensitive if and only if the

induced map f̂ : X/G→ X/G is sensitive.

Proof. Suppose f is G-sensitive. Therefore there exists a G-sensitive constant, say δ,

satisfying the definition of G-sensitivity. Choose β such that 0 < β < δ. We show that β

is sensitive constant for f̂ . Let G(x) ∈ X/G and Û be a neighbourhood of G(X). Then

π−1(Û) is an open set containing x. But f is G-sensitive. Therefore there exist y ∈ π−1(Û)

with G(x) 6= G(y) and an integer n > 0 such that d(fn(u), fn(v)) > δ for all u ∈ G(x)

and all v ∈ G(y). But this implies, there is an integer n > 0 such that

d̂
(
f̂n(G(x)), f̂n(G(y))

)
> β

for G(y) ∈ Û with G(x) 6= G(y), where d̂ is the metric on X/G induced from d. Therefore,

f̂ is sensitive with sensitivity constant β.

Conversely, suppose f̂ is sensitive with sensitive constant δ. We show that any η,

0 < η < δ, is a G-sensitive constant for f . Let x ∈ X and U be an open set containing x.
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Since π is an open map, it follows that π(U) is an open subset of X/G containing G(x).

Therefore by sensitivity f̂ , there are G(y) ∈ π(U) and an integer n > 0 such that

d̂
(
f̂n(G(x)), f̂n(G(y))

)
> δ.

This further implies that there is an integer n > 0, with G(x) 6= G(y) such that

d(fn(u), fn(v)) > δ

for all u ∈ G(x) and all v ∈ G(y). We complete the proof by showing that gy ∈ U for some

g ∈ G. Now, π(U) =
⋃
t∈G tU . Therefore for each p ∈ G, py ∈

⋃
t∈G tU . In particular,

y ∈
⋃
t∈G tU . Therefore, there is g ∈ G such that gy ∈ U . Note that G(y) = G(gy). Hence

the proof follows.

4. G-periodic points and G-transitivity

The notion of G-periodic points was defined in [25]. We recall the definition.

Definition 4.1. Let X be a metric G-space and f : X → X be a continuous map. Then

a point x ∈ X is said to be a G-periodic point of f if there exist an integer n > 0 and a

g ∈ G such that fn(x) = gx. The smallest such positive integer n is called the period of

x. We denote the set of all G-periodic points of f by PerG(f).

Obviously if x is a periodic point then x is a G-periodic point. But converse need not

be true follows from Example 4.2.

Example 4.2. Let X = S1, the unit circle of the plane and suppose G = U4, the group

of 4th roots of unity, acts on X by the usual action of complex multiplication. Define the

map f : X → X by f(eiθ) = eiθ/2. Then PerG(f) = {ei0, eiπ}, whereas Per(f) = {ei0}.

In the following theorem we obtain a characterization for PerG(f) to be a dense subset

of X.

Proposition 4.3. Let X be a compact metric G-space, with G compact. Suppose f : X →
X is a pseudoequivariant continuous map defined on X. Then PerG(f) is dense in X if

and only if Per(f̂) is dense in the orbit space X/G.

Proof. Suppose Per(f̂) is dense in X/G. Let U be an open subset of X. We show that U

contains a G-periodic point of f . Since π is an open map, it follows that π(U) is an open

subset of X/G. Therefore there is a periodic point G(x) of f̂ such that G(x) ∈ π(U). But

π(U) =
⋃
g∈G gU , implies

tx ∈
⋃
g∈G

gU
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for each t ∈ G. Therefore, in particular, x ∈ g′U for some g′ ∈ G. But this implies,

there is g ∈ G, such that gx ∈ U . We complete the proof by showing that, gx is a G-

periodic point of f . Now, G(x) is a periodic point of f̂ , say with period n. Therefore using

pseudoequivariancy of f , we obtain G(fn(x)) = G(x). Thus, there are a positive integer

n and an l ∈ G, such that fn(gx) = lx. Hence the proof.

Conversely, suppose PerG(f) is dense in X. Let Û be an open subset of X/G. We show

that Û contains a periodic point of f̂ . Using continuity of π, we have π−1(Û) is an open

subset of X. Therefore, there is a G-periodic point y of f in X such that y ∈ π−1(Û). But

π is surjective. Therefore, π(y) = G(y) ∈ Û . We complete the proof by showing that G(y)

is a periodic point of f̂ . Now, y is a G-periodic point of f , say of period m. Therefore,

there is g ∈ G such that fm(y) = gy. But this implies G(fm(y)) = G(gy) = G(y). Thus

f̂m(G(y)) = G(y).

In [25], the notion of topological transitivity on G-space was defined and studied. We

recall the definition.

