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Abstract. While one-dimensional cellular automata have been well studied, there are

relatively few results about multidimensional cellular automata; the investigation of

cellular automata defined on Cayley trees constitutes an intermediate class. This

paper studies the reversibility of linear cellular automata defined on Cayley trees

with periodic boundary condition, where the local rule is given by f(x0, x1, . . . , xd) =

bx0 +c1x1 + · · ·+cdxd (mod m) for some integers m, d ≥ 2. The reversibility problem

relates to solving a polynomial derived from a recurrence relation, and an explicit

formula is revealed; as an example, the complete criteria of the reversibility of linear

cellular automata defined on Cayley trees over Z2, Z3, and some other specific case

are addressed. Further, this study achieves a possible approach for determining the

reversibility of multidimensional cellular automata, which is known as a undecidable

problem.

1. Introduction

Cellular automaton (CA) is a particular class of dynamical systems introduced by Ulam

and von Neumann as a model for self-production and is widely studied in multidisciplinary

areas such as physics, biology, image processing, cryptography, and pseudo-random num-

ber generation [5, 7, 9, 14, 21]. One-dimensional CA consists of the infinite lattice with

finite states and a local rule; the celebrated works of Hedlund and Wolfram make a deci-

sive impulse to the mathematical study of CA (see [10,19] and the references therein).

A cellular automaton is called reversible if every current configuration is associated

with exactly one past configuration. While the reversibility of one-dimensional CAs is

elucidated [11, 16, 17], Kari indicates that the reversibility of multidimensional CAs is

undecidable [12, 13]. Recently, the reversibility problem for one-dimensional cellular au-

tomata with boundary conditions has been studied [6, 8]; it is shown that a reversibly
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linear CA is either a Bernoulli automorphism or non-ergodic [4]. Many researchers have

been devoted to investigating the reversibility problem of multidimensional linear cellu-

lar automata under boundary conditions; however, there is no algorithm for determining

whether a multidimensional linear cellular automaton is reversible [15,18,20].

The notion of CAs has been extended to the case where the underlying space is the

Cayley tree of a finitely generated group or semigroup (see [1–3] and the references therein).

Note that the grid Zd is the Cayley tree of the free abelian group with d generators. In

other words, CAs defined on Cayley trees constitute an intermediate class in between

one-dimensional and multidimensional CAs.

Some interesting phenomena are observed in reversible CA defined on Cayley trees.

Figure 1.1 shows an eventually periodic orbit of a linear CA defined in the binary Cayley

tree of height 5 over three symbols. Furthermore, every configuration in the orbit is

symmetric.
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Figure 1.1: An eventually periodic orbit of CA defined on binary tree with height 5, where

the local rule is given by f(x0, x1, x2) = x0 + x1 + x2 (mod 3). The number below each

figure indicates the number of the time step; it is seen that this is an eventually periodic

orbit with period 80. The color black, blue, and red represents 0, 1, and 2, respectively.

In this article, we investigate the reversibility of linear CAs defined on Cayley trees

with periodic boundary condition; the matrix algebra has been used for the investigation.

We define the matrix presentation of a linear CA defined on a Cayley tree of height n, and

then characterize the reversibility by demonstrating an explicit formula of the determinant

of its related matrix. The main difficulty comes from the exponential growth rate of the

dimension of the matrix whenever n increases. Furthermore, the complete criteria for the
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reversibility of linear CAs defined on Cayley trees over Z2, Z3, and some other conditions

are addressed.

The rest of this paper is organized as follows. The upcoming section introduces some

preliminaries and the reversibility of linear CAs defined in the binary Cayley tree. Section 3

elaborates the explicit criteria for the reversibility of linear CAs in some cases. Section 4

addresses the proofs of theorems stated in Section 2 while Section 5 extends all the results

to general Cayley trees. Some discussions and a conclusion are given in Section 6.

2. Reversibility of CA on binary tree

This section investigates the reversibility of a cellular automaton defined in the binary

Cayley tree for the clarification; the discussion extends to cellular automata defined on

general Cayley trees and is illustrated later.

We start with some basic definitions of symbolic dynamics on infinite binary trees.

Let Σ = {1, 2} and let Σ∗ be the set of words over Σ; more specifically, Σ∗ =
⋃
n≥0 Σn,

where Σn = {w1w2 · · ·wn : wi ∈ Σ for 1 ≤ i ≤ n} is the set of words of length n for n ∈ N
and Σ0 = {ε} consists of the empty word ε. An infinite tree t over a finite alphabet

A = {0, 1, . . . ,m− 1}, herein m ≥ 2, is a function from Σ∗ to A; a node of an infinite

tree is a word of Σ∗ while the empty word relates to the root of the tree. Suppose that

x is a node of a tree; x has two children x1 and x2, and x is the parent of x1 and x2.

Furthermore, a node without children is called a leaf.

Let t be a tree and let x be a node, we refer tx to t(x) for simplicity. A subset of words

L ⊂ Σ∗ is called prefix-closed if each prefix of L belongs to L. A function u defined on a

finite prefix-closed subset L with codomain A is called a pattern or block, and L is called

the support of the pattern. Suppose that n is a nonnegative integer. Let Σn =
⋃n
k=0 Σk

denote the set of words of length at most n. We say that a pattern u is a block of height

n (or an n-block) if the support of u is Σn−1, denoted by height(u) = n.

Let T = AΣ∗
and Tn = AΣn−1 be the sets of infinite trees and n-blocks over A,

respectively, where n ∈ N. Tf : T → T is called a cellular automaton defined on Cayley

tree (TCA) T with local rule f if there exists k ∈ N, an ordered set N = {y1, . . . , yk} ⊂
Σ∗, and a local map f : Ak → A such that (Tf t)x = f(txN ) for all x ∈ Σ∗, where

xN = {xy1, . . . , xyk} and f(txN ) = f(xy1, . . . , xyk); Tf is called linear if f is linear.

This elucidation focuses on those linear TCA Tf whose local rule f : A3 → A is given

by f(x0, x1, x2) = bx0 + c1x1 + c2x2 (mod m); in other words, Tf : T → T is defined as

(Tf t)x = f(tx, tx1, tx2) = btx + c1tx1 + c2tx2 (mod m)

for x ∈ Σ∗. A TCA with periodic boundary condition (PBC) is a cellular automaton

defined on a finite tree such that the “children” of leaves is the root. More explicitly, a
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linear TCA with PBC is Tf : Tn → Tn defined as

(Tf t)x =

f(tx, tx1, tx2) if |x| ≤ n− 2,

f(tx, tε, tε) if |x| = n− 1

for some n ≥ 2, where |x| indicates the length of x.

To investigate the reversibility of linear TCA with PBC, we transfer the global map

Tf into matrix operation. Let β be an ordered set obtained by rearranging Σn−1 with

respect to the lexicographical order. For each t ∈ Tn, denote by [t]β ∈ A2n−1 the column

vector of t with respect to β; more precisely, let Θ: Σn−1 → N be defined as

Θ(x) =

1 if x = ε,

1 +
∑k

i=1 xi2
k−i if x = x1 · · ·xk ∈ Σk,

then [t]β(i) = tx for x ∈ Σn with Θ(x) = i. Let

Tn(i, j) =



b if j = i, 1 ≤ i ≤ 2n − 1,

c1 if j = 2i, 1 ≤ i ≤ 2n−1 − 1,

c2 if j = 2i+ 1, 1 ≤ i ≤ 2n−1 − 1,

c1 + c2 if j = 1, 2n−1 ≤ i ≤ 2n − 1,

0 otherwise.

Evidently, [Tf t]β = Tn[t]β (mod m), and we call Tn the matrix presentation of the linear

TCA Tf defined on Tn with PBC.

Example 2.1. Consider the case where n = 3, it can be verified without difficulty that

T3 =



b c1 c2 0 0 0 0

0 b 0 c1 c2 0 0

0 0 b 0 0 c1 c2

c1 + c2 0 0 b 0 0 0

c1 + c2 0 0 0 b 0 0

c1 + c2 0 0 0 0 b 0

c1 + c2 0 0 0 0 0 b


, [Tf t]β =



b c1 c2 0 0 0 0

0 b 0 c1 c2 0 0

0 0 b 0 0 c1 c2

c1 + c2 0 0 b 0 0 0

c1 + c2 0 0 0 b 0 0

c1 + c2 0 0 0 0 b 0

c1 + c2 0 0 0 0 0 b





tε

t1

t2

t11

t12

t21

t22


for all t ∈ T3.

It follows immediately from the definition of [ · ]β that the following are equivalent.

(i) TCA Tf with PBC is reversible.
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(ii) Tn is invertible over Zm.

(iii) detTn 6= 0 (mod m).

In other words, to determine whether Tf is reversible, it is equivalent to elucidate if

detTn 6= 0 (mod m). Without loss of generality, we may assume that b 6= 0 since the cell

defined by b must be effective; Theorem 2.2 obtains the explicit formula of detTn.

Theorem 2.2. Let Tn be the matrix presentation of the linear TCA Tf defined on Tn with

PBC. Then

detTn = (−1)2n−n−1(b+ c1 + c2)b2
n−n−1

n−1∑
j=0

(−1)j(c1 + c2)n−1−jbj .