Definition 4.4. Let (X, d) be a metric G-space and f : X → X be a continuous map then

f is called G-transitive if for every pair of non-empty open subsets U and V of X, there

exist n ∈ N and g ∈ G such that g.fn(U) ∩ V 6= ∅.

It was observed that transitivity of a map implies G-transitivity of map. But converse

in general is not true under the non-trivial action of G. In the following theorem we show

that G-transitivity of f implies transitivity of the induced map f̂ on X/G.

Theorem 4.5. Let X be a compact metric G-space, with G compact. Suppose a pseudoe-

quivariant continuous onto map f defined on X is G-transitive. Then the induced map

f̂ : X/G→ X/G is transitive.

Proof. Let Û and V̂ be two non-empty subsets of X. Then π−1(Û) and π−1(V̂ ) are non-

empty open subsets of X. But f is a G-transitive pseudoequivariant map. Therefore there

are an integer n > 0 and g ∈ G such that

fn(gπ−1(U)) ∩ π−1(V ) 6= ∅.

This further implies

(4.1) π
(
fn(gπ−1(U)) ∩ π−1(V )

)
6= ∅.

But π ◦ f = f̂ ◦ π. Therefore, (4.1) implies

f̂n(π(π−1(U))) ∩ π(π−1(V )) 6= ∅.

Using surjectivity of π we obtain,

f̂n(Û) ∩ V̂ 6= ∅

for some positive integer n. Therefore f̂ is transitive.
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5. G-chaos

Definition 5.1. Let X be a metric G-space and f : X → X be a continuous map then f

is called G-chaotic if

(1) f is G-transitive,

(2) PerG(f) is dense in X and

(3) f is G-sensitive.

Since G-sensitivity is neither is implied by nor implies sensitivity, it follows that G-

chaoticity of f is neither implied by nor implies chaoticity of f . Under the trivial action

of G, both G-chaos and chaos are equivalent notions.

Example 5.2. Consider I = [0, 1] with usual metric of real numbers. Let G = Z2 act on

I by the action 1x = x and −1x = 1 − x for all x ∈ I. Then the map f whose graph is

given by Figure 5.1 on I is Z2-chaotic but is not chaotic. In fact, f is not transitive.
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Figure 5.1: Example of map which is Z2-chaotic but not chaotic.

In the following theorem we obtain result similar to that of Banks et al. in [4] for

G-spaces.

Theorem 5.3. Let X be a compact metric G-space, with G compact and f : X → X be a

pseudoequivariant continuous surjective map. If f is G-transitive and if PerG(f) is dense

in X/G. Then f is G-sensitive.

Proof. Since f is G-transitive, by Theorem 4.5 we have f̂ is transitive. Further, PerG(f)

is dense in X. Therefore by Theorem 4.3, Per(f̂) is dense in X/G. Hence by Lemma 2.4,

f̂ is sensitive. But, then by Theorem 3.4, we have that f is G-sensitive.
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Through example we now observe that G-sensitivity and dense set of G-periodic points

need not imply G-transitivity (see Example 5.4). Also, we give an example of map which

is G-sensitive and G-transitivity but the set of G-periodic points are not dense (see Ex-

ample 5.5).

Example 5.4. Suppose G1 = Z2 acts on S1 by the action 1eiθ = eiθ and −1eiθ = e−iθ

and suppose G2 = Z2 acts on I = [0, 1] by the action 1x = x and −1x = 1 − x for all

x ∈ I. Consider X = S1 × I with taxi cab metric (i.e., maximum of distance in S1 and

I). Let G = G1 ×G2 act on X by the action (g1, g2)(e
iθ, t) = (g1e

iθ, g2t). Then the map

f : X → X defined by f(eiθ, t) = (e2iθ, t) is G-sensitive. Also, PerG(f) is dense in X. Note

that f is not G-transitive.

Example 5.5. Consider X = S1 \ {e2iπr : r ∈ Q} with usual metric. Suppose G = Z2

acts on X by the action 1e2πiθ = e2πiθ and −1e2πiθ = e−2πiθ. Then the map f : X → X

defined by f(e2πiθ) = e4πiθ is Z2-transitive and Z2-sensitive. But PerG(f) = ∅ and hence

is not dense in X.

In the following proposition we obtain a result similar to that of [26].

Proposition 5.6. Let I denote the compact interval of the real line. Suppose a compact

group G acts on I such that I/G is homeomorphic to some compact interval J = [a, b]. If

f : I → I is G-transitive then f is G-chaotic.

Proof. Given f is G-transitive. Therefore by Theorem 4.5, f̂ is transitive. Also, X/G is

homeomorphic to the interval J . Therefore by Lemma 2.5, f̂ is sensitive and Per(f̂) is

dense in X/G. Therefore by Theorem 3.4, f is G-sensitive. Also, Proposition 4.3 implies

PerG(f) is dense in X. Hence, f is G-chaotic.
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