The proof of Theorem 2.2 is postponed to Section 4. The following example reveals

the main idea of the proof.

Example 2.3. For the case where n = 4, it is seen that

detT4 = det



b c1 c2 0 0 0 0 0 0 0 0 0 0 0 0

0 b 0 c1 c2 0 0 0 0 0 0 0 0 0 0

0 0 b 0 0 c1 c2 0 0 0 0 0 0 0 0

0 0 0 b 0 0 0 c1 c2 0 0 0 0 0 0

0 0 0 0 b 0 0 0 0 c1 c2 0 0 0 0

0 0 0 0 0 b 0 0 0 0 0 c1 c2 0 0

0 0 0 0 0 0 b 0 0 0 0 0 0 c1 c2

c1 + c2 0 0 0 0 0 0 b 0 0 0 0 0 0 0

c1 + c2 0 0 0 0 0 0 0 b 0 0 0 0 0 0

c1 + c2 0 0 0 0 0 0 0 0 b 0 0 0 0 0

c1 + c2 0 0 0 0 0 0 0 0 0 b 0 0 0 0

c1 + c2 0 0 0 0 0 0 0 0 0 0 b 0 0 0

c1 + c2 0 0 0 0 0 0 0 0 0 0 0 b 0 0

c1 + c2 0 0 0 0 0 0 0 0 0 0 0 0 b 0

c1 + c2 0 0 0 0 0 0 0 0 0 0 0 0 0 b
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= (b+ c1 + c2) det



0 c1 c2 0 0 0 0 −b 0 0 0 0 0 0 0

0 b 0 c1 c2 0 0 −b 0 0 0 0 0 0 0

0 0 b 0 0 c1 c2 −b 0 0 0 0 0 0 0

0 0 0 b 0 0 0 c1 − b c2 0 0 0 0 0 0

0 0 0 0 b 0 0 −b 0 c1 c2 0 0 0 0

0 0 0 0 0 b 0 −b 0 0 0 c1 c2 0 0

0 0 0 0 0 0 b −b 0 0 0 0 0 c1 c2

1 0 0 0 0 0 0 b 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −b b 0 0 0 0 0 0

0 0 0 0 0 0 0 −b 0 b 0 0 0 0 0

0 0 0 0 0 0 0 −b 0 0 b 0 0 0 0

0 0 0 0 0 0 0 −b 0 0 0 b 0 0 0

0 0 0 0 0 0 0 −b 0 0 0 0 b 0 0

0 0 0 0 0 0 0 −b 0 0 0 0 0 b 0

0 0 0 0 0 0 0 −b 0 0 0 0 0 0 b



= −(b+ c1 + c2)b7 det



c1 c2 0 0 0 0 −b

b 0 c1 c2 0 0 −b

0 b 0 0 c1 c2 −b

0 0 b 0 0 0 c1 + c2 − b

0 0 0 b 0 0 c1 + c2 − b

0 0 0 0 b 0 c1 + c2 − b

0 0 0 0 0 b c1 + c2 − b



= (b+ c1 + c2)(−b)7 det



c1 c2 0 0 0 0 −b

b 0 0 0 0 0 − (c1+c2)(c1+c2−b)+b2
b

0 b 0 0 0 0 − (c1+c2)(c1+c2−b)+b2
b

0 0 b 0 0 0 c1 + c2 − b

0 0 0 b 0 0 c1 + c2 − b

0 0 0 0 b 0 c1 + c2 − b

0 0 0 0 0 b c1 + c2 − b
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= (b+ c1 + c2)(−b)11 det


c1 c2 −b

b 0 − (c1+c2)(c1+c2−b)+b2
b

0 b − (c1+c2)(c1+c2−b)+b2
b


= −(b+ c1 + c2)b11

3∑
j=0

(−1)j(c1 + c2)3−jbj .

3. Necessary and sufficient condition for the reversibility

This section addresses the full criteria for the reversibility of linear TCA over Z2, Z3, and

some other case. The criteria herein focus on the binary tree for the simplicity and can

be extended to general Cayley trees without difficulty.

Theorem 2.2 reveals that the necessary and sufficient conditions for a TCA Tf being

reversible is

(b+ c1 + c2)b2
n−n−1

n−1∑
j=0

(−1)j(c1 + c2)n−1−jbj 6= 0 (mod m).

Suppose that m = p is a prime. The necessary and sufficient condition for the reversibility

of Tf can be simplified as follows: Tf is reversible if and only if

(i) b 6= 0 (mod p);

(ii) b+ c1 + c2 6= 0 (mod p);

(iii)
∑n−1

j=0 (−1)j(c1 + c2)n−1−jbj 6= 0 (mod p).

To ease the notation, all the evaluation are considered under modulo p in this section

unless otherwise stated.

Let g(x) =
∑n−1

k=0(−1)kbkxn−1−k; elaborating the reversibility of Tf is “almost” equiv-

alent to the discussion of the existence of the roots of g(x). This section investigates

the cases where p = 2 and p = 3; for each case, the reversibility of Tf is characterized

explicitly. For this purpose, we assume that b 6= 0 in the rest of this section.

Furthermore, the reversibility of Tf for the case where n = 2l for some l ∈ N is

elucidated; an interesting algebraic property is revealed.

3.1. Cases study: p = 2

Proposition 3.1. Tf is reversible if and only if b = 1 and c1 + c2 = 0.

Proof. Notably, we only need to consider the case where b = 1 when p = 2 since b 6= 0. It

is seen that

g(x) = 1 + x+ x2 + · · ·+ xn−1.
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Suppose that n is even. It is easily seen that g(x) = 0 if and only if x = 1. That is, Tf is

reversible if and only if c1 + c2 = 0. For the case where n is odd, g(x) can be expressed as

g(x) = (1 + x)(1 + x2 + x4 + · · ·+ xn−2) = 0 (mod 2) ⇐⇒ x = 1.

Both cases demonstrate that Tf is reversible if and only if c1 + c2 = 0. This completes the

proof.

Figure 3.1 illustrates a periodic orbit derived by a reversible CA defined on binary tree

with height 5.
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Figure 3.1: A period-8 orbit of CA defined on binary tree with height 5, where the local

rule is given by f(x0, x1, x2) = x0 + x1 + x2 (mod 2). The color black and blue represents

0 and 1, respectively.

3.2. Cases study: p = 3

Recall that b = 0 indicates that Tf is irreversible; hence it suffices to consider the case

where b 6= 0.

Proposition 3.2. For the case where p = 3, Tf is irreversible if and only if one of the

following is satisfied:

(1) c1 + c2 = b;

(2) c1 + c2 6= 0 and n is a multiple of 6;

(3) b+ c1 + c2 = 0.



Reversibility of LCA on Cayley Tree with PBC 1343

Proof. Since b 6= 0, Fermat’s Little Theorem asserts that b2 = 1 (mod 3).

Case 1: n is even.

g(x) = xn−1 − bxn−2 + b2xn−3 − b3xn−4 + · · ·+ bn−2x− bn−1

= (x− b)(xn−2 + xn−4 + xn−6 + · · ·+ x2 + 1) (mod 3).

A straightforward examination shows that

xn−2 + xn−4 + xn−6 + · · ·+ x2 + 1 = 0 (mod 3) ⇐⇒ x 6= 0 and n = 6l

for some l ∈ N. Therefore, g(x) = 0 (mod 3) if and only if x = b or x 6= 0 and n = 6l for

some l ∈ N.

Case 2: n is odd. Observe that

g(x) =

(x− 1)(xn−2 + xn−4 + · · ·+ x2 + 1) if b = 1,

(x+ 1)(xn−2 + xn−4 + · · ·+ x2 + 1) if b = 2
(mod 3).

Similar to the above discussion, it follows that g(x) = 0 (mod 3) if and only if x = b or

x 6= 0 and n = 6l for some l ∈ N. The proof is complete.

3.3. Cases study: n = 2l

Instead of considering the special cases p = 2 and p = 3, this subsection focuses on the

case where the height of the Cayley tree is some power of 2. For this case, an algebraic

property related to the reversibility of Tf is revealed.

Suppose that n = 2l for some l ∈ N. It is seen that

g(x) = (x− b)(xn−2 + b2xx−4 + b4xn−6 + · · ·+ bn−4x2 + bn−2)

= (x− b)(x2 + b2)(x4 + b4) · · · (x2l−1
+ b2

l−1
).

The last equality can be demonstrated via the mathematical induction principle, thus it

is omitted. The reversibility of Tf is then characterized explicitly as follows.

Proposition 3.3. For the case where n = 2l for some l ∈ N, Tf is irreversible if and only

if one of the following is satisfied:

(1) b+ c1 + c2 = 0;

(2) c1 + c2 = b;

(3) p = 2r + 1 for some integer r < l and (c1 + c2)2q + b2
q

= 0 (mod p) for some

1 ≤ q ≤ r − 1;
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(4) p 6= 2r + 1 for r ≥ 0 and (c1 + c2)2q + b2
q

= 0 (mod p) for some 1 ≤ q ≤ γ, where γ

is the order of the subset A =
{

2k : k ∈ N
}

of Zp.

Proof. Observe that g(x) 6= 0 if x = 0 and Tf is reversible in this case; therefore, we may

assume that x 6= 0 without loss of generality. It is obvious that the irreversibility of Tf

follows from c1 + c2 = b.

Suppose that p = 2r + 1 for some r ∈ N. Fermat’s Little Theorem asserts that a2k = 1

(mod p) for all k ≥ r provided a 6= 0. It follows immediately that

g(x) = 2l−r(x− b)(x2 + b2)(x4 + b4) · · · (x2r−1
+ b2

r−1
).

Hence, g(x) = 0 if and only if x = b or x2q + b2
q

= 0 (mod p) for some 1 ≤ q ≤ r − 1.

Suppose that the prime p cannot express as p = 2r + 1 for r ≥ 0. It can be verified

that the sequence
{

2k
}
k∈N is eventually periodic. Let A =

{
2k : k ≥ 1

}
be an ordered set

with |A| = γ. There exists λ ∈ N such that

g(x) = (x− b)

(
λ∏
i=1

(x2i + b2
i
)

)(
τ∏

i=λ+1

(x2i + b2
i
)

)κ+1( γ∏
i=τ+1

(x2i + b2
i
)

)κ
for some κ and τ . Evidently, g(x) = 0 if and only if x = b or x2q + b2

q
= 0 for some

1 ≤ q ≤ γ. This completes the proof.

We end this section with the following two examples that illustrate the case where

p 6= 2r + 1 and n = 2l.

Example 3.4. Suppose that n = 210 and p = 7. A routine examination infers that

x2k = x2 (mod 7) if k is odd and x2k = x4 (mod 7) if k is even; that is, A = {2, 4}. It

follows that

g(x) = (x− b)(x2 + b2)(x4 + b4) · · · (x29 + b2
9
) = (x− b)(x2 + b2)5(x4 + b4)4.

Therefore, Tf is reversible if and only if (1) b + c1 + c2 6= 0; (2) c1 + c2 6= b and b 6= 0;

(3) (c1 + c2)2 + b2 6= 0; (4) (c1 + c2)4 + b4 6= 0.

Example 3.5. Suppose that n = 210 and p = 29. A routine examination infers that

x2k = x4 (mod 29) when k = 3n − 1; x2k = x8 (mod 29) when k = 3n, and x2k = x16

(mod 29) when k = 3n+ 1 for some natural number n ∈ N. In other words,{
2k : k ≥ 1

}
= {2, 4, 8, 16, 4, 8, 16, . . .} and A = {2, 4, 8, 16} .

It follows that

g(x) = (x− b)(x2 + b2)(x4 + b4) · · · (x29 + b2
9
)

= (x− b)(x2 + b2)(x4 + b4)3(x8 + b8)3(x16 + b16)2.

Therefore, Tf is reversible if and only if (1) b + c1 + c2 6= 0; (2) c1 + c2 6= b and b 6= 0;

(3) (c1 +c2)2 +b2 6= 0; (4) (c1 +c2)4 +b4 6= 0; (5) (c1 +c2)8 +b8 6= 0; (6) (c1 +c2)16 +b16 6= 0.
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4. Proof of Theorem 2.2

This section contributes to the proof of Theorem 2.2; we begin with the following lemma.

Lemma 4.1. For n ∈ N, let Tn ∈M2n−1−1(R) be a (2n−1−1)× (2n−1−1) matrix defined

as

Tn(i, j) =



−b if j = 2n−1 − 1, 1 ≤ i ≤ 2n−2 − 1,

c1 + c2 − b if j = 2n−1 − 1, 2n−2 ≤ i ≤ 2n−1 − 1,

b if j = i− 1, 2 ≤ i ≤ 2n−1 − 1,

c1 if j = 2i− 1, 1 ≤ i ≤ 2n−2 − 1,

c2 if j = 2i, 1 ≤ i ≤ 2n−2 − 1,

0 otherwise.

Then detTn = (−b)2n−1−1(b+ c1 + c2) detTn.

Proof. Adding the kth column of Tn to the first column recursively for k ≥ 2 derives a

new matrix T
(1)
n defined as

T (1)
n (i, j) =



b if j = i, 2 ≤ i ≤ 2n − 1,

c1 if j = 2i, 1 ≤ i ≤ 2n−1 − 1,

c2 if j = 2i+ 1, 1 ≤ i ≤ 2n−1 − 1,

b+ c1 + c2 if j = 1, 1 ≤ i ≤ 2n − 1,

0 otherwise.

It is seen that detTn = detT
(1)
n . Since every entry in the first column of T

(1)
n is identical,

substituting the entry of the first column by 1 and then adding −1 times of the 2n−1th

row to the other rows recursively produces a new matrix T
(2)
n defined as

T (2)
n (i, j) =



b if j = i, 2 ≤ i ≤ 2n − 1,

c1 if j = 2i, 1 ≤ i ≤ 2n−1 − 1, i 6= 2n−2,

c2 if j = 2i+ 1, 1 ≤ i ≤ 2n−1 − 1,

−b if j = 2n−1, 1 ≤ i ≤ 2n − 1, i 6= 2n−1, i 6= 2n−2,

c1 − b if i = 2n−2, j = 2n−1,

1 if j = 1, i = 2n−1,

0 otherwise.

Evidently, detT
(1)
n = (b+ c1 + c2) detT

(2)
n .
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After adding the kth column to the 2n−1th column of T
(2)
n recursively for k > 2n−1, it

follows immediately that the only nonzero element of kth row of T
(2)
n is b for k > 2n−1.

Furthermore, it can be verified without difficulty that Tn is driven from the following two

steps: (i) delete the kth row and kth column of T
(2)
n for k > 2n−1; (ii) delete the first

column and the last row. This indicates that detT
(2)
n = (−b)2n−1−1 detTn. Hence, we

derive

detTn = detT (1)
n = (b+ c1 + +c2) detT (2)

n = (b+ c1 + c2)(−b)2n−1−1 detTn

and the proof is complete.

To evaluate detTn, we need two more lemmas.

Lemma 4.2. Let α3 = c1 + c2 − b and let αn be defined recursively as

αn = −αn−1(c1 + c2) + b2

b
, n ≥ 4.

Then

(4.1) αn = (−1)n−3

∑n−2
j=0 (−1)j(c1 + c2)n−2−jbj

bn−3
,

where n ≥ 3.

Proof. We prove it by induction. Let K = c1 + c2; it is seen that (4.1) holds for n = 3.

Suppose (4.1) is true when n = m for some m ≥ 3. Then

αm+1 = −αmK + b2

b

= −

[
(−1)m−3

∑m−2
j=0 (−1)jKm−2−jbj

bm−3

]
K + b2

b

= −
(−1)m−3

(∑m−2
j=0 (−1)jKm−2−jbj

)
K + bm−1

bm−2

= (−1)m−2

(∑m−2
j=0 (−1)jKm−1−jbj

)
+ (−1)m−3bm−1

bm−2

= (−1)m−2

∑m−1
j=0 (−1)jKm−1−jbj

bm−2
.

That is, (4.1) remains to be true for n = m + 1. The proof is then complete by the

mathematical induction principle.
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Lemma 4.3. Suppose that 0 ≤ k ≤ n− 3. Let

F kn (i, j) =

αk+3 if i = 2n−k−1 − 1, j ≥ 2n−k−2,

Tn−k(i, j) otherwise.

Then detTn = (−b)2n−1−4 detFn−3
n , where αk is the same as defined in Lemma 4.2.

Proof. Observe that F 0
n = Tn. For 1 ≤ i ≤ 2n−2 − 2, adding −c2/b times of the (2n−1 −

(2i− 1))th row and −c1/b times of the (2n−1 − 2i)th row to the (2n−2 − i)th row of Tn is

followed by

T
′
n(i, j) =


0 if 2 ≤ i ≤ 2n−2 − 1, 2i− 1 ≤ j ≤ 2i,

α4 if j = 2n−1 − 1, 2 ≤ i ≤ 2n−2 − 1,

Tn(i, j) otherwise.

It is seen that there is only one nonzero entry, which is b, in the kth row of T
′
n for

3 ≤ k ≤ 2n−1 − 1. Evidently, we derive that

detTn = detT
′
n = (−b)2n−2

detF 1
n .

Applying similar operations to F 1
n infers that detF 1

n = (−b)2n−3
detF 2

n ; the desired result

follows by repeating the procedure for n− 3 times.

Now we are on the stage of presenting the proof of Theorem 2.2.

Proof of Theorem 2.2. Observe that

detFn−3
n = det


c1 c2 −b

b 0 αn

0 b αn


= −bKαn − b3

= −bK(−1)n−3

∑n−2
j=0 (−1)jKn−2−jbj

bn−3
− b3

= (−1)n−2

∑n−2
j=0 (−1)jKn−1−jbj + (−1)n−1bn−1

bn−4

= (−1)n−2b4−n
n−1∑
j=0

(−1)jKn−1−jbj ,

where K = c1 + c2.
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By integrating Lemmas 4.1, 4.2, and 4.3, we demonstrate that

detTn = (b+ c1 + c2)(−b)2n−1−1 detTn

= (b+ c1 + c2)(−b)2n−1−1(−b)2n−1−4 detFn−3
n

= (b+ c1 + c2)(−b)2n−5(−1)n−2b4−n
n−1∑
j=0

(−1)jKn−1−jbj

= (b+ c1 + c2)(−b)2n−n−1
n−1∑
j=0

(−1)jKn−1−jbj

= (b+ c1 + c2)(−b)2n−n−1
n−1∑
j=0

(−1)j(c1 + c2)n−1−jbj

and this completes the proof.

5. Reversibility of CA on general Cayley trees

This section extends results of cellular automata defined on binary tree to general Cayley

trees; in other words, this section illustrates the case where Σ = {1, 2, . . . , d} for some

d ≥ 2. Let dn = d+ d2 + · · ·+ dn; the matrix presentation Tn of CA Tf , whose local rule

is given by f(x0, x1, . . . , xd) = bx0 +
∑d

i=1 cixi (mod m), defined on Tn is defined as

Tn(i, j) =



b if i = j,

ck if j = (i− 1)d+ k + 1, 1 ≤ i ≤ 1 + dn−2, 1 ≤ k ≤ d,

c1 + c2 + · · ·+ cd if j = 1, 2 + dn−2 ≤ i ≤ 1 + dn−1,

0 otherwise.

The reversibility of Tf is related to the determinant of Tn being nonzero. The following

theorem extends Theorem 2.2.

Theorem 5.1. Let Tn be the matrix presentation of the linear TCA Tf defined on Tn with

periodic boundary condition. Then

detTn = (−1)dn−1−n+1(b+ c)bdn−1−n+1
n−1∑
j=0

(−1)jcn−1−jbj ,

where c = c1 + · · ·+ cd.

Similar to the proof of Theorem 2.2, we need several lemmas for the demonstration of

Theorem 5.1.
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Lemma 5.2. For n ∈ N, let Tn be defined as

Tn(i, j) =



−b if j = 1 + dn−2, 1 ≤ i ≤ 1 + dn−3,

c1 + c2 + · · ·+ cd − b if j = 1 + dn−2, 2 + dn−3 ≤ i ≤ 1 + dn−2,

b if j = i− 1, 2 ≤ i ≤ 1 + dn−2,

ck if j = (i− 1)d+ k, 1 ≤ i ≤ 1 + dn−3, 1 ≤ k ≤ d,

0 otherwise.

Then detTn = (−b)dn−1−1(b+ c1 + c2 + · · ·+ cd) detTn.

Proof. The proof is similar to the discussion of proof for Lemma 4.1, thus we only sketch

the main steps herein.

Adding the kth column of Tn to the first column recursively for k ≥ 2 derives a new

matrix T
(1)
n defined as

T (1)
n (i, j) =



b if i = j, 2 ≤ i ≤ 1 + dn−1,

ck if j = (i− 1)d+ k + 1, 1 ≤ i ≤ 1 + dn−2, 1 ≤ k ≤ d,

b+ c1 + · · ·+ cd if j = 1, 1 ≤ i ≤ 1 + dn−1,

0 otherwise.

It is seen that detTn = detT
(1)
n . Since each entry in the first column of T

(1)
n is identical,

replacing the entry in the first column by 1 and adding the −1 times of the (dn−2 + 2)th

row to the other rows recursively produce a new matrix T
(2)
n defined as

T (2)
n (i, j) =



b if j = i, 2 ≤ i ≤ 1 + dn−1,

c1 if j = (i− 1)d+ 2, 1 ≤ i ≤ 1 + dn−2, i 6= 2 + dn−3,

ck if j = (i− 1)d+ k + 1, 1 ≤ i ≤ 1 + dn−2, 2 ≤ k ≤ d,

−b if j = 2 + dn−2, 1 ≤ i ≤ 1 + dn−1, i 6= 2 + dn−3, i 6= 2 + dn−2,

c1 − b if i = 2 + dn−3, j = 2 + dn−2,

1 if j = 1, i = 2 + dn−2,

0 otherwise.

It follows immediately that detTn = detT
(1)
n = (b+ c1 + c2 + · · ·+ cd) detT

(2)
n .

Furthermore, after adding the (3 + dn−2)th, (4 + dn−2)th, . . ., (1 + dn−1)th column

to the (2 + dn−2)th column of T
(2)
n , it can be verified without difficulty that detT

(2)
n =

(−b)dn−1−1 detTn. Evidently,

detTn = (b+ c1 + c2 + · · ·+ cd) detT (2)
n = (−b)dn−1−1(b+ c1 + c2 + · · ·+ cd) detTn.

This completes the proof.
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Lemma 5.3. Let α3 = c1 + c2 + · · ·+ cd − b and let αn be defined recursively as

αn = −αn−1(c1 + c2 + · · ·+ cd) + b2

b
for n ≥ 4.

Then

αn = (−1)n−3

∑n−2
j=0 (−1)j(c1 + c2 + · · ·+ cd)

n−2−j(b)j

bn−3
.

Proof. The proof is analogous to the proof of Lemma 4.2, hence it is omitted.

Lemma 5.4. For 0 ≤ k ≤ n− 3, let

F kn (i, j) =

αk+3 if i = dn−k−1 − 1, j ≥ dn−k−2,

Tn−k(i, j) otherwise.

Then detTn = (−b)
∑n−2

i=2 d
i
detFn−3

n .

Proof. Notably, F 0
n = Tn. Analogous to the elaboration of the proof of Lemma 4.3,

observe that

(i) adding −cd/b times of the (1 + dn−2)th row, −cd−1/b times of the dn−2th row, . . .,

−c1/b times of the (2 + dn−2 − d)th row to the (1 + dn−3)th row;

(ii) adding −cd/b times of the (1 + dn−2 − d)th row, −cd−1/b times of the (dn−2 − d)th

row, . . ., −c1/b times of the (2 + dn−2 − 2d)th row to the dn−3th row;

(iii) repeating similar operations above until adding −cd/b times of the (1+dn−2−d(d−
1))th row, −cd−1/b times of the (dn−2 − d(d − 1))th row, . . ., −c1/b times of the

(2 + dn−2 − d2)th row to the (2 + dn−3 − d)th row;

it follows immediately that detTn = (−b)dn−2
detF 1

n . Continuing similar steps recursively

(n− 3) times derive that detTn = (−b)
∑n−2

i=2 d
i
detFn−3

n . This completes the proof.

Proof of Theorem 5.1. It is seen that

detFn−3
n = det



c1 c2 · · · cd −b

b 0 0 αn

0 b
... αn

...
...

. . . 0
...

0 0 b αn


= (−b)d−1 det

c1 − (c2+c3+···+cd)αn+b2

b

b αn
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= (−b)d−1(cαn + b2)

= (−b)d−1

[
(−1)n−3

∑n−2
j=0 (−1)jcn−1−jbj

bn−3
+ b2

]

= (−b)d−1

[
(−1)n−3

∑n−2
j=0 (−1)jcn−1−jbj + (−1)n−1bn−1

bn−3

]

= (−b)d+2−n
n−1∑
j=0

(−1)jcn−1−jbj ,

where c = c1 + c2 + · · ·+ cd.

Combining Lemmas 5.2, 5.3, and 5.4 infers that

detTn = (−b)dn−1−1(b+ c) detTn

= (b+ c)(−b)dn−1−1(−b)
∑n−2

i=2 d
i
detFn−3

n

= (b+ c)(−b)(
∑n−1

i=2 d
i)−1(−1)n−3(−b)d−1

n−1∑
j=0

(−1)jcn−1−j(b)j

 b3−n
= (−1)n−3(b+ c)(−b)(

∑n−1
i=1 d

i)−2b3−n
n−1∑
j=0

(−1)jcn−1−jbj

= (−1)n−3(b+ c)(−b)(
∑n−1

i=1 d
i)−2b3−n

n−1∑
j=0

(−1)jcn−1−jbj

= (−1)(
∑n−1

i=1 d
i)+1−n(b+ c)b(

∑n−1
i=1 d

i)+1−n
n−1∑
j=0

(−1)jcn−1−jbj .

The desired result then follows.

From those cases we studied in Section 3, it is seen that the reversibility of Tf depends

on not only the parameters in the local rule but also n and m. The reversibility for the

general cases is much more complicated and cannot be completely investigated by only

finitely many cases. More explicitly, Section 3 reveals that the reversibility for the cases

where p = 2 and p = 3 are totally different. A reversible TCA for p = 2 is irreversible for

p = 3. Hence, we skip the case study for the compactness of this paper.

6. Conclusion and discussion

This elucidation demonstrates that the reversibility problem of linear cellular automata

defined on Cayley trees with periodic boundary condition relates to solving a polynomial

derived from a recurrence relation and the coefficients of the local rules; as an example,

the complete criteria of the reversibility of cellular automata over Z2, Z3, and some other
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specific case are addressed. Note that the grid of Zd is a Cayley graph of free abelian

group with d generators; this makes the present study a possible approach for determining

the reversibility of multidimensional cellular automata, which is known as a undecidable

problem. The related exploration remains interesting.
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